Bonn May 2013

Scattering in General Gauge Mediation

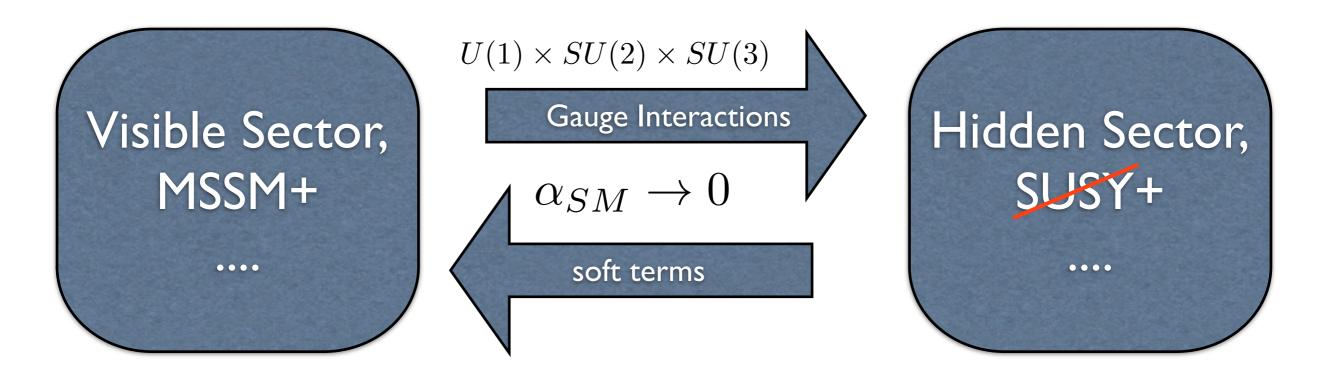
+ work on Quivers in SARAH & SPheno with Aoife Bharucha & Andreas Goudelis

1207.4484 1210.4935 and 1303.4534

Moritz McGarrie

AvH fellow Host: Andreas Weiler General Gauge Mediation in 5D GGM and Deconstruction Warped General Gauge Mediation Hybrid Gauge Mediation General Resonance Mediation Holography for General Gauge Mediation

Gauge Mediated Supersymmetry Breaking

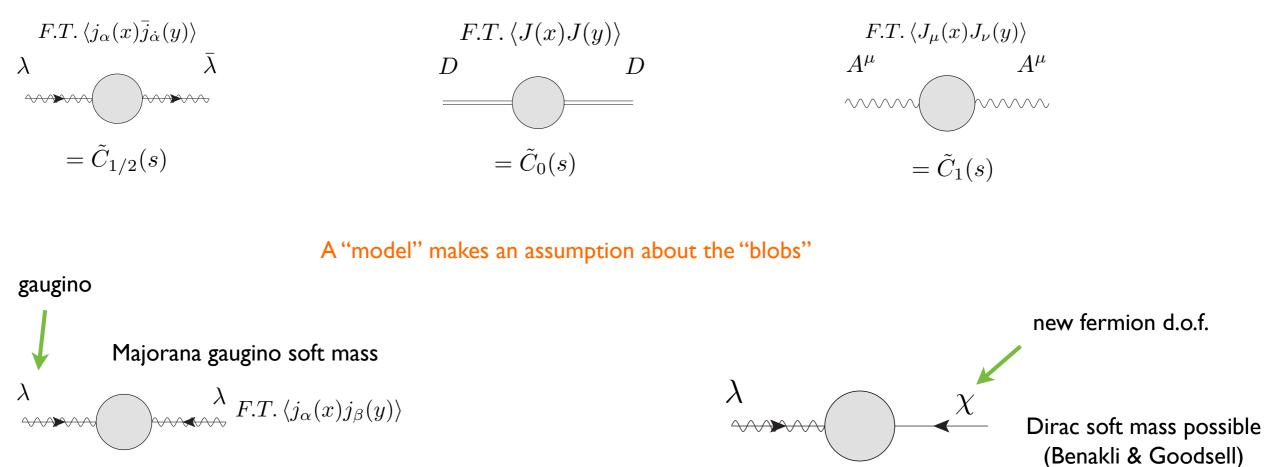


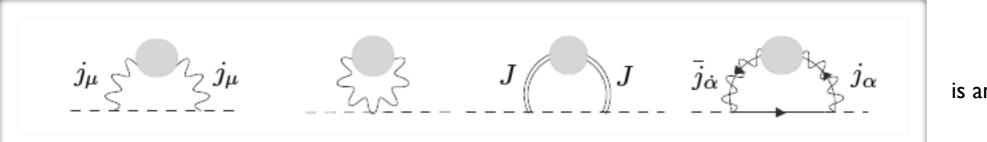
It can be model independent (GGM) to address
strong coupling
$$\begin{array}{l} \text{See also:} \\ \text{Gouvea, Moroi, Murayama} \\ 9701244 \\ \text{Meade, Seiberg, Shih} \\ 0801.3278 \\ \dots \text{ etc} \end{array}$$

