Flavour physics, supersymmetry, and GUTs

Ulrich Nierste

Planck 2013, Bethe Center for Theoretical Physics, Bonn, 20-24 May 2013

Contents

Flavour and Supersymmetry

Flavour and SO(10): the CMM model

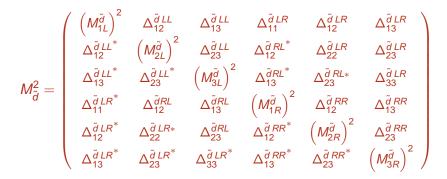
Conclusions

Supersymmetry

The MSSM has many new sources of flavour violation, all in the supersymmetry-breaking sector.

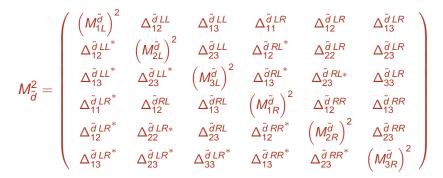
No problem to get a big effect in a given FCNC process, but rather to suppress big effects elsewhere (supersymmetric flavour problem).

With squark masses well beyond 1 TeV the supersymmetric flavour problem is substantially alleviated.

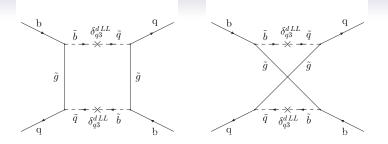

Squark mass matrix

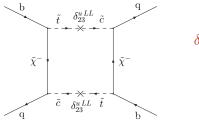
Diagonalise the Yukawa matrices Y_{jk}^{u} and Y_{jk}^{d} \Rightarrow quark mass matrices are diagonal,

super-CKM basis


Squark mass matrix

Diagonalise the Yukawa matrices Y_{jk}^{u} and Y_{jk}^{d} \Rightarrow quark mass matrices are diagonal, super-CKM basis E.g. Down-squark mass matrix:




Squark mass matrix

Diagonalise the Yukawa matrices Y_{jk}^{u} and Y_{jk}^{d} \Rightarrow quark mass matrices are diagonal, super-CKM basis E.g. Down-squark mass matrix:

Not diagonal! \Rightarrow new FCNC transitions.

Limiting cases:

Generic MSSM: too many free parameters

Minimal Flavour Violation (MFV): quark flavour transitions governed by CKM matrix, too small effects Limiting cases:

Generic MSSM: too many free parameters

Minimal Flavour Violation (MFV): quark flavour transitions governed by CKM matrix, too small effects

Goal: Plausible scenarios with "controlled deviations" from MFV, permitting sizable new FCNC, even if squarks are heavy.

Flavour and SUSY GUT

Linking quarks to neutrinos: Flavour mixing: quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider SU(5) multiplets:

$$\overline{\mathbf{5}}_{\mathbf{1}} = \begin{pmatrix} \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{d}_{R}^{c} \\ \mathbf{e}_{L} \\ -\nu_{e} \end{pmatrix}, \quad \overline{\mathbf{5}}_{\mathbf{2}} = \begin{pmatrix} \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \mathbf{s}_{R}^{c} \\ \mu_{L} \\ -\nu_{\mu} \end{pmatrix}, \quad \overline{\mathbf{5}}_{\mathbf{3}} = \begin{pmatrix} \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \mathbf{b}_{R}^{c} \\ \tau_{L} \\ -\nu_{\tau} \end{pmatrix}$$

If the observed large atmospheric neutrino mixing angle stems from a rotation of $\overline{5}_2$ and $\overline{5}_3$, it will induce a large $\tilde{b}_R - \tilde{s}_R$ -mixing (Moroi; Chang,Masiero,Murayama).

 \Rightarrow new $b_R - s_R$ transitions from gluino-squark loops possible.

Key ingredients: Some weak basis with

$$\mathbf{Y}_{d} = V_{\text{CKM}}^{*} \begin{pmatrix} y_{d} & 0 & 0 \\ 0 & y_{s} & 0 \\ 0 & 0 & y_{b} \end{pmatrix} U_{\text{PMNS}}$$

and right-handed down squark mass matrix:

$$\mathsf{m}^2_{ ilde{d}}\left(\mathit{M_{\!Z}}
ight) = \mathsf{diag}\left(\mathit{m}^2_{ ilde{d}},\,\mathit{m}^2_{ ilde{d}},\,\mathit{m}^2_{ ilde{d}}-\Delta_{ ilde{d}}
ight).$$

with a calculable real parameter $\Delta_{\tilde{d}}$, typically generated by top-Yukawa RG effects.

Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into m_d^2 :

$$U_{\rm PMNS}^{\dagger} \, {\sf m}_{\tilde{d}}^2 \, U_{\rm PMNS} = egin{pmatrix} m_{\tilde{d}}^2 & 0 & 0 \ 0 & m_{\tilde{d}}^2 - rac{1}{2}\,\Delta_{\tilde{d}} & -rac{1}{2}\,\Delta_{\tilde{d}} \, e^{i\xi} \ 0 & -rac{1}{2}\,\Delta_{\tilde{d}} \, e^{-i\xi} & m_{\tilde{d}}^2 - rac{1}{2}\,\Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects CP violation in $B_s - \overline{B}_s$ mixing!

Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into m_d^2 :

$$U_{\rm PMNS}^{\dagger} \, {\sf m}_{\tilde{d}}^2 \, U_{\rm PMNS} = egin{pmatrix} m_{\tilde{d}}^2 & 0 & 0 \ 0 & m_{\tilde{d}}^2 - rac{1}{2}\,\Delta_{\tilde{d}} & -rac{1}{2}\,\Delta_{\tilde{d}} \, e^{i\xi} \ 0 & -rac{1}{2}\,\Delta_{\tilde{d}} \, e^{-i\xi} & m_{\tilde{d}}^2 - rac{1}{2}\,\Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects CP violation in $\mathbf{B}_{s} - \overline{\mathbf{B}}_{s}$ mixing!

Tri-bimaximal form of U_{PMNS} used here!

The Chang–Masiero–Murayama (CMM) model is based on the symmetry breaking chain $SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_L \times U(1)_Y$.

The Chang–Masiero–Murayama (CMM) model is based on the symmetry breaking chain $SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_L \times U(1)_Y$.

SO(10) superpotential:

$$W_{Y} = \frac{1}{2} 16_{i} Y_{u}^{ij} 16_{j} 10_{H} + \frac{1}{2} 16_{i} Y_{d}^{ij} 16_{j} \frac{45_{H} 10_{H}^{\prime}}{M_{Pl}} + \frac{1}{2} 16_{i} Y_{N}^{ij} 16_{j} \frac{\overline{16}_{H} \overline{16}_{H}}{M_{Pl}}$$

with the Planck mass $M_{\rm Pl}$ and

- 16_{*i*}: one matter superfield per generation, i = 1, 2, 3,
- 10_{*H*}: Higgs superfield containing MSSM Higgs superfield H_u ,
- 10[']_H: Higgs superfield containing MSSM superfield H_u ,
- 45_H : Higgs superfield in adjoint representation,
- $\overline{16}_H$: Higgs superfield in spinor representation.

"Most minimal flavour violation"

The Yukawa matrices Y_u and Y_N are always symmetric. In the CMM model they are assumed to be simultaneously diagonalisable at the scale M_{Pl} , where the soft SUSY-breaking terms are universal.

"Most minimal flavour violation"

The Yukawa matrices Y_u and Y_N are always symmetric. In the CMM model they are assumed to be simultaneously diagonalisable at the scale M_{Pl} , where the soft SUSY-breaking terms are universal.

But: FCNC transitions between quarks may involve U_{PMNS} !

Chang-Masiero-Murayama model

2011 analysis:

We have considered $B_s - \overline{B}_s$ mixing, $b \to s\gamma$, $\tau \to \mu\gamma$, vacuum stability bounds, lower bounds on sparticle masses and the mass of the lightest Higgs boson. The analysis involves 7 parameters in addition to those of the Standard Model.

Generic results: Largest effects in $B_s - \overline{B}_s$ mixing, $\tau \rightarrow \mu \gamma$

J. Girrbach, S. Jäger, M. Knopf, W. Martens, UN, C. Scherrer, S. Wiesenfeldt 1101.6047

Phenomenological Motivation: In 2011 a global analysis of flavour data pointed to a large CP phase in $B_s - \overline{B}_s$ mixing, with the Standard Model disfavoured at 3.6 σ .

```
Lenz, UN, CKMfitter, 1008.1593
```

At the same time the reactor neutrino mixing angle θ_{13} was consistent with zero, so that the new quark FCNC transitions of the CMM model were confined to $b \rightarrow s$.

- squark masses M_ũ, M_č of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass m_{g3},
- arg μ ,
- $\tan\beta$

- squark masses M_ũ, M_č of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass m_{g3},
- arg μ ,
- $\tan\beta$

RG evolution from M_{ew} to M_{Pl} : find universal soft terms $a_0, m_0, m_{\tilde{g}}$ and D.

- squark masses M_ũ, M_č of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g3},
- arg μ ,
- $\tan\beta$

RG evolution from M_{ew} to M_{Pl} : find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to M_{ew} : calculate $|\mu|$ from electroweak symmetry breaking

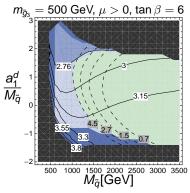
- squark masses M_ũ, M_č of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass m_{g3},
- arg μ ,
- $\tan\beta$

RG evolution from M_{ew} to M_{Pl} : find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to \textit{M}_{ew} : calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{ew} \rightarrow M_{Pl} \rightarrow M_{ew}$: find all particle masses and MSSM couplings

- squark masses M_ũ, M_č of right-handed up and down squarks,
- trilinear term a_1^d of first generation,
- gluino mass m_{g3},
- arg μ ,
- $\tan\beta$


RG evolution from M_{ew} to M_{Pl} : find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to \textit{M}_{ew} : calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{ew} \rightarrow M_{Pl} \rightarrow M_{ew}$: find all particle masses and MSSM couplings

adjust CP phase ξ to approximate experimental Δ_s best.

