New Aspects of Heterotic/F-theory Duality

Lara B. Anderson

Harvard University

Work done in collaboration with:

W. Taylor (MIT)

PLANCK 2013 – Bonn

May 23rd, 2013

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivation

• String theory is a powerful extension of quantum field theory, but extracting low-energy physics from string geometry is mathematically challenging...

Higher dimensional geometry $| \rightarrow |$ String Comp. $\rightarrow |$ 4*d* physics

- Need a good toolkit in any corner of string theory to extract the full low energy physics: (missing structure in the N = 1 lagrangian, coupings, moduli stabilization, etc.)
- String Pheno: What are the rules for "top down" model building? Patterns/Constraints/Predictions?
- Is it "Anything goes"? Or no viable models at all?
- Finiteness?

Much recent work: Classifying effective theories, scanning for models/patterns (For this work: Taylor (6d F-theory), LA, Gray and Lukas (4d Heterotic))

• <u>Goal</u>: Combine two approaches.

Consider 4d N = 1, Dual

Heterotic-F-theory Vacua

- Try to understand/classify how topology constrains effective theories
- Complementary approach to large-scale scanning
- Develop new tools for string pheno

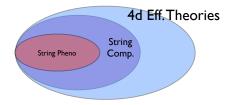


Image: A match a ma

A smooth $E_8 \times E_8$ heterotic model:

- The geometric ingredients include:
 - A Calabi-Yau 3-fold, X_3
 - Two holomorphic vector bundles, (V_1,V_2) on X (with structure group $G\subset E_8)$
- Compactifying on X leads to $\mathcal{N} = 1$ SUSY in 4D, while V breaks $E_8 \to H \times G$. H_i are the structure groups of V_i and G_1 is the 4d GUT group (G_2 a hidden sector)
 - E.g. H = SU(n), n = 3, 4, 5 leads to $G = E_6, SO(10), SU(5)$
- Matter and Moduli
 - *H*-charged matter, $H^1(X, V)$, $H^1(X, V^{\vee})$, $H^1(X, \wedge^2 V)$, ...
 - $X \Rightarrow h^{1,1}(X)$ Kähler moduli and $h^{2,1}(X)$ Complex structure moduli
 - $V \Rightarrow h^1(X, End_0(V))$ Bundle moduli

F-theory

- Geometric ingredients:
 - An elliptically fibered Calabi-Yau

4-fold, $\pi: Y_4 \stackrel{\mathbb{E}}{\longrightarrow} B_3$

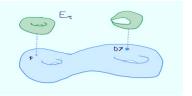
• If the fibration has a section, Y_4 can be written in Weierstrass form

$$y^2 = x^3 + f(u_i)x + g(u_i)$$

$$\begin{split} & u_i \text{ coords on } B_3, \, f \in H^0(B_3, K_{B_3}^{-4}), \\ & g \in H^0(B_3, K_{B_3}^{-6}) \end{split}$$

• Degenerations of E-fiber encode positions of 7-branes.

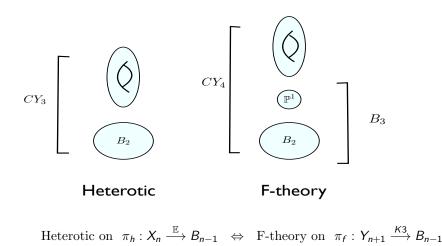
$$\Delta = 4f^3 + 27g^2 = 0$$



• Divisors $D \subset B_3 \Rightarrow \text{GUT}$ Symmetries. Curves, $C \subset B_3 \Rightarrow$ matter.

• Also
$$G$$
-flux $\in H^{2,2}(Y_4)$

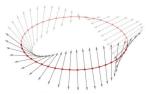
Duality

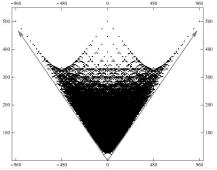


Where these two theories are dual, there is a finite set of geometries to count

A finite class of geometries

- The number of elliptically fibered CY 3-folds, X₃, is finite (M. Gross)
- What about the number of V_1, V_2 over X_3 ?





- $(h^{1,1}(X_3), h^{2,1}(X_3))$
- E-fibered 3-folds "extremal" in known data set (Taylor, Candelas, Ooguri)

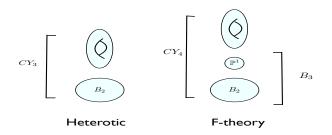
The topology of V: a total Chern class: $c(V) = (rank, c_1, c_2, c_3)(V)$

- Moduli Space: $\mathcal{M}_{\omega}(\mathbf{rk}, \mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3)$
- For *fixed topology* it is known that \mathcal{M} is compact and has only finitely many components

Bounds on Topology:

- Sub-bundles of $E_8:\ rk<8$ since $H\in E_8$
- Spinors: $c_1 = 0 \pmod{2}$
- Anomaly cancellation $c_2(TX) = c_2(V_1) + c_2(V_2) + [W]_{eff} \Rightarrow 0 \le c_2(V_i) \le c_2(TX)$
- For fixed c₂ can be shown that there are only finitely many values of c₃ compatible with N = 1 supersymmetry (slope-stability of the bundle).
 (A. Langer)
- Hence, for bundles on elliptically fibered 3-folds X_3 , we have, in principle, a finite set of compactification geometries to consider!