The key point of GGM: we want to understand and encode <u>strongly coupled</u> hidden sectors that break supersymmetry dynamically

The building blocks

current current correlators





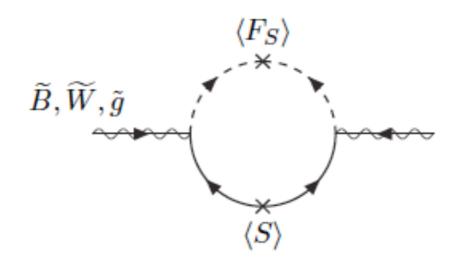
is an sfermion soft mass

perturbative in α_{SM} , all orders in the "electric" hidden sector couplings $lpha_{hidden}$

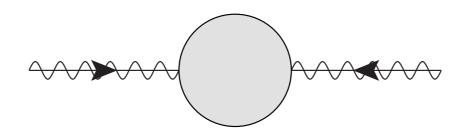
If the model is a just a messenger model then the GGM programme achieves little... Just use the reviews Giudice & Rattazzi 9801271 (in most cases) S.Martin 9608224

What is a blob?

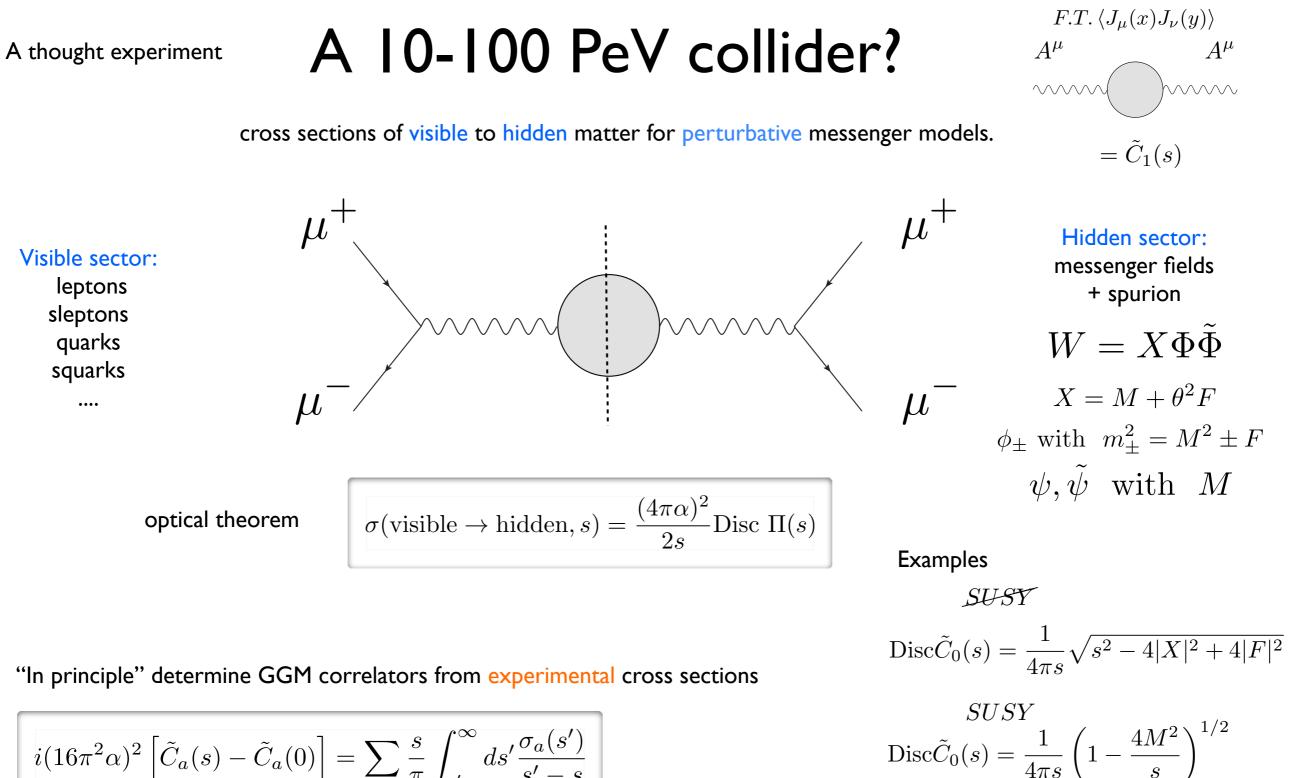
In a perturbative model, (like a messenger model) a blob is just a simple one loop diagram



At strong coupling it is (unfortunately) very complicated



I'm sorry (its not my fault, I'm just the messenger)



$$i(16\pi^2\alpha)^2 \left[\tilde{C}_a(s) - \tilde{C}_a(0)\right] = \sum_{cuts} \frac{s}{\pi} \int_{s'_0}^{\infty} ds' \frac{\sigma_a(s')}{s'-s}$$