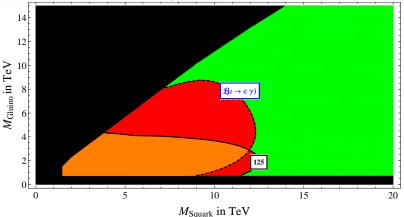
2011 fit:

Black: negative soft masses² Gray blue: excluded by $\tau \rightarrow \mu \gamma$ Medium blue: excluded by $b \rightarrow s \gamma$ Dark blue: excluded by $B_s - \overline{B}_s$ mixing Green: allowed

solid lines: $10^4 \cdot Br(b \rightarrow s\gamma)$; dashed lines: $10^8 \cdot Br(\tau \rightarrow \mu\gamma)$.

Two developments since 2011:

1. Measurement of a sizable θ_{13} :


 $\begin{bmatrix} U_{\text{PMNS}}^{\dagger} \, m_{\tilde{d}}^2 \, U_{\text{PMNS}} \end{bmatrix}_{12} = \cos \theta_{13} \sin \theta_{13} \sin \theta_{23} \Delta_{\tilde{d}}$ $\Rightarrow \quad B(\mu \rightarrow e\gamma) \leq 5.7 \cdot 10^{-13} \text{ (MEG 2013) pushes sfermion masses up.}$ Two developments since 2011:

1. Measurement of a sizable θ_{13} :

 $\begin{bmatrix} U_{\text{PMNS}}^{\dagger} \, m_{\tilde{d}}^2 \, U_{\text{PMNS}} \end{bmatrix}_{12} = \cos \theta_{13} \sin \theta_{13} \sin \theta_{23} \Delta_{\tilde{d}}$ $\Rightarrow \quad B(\mu \rightarrow e\gamma) \leq 5.7 \cdot 10^{-13} \text{ (MEG 2013) pushes sfermion masses up.}$

2. Discovery of a Higgs particle with $M_h = 125$ GeV. Difficult to account for in CMM model.

J. Stöckel, UN, work in progress:

for tan $\beta = 10$, $\mu > 0$, marginal dependence on a_1^d . White label: Higgs mass. Red: excluded by $\mu \rightarrow e\gamma$ or $M_h = 125$ GeV. All squark masses above 5 TeV, but lightest-neutralino mass can be 135 GeV!

Fla	vour	and	SUS	Y
-----	------	-----	-----	---

Results

All squark masses are above 5 TeV.

Results

All squark masses are above 5 TeV. Black region excluded by requiring $m_{\tilde{\tau}_{1,2}} \ge m_{\tilde{\chi}_1^0}$.

Results

All squark masses are above 5 TeV.

Black region excluded by requiring $m_{\tilde{\tau}_{1,2}} \ge m_{\tilde{\chi}_1^0}$.

Only constraints on gaugino masses from gaugino unification at M_{GUT} and experimental bounds on $m_{\tilde{g}_3}$. E.g. $m_{\tilde{\chi}_1^0} \simeq m_{\tilde{g}_1} = 135 \text{GeV}$ possible.

 In view of the bounds on squark masses set by the LHC SUSY scenarios with "controlled deviations" from MFV are desirable.

- In view of the bounds on squark masses set by the LHC SUSY scenarios with "controlled deviations" from MFV are desirable.
- Models of GUT flavour physics with $\tilde{b} \to \tilde{s}$ transitions driven by the atmospheric neutrino mixing angle are substantially affected by $B(\mu \to e\gamma)$ and seriously challenged by $M_h = 125 \text{ GeV}$.

- In view of the bounds on squark masses set by the LHC SUSY scenarios with "controlled deviations" from MFV are desirable.
- Models of GUT flavour physics with $\tilde{b} \to \tilde{s}$ transitions driven by the atmospheric neutrino mixing angle are substantially affected by $B(\mu \to e\gamma)$ and seriously challenged by $M_h = 125 \text{ GeV}$.
- The viable parameter space of the CMM model comes with squarks which are too heavy to be discovered. Gauginos can be light enough to be discovered, possibly also a stau.

The quantum numbers of the SM point towards a grand unified theory (GUT), the gauge couplings converge to a common GUT value at high energies, similarly y_{τ} and y_b converge, and neutrinos have small masses as predicted by GUT pioneers.

The quantum numbers of the SM point towards a grand unified theory (GUT), the gauge couplings converge to a common GUT value at high energies, similarly y_{τ} and y_b converge, and neutrinos have small masses as predicted by GUT pioneers.

So is this just a conspiracy of Nature? Or even...