The Plan...



- Build dual (X_3, Y_4) pairs using dataset of 61,539 toric surfaces, B_2 (Morrison + Taylor)
 - Caveats: All fibrations w/ section. B_3 constructed as a \mathbb{P}^1 -bundle over B_2 .
 - Only 16 of these B_2 lead to smooth $X_3 \Rightarrow$ Start with these.
- \bullet Use Y_4 to determine information about $\mathcal{M}(c(V))$ over X_3
- Use X_3 to further determine EFT assoc. to Y_4 .

η : Building bundles and B_3

- Idea: Choose topology of bundles $(V_1, V_2) \Leftrightarrow \text{Build } \pi_1 : B_3 \to B_2$ Heterotic:
 - Can expand:

$$\begin{split} c_2(V_i) &= \eta_i \wedge \omega_0 + \zeta_i, \\ & \le / \eta_i \text{ (resp. } \zeta_i \text{) } \{1,1\} \text{ (resp.} \\ \{2,2\} \text{) forms on } B_2 \text{ and } \omega_0 \text{ dual} \\ & \text{to the zero section.} \end{split}$$

• Anomaly Cancellation \Rightarrow

- Can build B_3 over B_2 by "twisting" the \mathbb{P}^1 fibration (analog of \mathbb{F}_n surfaces in 6d)
- $c_1(B_3) = c_1(B_2) + 2\Sigma + t$ where Σ is dual to the zero-section of the \mathbb{P}^1 -fiber

(日) (同) (日) (日)

 $\eta_{1,2}=6c_1(B_2)\pm t$

Can be shown that in Het/F-dual pairs, two *t*'s are the same (FMW, Grimm + Taylor)

N = 1 Supersymmetry

Heterotic:

- X_3 a smooth CY 3-fold
- Bundles, V_i satisfy the Hermitian-Yang-Mills Eq.s: $F_{ab} = F_{\bar{a}\bar{b}} = 0$ $g^{a\bar{b}}F_{\bar{a}\bar{b}} = 0$
- By Donaldson-Uhlenbeck-Yau Thm, HYM Sol'n ⇔

Slope-stable Vector bundles

• Bogomolov Bound: If V is stable, $\int_X c_2(V) \wedge \omega \ge 0 \Rightarrow \eta$ is an effective curve class in B_2 .

F-theory:

 $\bullet \ \mathcal{N} = 1 \Leftrightarrow Y_4 \ \mathrm{can} \ \mathrm{be} \ \mathrm{resolved}$

into a smooth Calabi-Yau 4-fold

- Need vanishing degrees of

 (f, g, Δ) ≤ (4, 6, 12) on every
 divisor in B₃ or too singular to
 admit CY resolution.
- Likewise, f, g cannot vanish to orders 4, 6 on any curve.
- These conditions on $t \Rightarrow \eta$ and

effective curve class in B_2 .

Example:

- Consider $B_2 = \mathbb{F}_1$ the Hirzebruch surface $(\mathbb{P}^1 \text{ fibered over } \mathbb{P}^1)$ with $h^{1,1}(B_2) = 2$ spanned by S, F with $S^2 = -1, S \cdot F = 1$ and $F^2 = 0$
- With B_3 constructed via the "twist" t = 3S + 9F
- Here Y_4 is generically singular with E_6 symmetry over $\Sigma = 0$.
- This symmetry cannot be deformed away in the C.S. moduli space of Y_4 (i.e. no matter available to "Higgs" it)
- But this carries non-trivial information about $V_{1,2}$...
 - V_2 with $\eta_2 = 6c_1(B) t = 9S + 9F$
 - $G = E_6$ symmetry means V_2 is an H = SU(3) bundle
 - Unbreakable $E_6 \Rightarrow \mathcal{M}(r, 0, (9S + 9F) \land \omega_0 + \zeta, c_3) = \emptyset \ \forall r > 3$
- \bullet Only E_6 GUTs possible for this topology!