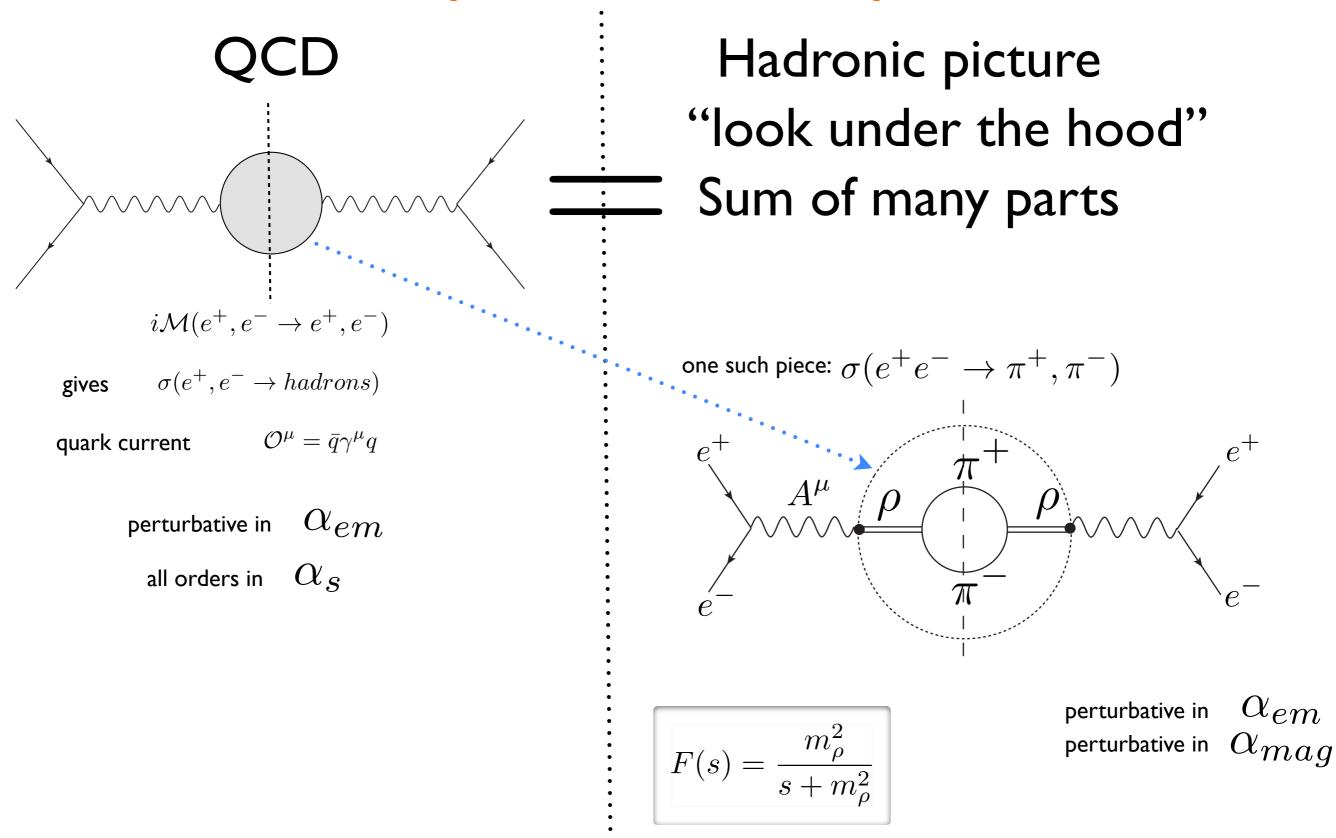
soft masses and cross sections are related

But we want to get away from perturbative messenger models

Example: The quiver models

Can we develop intuition with QCD?

Can QCD tell us something about the "blobs" and therefore something about the soft masses?



<u>Summary</u>

The key idea is to build models around scattering

ALL old GMSB models are of this type

$$\sigma_a(visible \to hidden) = \frac{(4\pi\alpha)^2}{2s} \ Disc \ \tilde{C}_a(s)$$

OR

RED

$$F(s) = \frac{m_{\rho}^2}{s + m_{\rho}^2}$$

form factor or no form factor?

BLACK? $\sigma_a(visible \to hidden) = \frac{(4\pi\alpha)^2}{2s} |F(s)|^2 \ Disc \ \tilde{C}_a(s)$

Similar to the hadronic world: perhaps we should take it more seriously?

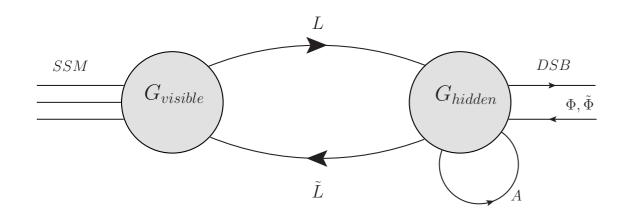
Duality in
$$e^+, e^- \rightarrow \text{hidden}?$$

Ideally, determine this form factor from experiment	impossible
or from computer simulations	hard
or from toy models and effective field theory	possible

What does this tell us about SUSY breaking?

SF	Spin 0	Spin $\frac{1}{2}$	Generations	$(U(1)_A, \operatorname{SU}(2)_B, \operatorname{SU}(3)_c, U(1)_B, \operatorname{SU}(2)_A)$	R-Parity
$\hat{q}_{\hat{i}}$	\tilde{q}	q	3	$(\frac{1}{6}, 1, 3, 0, 2)$	-1
L	ĩ	l	3	$(-\frac{1}{2}, 1, 1, 0, 2)$	-1
\hat{H}_d	H_d	\tilde{H}_d	1	$(-rac{1}{2}, 1, 1, 0, 2)$	+1
\hat{H}_u	H_u	\tilde{H}_u	1	$(\frac{1}{2}, 1, 1, 0, 2)$	+1
\hat{d}	$ ilde{d}_R^*$	d_R^*	3	$(\frac{1}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{u}	\tilde{u}_R^*	u_R^*	3	$(-rac{2}{3}, 1, \overline{3}, 0, 1)$	-1
\hat{e}	$ ilde{e}_R^*$	e_R^*	3	(1, 1, 1, 0, 1)	-1
Ĺ	L	ψ_L	1	$(-rac{1}{2},\overline{2},1,rac{1}{2},2)$	+1
$\hat{ ilde{L}}$	\tilde{L}	$\psi_{ ilde{L}}$	1	$(rac{1}{2}, oldsymbol{2}, oldsymbol{1}, -rac{1}{2}, \overline{oldsymbol{2}})$	+1
\hat{K}	K	ψ_K	1	(0, 1, 1, 0, 1)	+1
Â	Α	ψ_A	1	(0, 3, 1, 0, 1)	+1

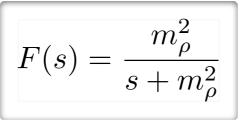
Table 2. Matter fields of the model.



$$W_{\rm SSM} = Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u \, - Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d \, - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d \, + \mu \, \hat{H}_u \, \hat{H}_d$$

$$\begin{split} W_{\text{Quiver}} &= \frac{Y_K}{2} \hat{K} (\,\hat{L}\,\hat{\tilde{L}}\,-V^2)\,+Y_A\,\hat{L}\,\hat{A}\,\hat{\tilde{L}} \\ & W_{\text{Messenger}} = X\Phi\tilde{\Phi}, \end{split}$$