イロト イポト イヨト イヨ

Upper bounds on the structure group, H

• Constructed 4983 bases $B_3 \Leftrightarrow$	Н
Triples (X_3, V_1, V_2) .	
• Constraints arising from	SU(n)
"generic" symmetries on Y_4	<i>SO</i> (7)
provide rank(V)-dependent	SO(m)
criteria for $\mathcal{M}(c(V)) = \emptyset$	Sp(k)
• First examples by Rajesh and	F ₄
Berglund & Myer (' $90s$).	G ₂
• Non-trivial information about	E ₆
higher-rank Donaldson-Thomas	E ₇
Invariants on CY 3-folds	E ₈
higher-rank Donaldson-Thomas	

(notoriously hard to compute)

Н	$\eta \geq Nc_1(B_2)$					
	N =					
SU(n)	$n (n \ge 2)$					
<i>SO</i> (7)	4					
SO(m)	$\frac{m}{2}$ ($m \ge 8$)					
Sp(k)	$2k \ (k \ge 2)$					
F ₄	$\frac{13}{3}$					
G ₂	$\frac{7}{2}$					
E_6	<u>9</u> 2					
E ₇	$\frac{14}{3}$					
E ₈	5					

We can go further... .

Lower Bounds on the structure group, H

- For a bundle with $\eta = 9S + 9F$ on $\pi : X_3 \to \mathbb{F}_1$, can't build more than H = SU(3). Can we build less?
- If the complex structure of Y_4 is specialized to try to produce say, E_7 symmetry (sending $H = SU(3) \rightarrow SU(2)$) then the manifold becomes too singular for the CY condition.
- Hence, no SU(2) bundles exist w/ $\eta = 9S + 9F$ either.
- The symptom of this in B_3 are "exotic" matter curves, $C = \Sigma \cap S$ with $E_6 \to E_8$ enhancement.
- If we try to tune $H = SU(3) \rightarrow SU(2)$, $V_3 \rightarrow \mathcal{O}_{X_3}^{\oplus 3} + \mathcal{I}_{\eta}$, Small Instantons (*M*5-branes wrapping η)
- Harder-Narasimhan Filtrations of stable bundles ⇔ Exotic F-theory matter curves.

- Thus, this $B_3 \Leftrightarrow (X_3, V_1, V_2)$ is only compatible with E_6 symmetry.
- This is an example of topology which is only compatible with a single choice of gauge symmetry. Can be studied systematically (200 of 4000 examples)
- Also similar story with only certain matter spectra compatible with $\eta.$
- These observations help in understanding which geometries are compatible with Standard Model symmetries and particle spectra.

< ロ > < 同 > < 三 > < 三

base B ₂	h1,1	# <i>B</i> ₃ 's	NB (1)	NB (2)	F4	<i>SO</i> (8)	SU(3)	SU(2)
$(1, 1, 1)$ (\mathbb{P}^2)	1	19	0	0	0	0	0	0
(0, 0, 0, 0) (F ₀)	2	169	0	0	0	0	0	0
$(1, 0, -1, 0)$ (\mathbb{F}_1)	2	163	0	0	0	0	0	0
(2, 0, -2, 0) (F ₂)	2	31	18	0	2	1	0	1
$(0, 0, -1, -1, -1)$ (dP_2)	3	595	0	0	0	0	0	0
(1, -1, -1, -2, 0)	3	196	111	0	9	7	0	7
$(-1, -1, -1, -1, -1, -1)$ (dP_3)	4	474	0	0	0	0	0	0
(0, -1, -1, -2, -1, -1)	4	378	204	0	22	16	2	6
(0, 0, -2, -1, -2, -1)	4	400	273	42	44	32	19	10
(1, 0, -2, -2, -1, -2)	4	72	40	25	7	6	3	4
(-1, -1, -2, -1, -2, -1, -1)	5	1266	851	140	156	123	70	46
(0, -1, -1, -2, -2, -1, -2)	5	446	253	150	51	43	23	30
(-1, -1, -2, -1, -2, -2, -1, -2)	6	379	175	185	58	53	31	26
(-1, -2, -1, -2, -1, -2, -1, -2)	6	289	171	69	56	38	23	2
(0, -2, -1, -2, -2, -2, -1, -2)	6	89	23	59	15	7	9	7
(-1, -2, -2, -1, -2, -2, -1, -2, -2)	7	36	8	26	0	5	4	5
total		4983	2127	696	420	331	184	144

э.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Conclusions

- Dual N = 1 Heterotic/F-theory geometries are a fruitful arena for classifying/enumerating (a finite set) of phenomenologically relevant string vacua
- Y_4 provides non-trivial vanishing conditions for $\mathcal{M}(c(V))$ on X_3
- Upper and lower bounds on H for a given η
- Novel 4d features to be explored
 - Multiple components to the moduli space $\mathcal{M}(c(V)) \Rightarrow$ topologically equivalent non-diffeomorphic Y_4
 - Obstructed small instanton transitions (bundles which cannot be dissolved into 5-branes) \Leftrightarrow G-flux and non-commutive D3-branes.
- Patterns/Predictions for how to select phenomenologically relevant string

vacua

< ロ > < 同 > < 三 > < 三

The End

2

メロト メポト メヨト メヨト