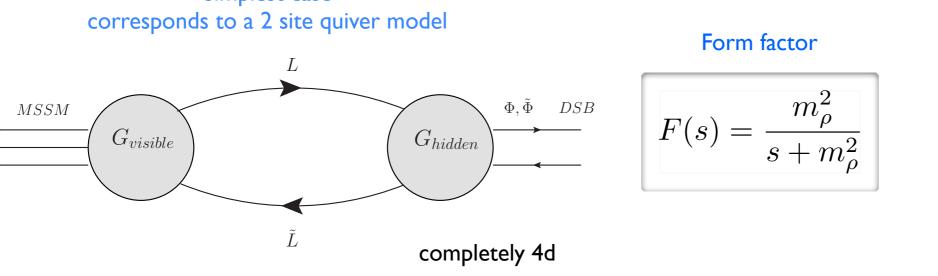
Form factor



SARAH: Florian Staub 1207.0906

See also Andreas Goudelis' talk on Wednesday

What does this tell us about SUSY breaking? "GGM and E

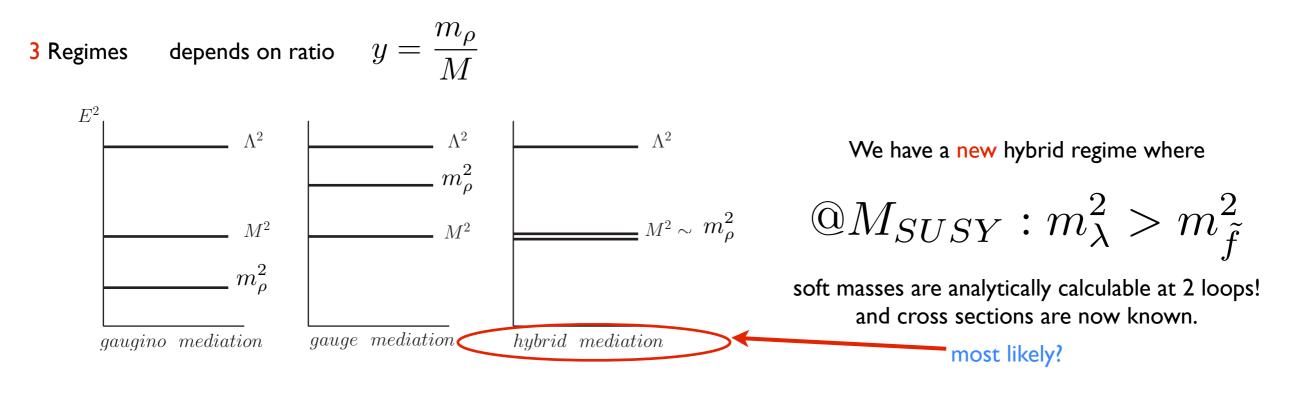


"GGM and Deconstruction" McGarrie 1009.0012 and 1101.5158

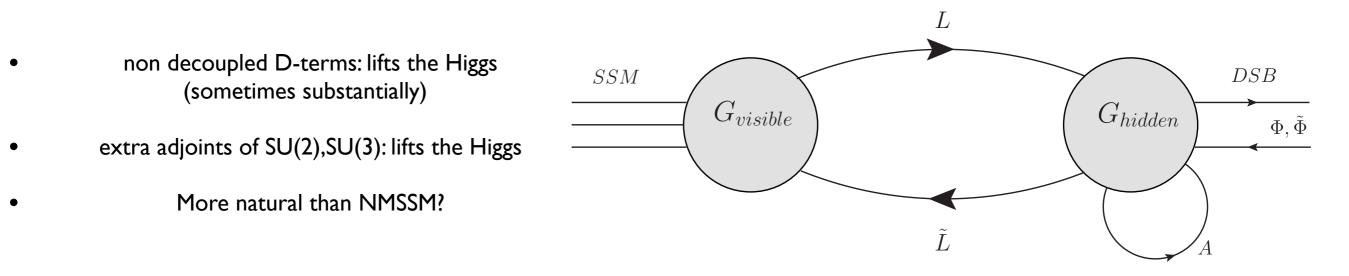
Extensions in	Auzzi & Giveon	
	1009.1714	
	1011.1664	
easyDiracgaug	inos +	
Abel & Good	sell 1102.0014	
Bharucha, G	oudelis M.M.	

Bharucha, Goudelis M.M. To appear

A hidden local symmetry, exhibits vector meson dominance



A quiver model: GMSB+



$$m_h^2 \simeq m_z^2 \cos 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\log \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} (1 - \frac{X_t^2}{12m_{\tilde{t}}^2}) \right] \qquad \Delta = \left(\frac{g_A^2}{g_B^2}\right) \frac{2m_L^2}{m_v^2 + 2m_L^2}$$

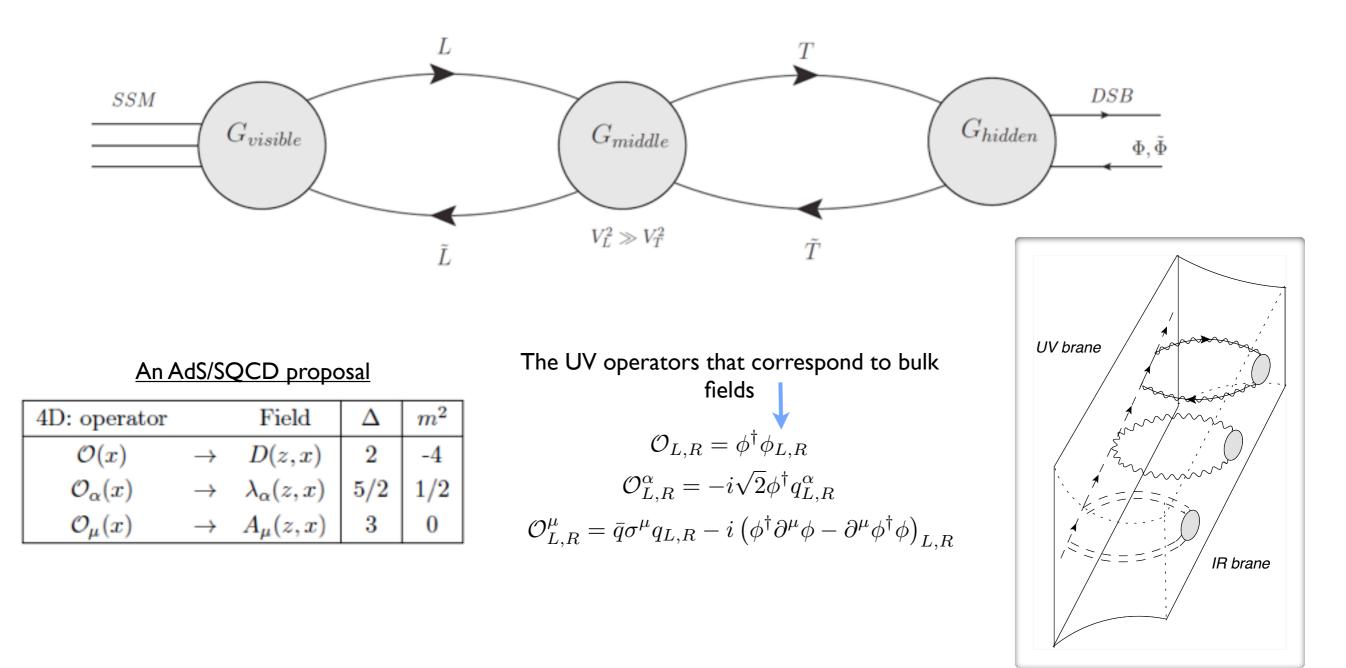
$$m_z^2 \to m_z^2 + \left(\frac{g_1^2 \Delta_1 + g_2^2 \Delta_2}{2}\right) v_{ew}^2 \qquad \qquad \delta \mathcal{L} = -g_1^2 \Delta_1 (H_u^{\dagger} H_u - H_d^{\dagger} H_d)^2 \\ -g_2^2 \Delta_2 \sum_a (H_u^{\dagger} \sigma^a H_u + H_d^{\dagger} \sigma^a H_d)^2$$

A quiver model is an example of an effective description of strong coupling Under explored compared to NMSSM

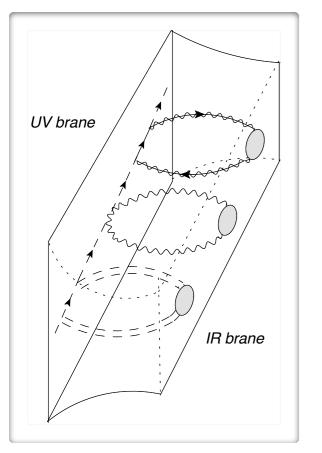
"Holography for General Gauge Mediation" A holographic quiver

M.M. Rodolfo Russo 1004.3305 M.M. Daniel C.Thompson 1009.4696 M.M. 1210.4935

- non decoupled D-terms
- extra adjoints of SU(2),SU(3)
- Interesting RGE's



currently putting this into SARAH! Aoife Bharucha & AndreasGoudelis

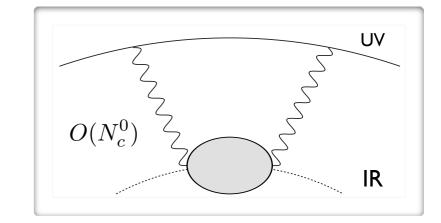


$$F_n \epsilon_\mu = \langle 0 | \mathcal{O}_\mu | \rho_n \rangle$$

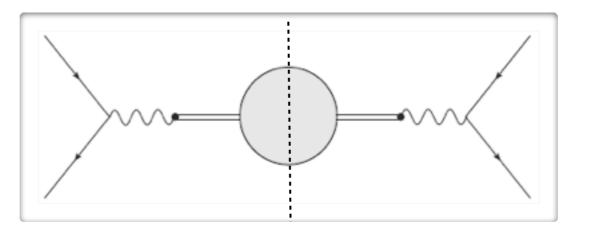
meson decay constant

Holographic Scattering

$$g_n = g_5 g_{IR} \int dz \psi_n(z) \varphi(z) \tilde{\varphi}(z) \delta(z - L_1)$$



The form factor encodes a sum of monopole contributions of an infinite tower of vector mesons with decay constants for each meson



Final states can be taken to be messenger fields

$$\sigma_a(vis \to hid) = \frac{(4\pi\alpha_{SM})^2}{2s} (g_{IR}^2 g_5^2) \sum_{n=1}^{\infty} \frac{F_n \psi_n(z)}{s + m_n^2} \sum_{\hat{n}=1}^{\infty} \frac{F_{\hat{n}} \psi_{\hat{n}}(z)}{s + m_{\hat{n}}^2} \text{Disc } \tilde{C}_a(s/\hat{M})$$

Duality in
$$e^+, e^- \rightarrow \text{hidden}?$$

Moritz McGarrie

Thanks for listening

What next?

Pheno

implement more of these models (including Dirac gauginos) into SARAH with Aoife Bharucha & Andreas Goudelis There are plenty of ways this instructive toy model may be extended!

Theory

Back up slides

 $m_{\lambda,r} = N\Lambda\left(\frac{g_r^2}{16\pi^2}\right)g(x)$

$$N = n_{5plets} + 3n_{10plets}$$

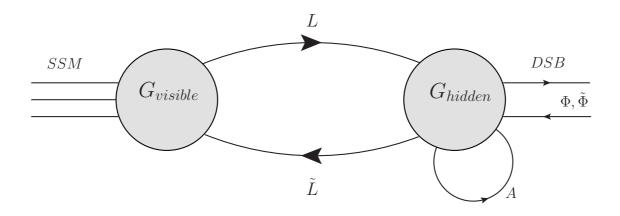
 $\Lambda = \frac{F}{M}$

$$\mathcal{L}_{soft} \supset \frac{1}{2} \left(m_{\tilde{G}} \tilde{G} \tilde{G} + m_{B_B} \tilde{B}_B \tilde{B}_B + m_{W_B} \tilde{W}_B \tilde{W}_B \right) + h.c.$$
$$m_{\lambda}^{A=1,2} \equiv 0.$$

$$y = \frac{m_v}{M} \qquad \qquad m_L^2 = m_{\tilde{L}}^2 = N\Lambda^2 \sum_{i=1,2} 2C_L^{B,i} \left(\frac{g_{Bi}^2}{16\pi^2}\right)^2 f(x),$$

$$m_{SM}^2 = N\Lambda^2 \sum_{i=1,2} 2C_{SM}^{B,i} \left(\frac{g_i^2}{16\pi^2}\right)^2 S(x, y_i),$$

A-terms are vanishing at the messenger scale



"Holography for General Gauge Mediation"

IR hardwall/ slice of AdS

also AdS/SUSY"Warped General Gauge Mediation" M.M. Daniel C.Thompson 1009.4696

Abel & Gherghetta 1010.5655

"General Gauge Mediation in 5D" M.M. Rodolfo Russo 1004.3305

<u>Check list</u>

- I. Metric: slice of AdS
- 2. Interval
- 3. Flavour symmetries
- 4. Scale matching
- 5. Sources
- 6. Operators
- 7. Bulk field
- 8. Bulk to boundary propagator

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta^{\mu\nu} dx_{\mu} dx_{\nu} + dz^{2}\right)$$
$$L_{0} < z < L_{1}$$

$$SU(N_f)_L \times SU(N_f)_R \to SU(N_f)_V$$

$$\frac{R}{g_{5d(YM)}^2} = \frac{N_c}{12\pi^2}$$
$$A^0_\mu(x), \lambda^0_\alpha(x), D^0(x)$$
$$\mathcal{O}_\mu(x), \mathcal{O}_\alpha(x), \mathcal{O}(x)$$

N=1 5d super Yang-Mills action in the bulk

 $A^\mu(q,z) = A^\mu_0(q) K(q,z)$

 $K(q,z) = \frac{V(q,z)}{V(q,L_0)}$

$$V(q,z) = zq \left[Y_0(qL_1)J_1(qz) - J_0(qL_1)Y_1(qz) \right]$$

compute...

"Holography for General Gauge Mediation"

IR hardwall/ slice of AdS

N=1 5d super Yang-Mills action in the bulk

 $SU(N_f)_L \times SUN(N_f)_R$

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left(\eta^{\mu\nu} dx_{\mu} dx_{\nu} + dz^{2}\right) \qquad \qquad L_{0} < z < L_{1} \qquad \qquad \frac{R}{g_{5d(YM)}^{2}} = \frac{N_{c}}{12\pi^{2}}$$

$A^{\mu}(q,z) = A^{\mu}_{0}(q) \frac{V(q,z)}{V(q,L_{0})}$ m^2 Field 4D: operator Δ gives a log running piece D(z,x)-4 $\mathbf{2}$ $\mathcal{O}(x)$ \rightarrow UV $\mathcal{O}_{\alpha}(x) \longrightarrow \lambda_{\alpha}(z,x)$ 5/21/2 $\int d^4x e^{ip.x} \left\langle \mathcal{O}_{\mu}(x) \mathcal{O}_{\nu}(0) \right\rangle = \Pi(p^2) P^{\mu\nu}$ $\rightarrow A_{\mu}(z, x)$ $\mathcal{O}_{\mu}(x)$ 3 0 The UV operators that correspond to bulk fields $\Pi(q^2) = \frac{1}{q} \left(\frac{R}{z} \frac{\partial_z V(q, z)}{V(q, L_0)} \right)_{z=L_0}$ $O(N_c)$ IR $\mathcal{O}_{L,R} = \phi^{\dagger} \phi_{L,R}$ $\mathcal{O}^{\alpha}_{L,R} = -i\sqrt{2}\phi^{\dagger}q^{\alpha}_{L,R}$

An AdS/SQCD proposal

 $\mathcal{O}^{\mu}_{L,R} = \bar{q}\sigma^{\mu}q_{L,R} - i\left(\phi^{\dagger}\partial^{\mu}\phi - \partial^{\mu}\phi^{\dagger}\phi\right)_{L,R}$

UV boundary correlators give a supersymmetric effective action

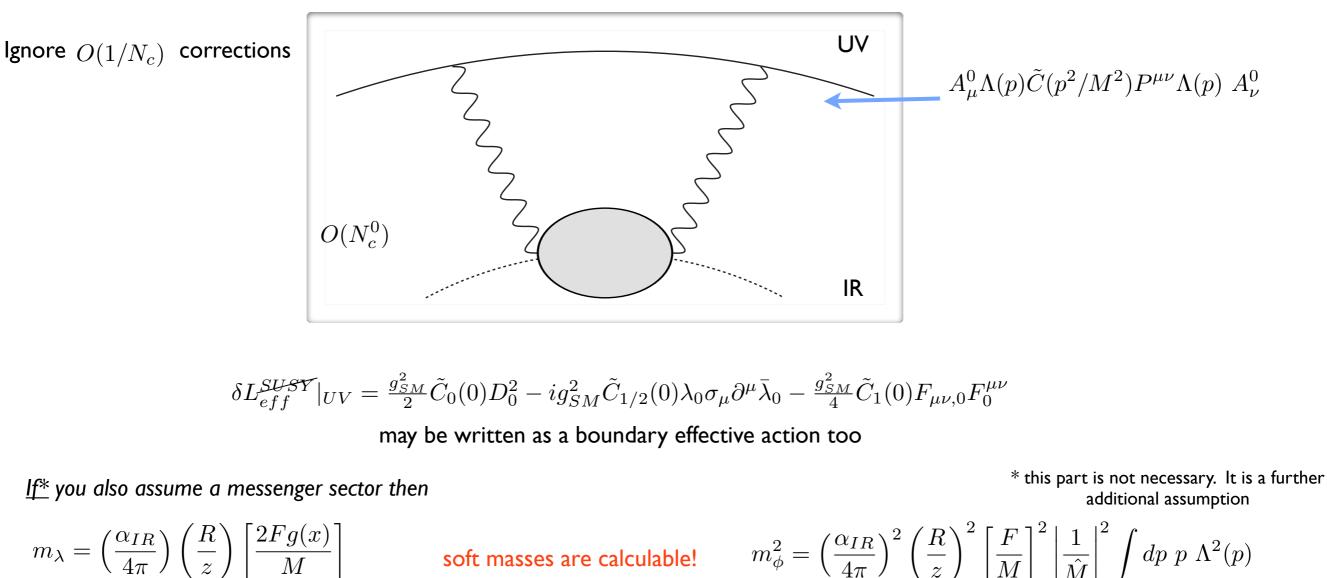
$$\left[3\Pi_1(q^2) - 4\Pi_{1/2}(q^2) + \Pi_0(q^2)\right] \equiv 0 \qquad \langle \mathcal{O}_\alpha(x)\mathcal{O}_\beta(0)\rangle \equiv 0$$

Related to the Gibbons-Hawking boundary terms of SYM

Introduce IR localised correlators that encode supersymmetry breaking

SUSY breaking currents located on an IR brane or live in the bulk

$$A_{\mu}J^{\mu} = \int dz K(p,z) A^{0}_{\mu}J^{\mu} = A^{0}_{\mu}J^{\mu}\Lambda(p) \qquad \begin{array}{l} \text{An effective vertex function} \\ \text{generated by a bulk to boundary propagator} \end{array}$$

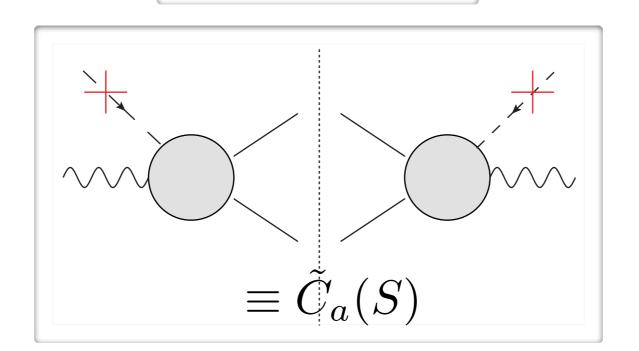


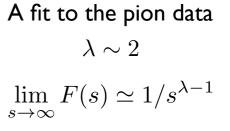
soft masses are calculable!
$$m_{\phi}^2 = \left(\frac{\alpha}{2}\right)^2$$

D.Vecchia and Drago (1969) Chua, Hama & Kiang (1970) Frampton (1970) Many others... **Speculative**

A Veneziano-like amplitude for GGM?

$$F(s) \sim \frac{\Gamma(1 - \alpha(s)\Gamma(\lambda - \frac{1}{2}))}{\Gamma(\lambda - \alpha(s))\Gamma(\frac{1}{2})}$$





$$\alpha(s) = 1/2 + s/2m_{\rho}^2$$

Infinitely rising linear Regge trajectories

 $A(1 \rightarrow 2)$

Forward scattering amplitude Higher spin states contribute too!

The point is that holographic models are toy models with a separation of scales between the spin 0,1/2,3/2,2 and the higher spin states.