PLANCK 2013 Bonn, May 21, 2013

Top and bottom partner production at the LHC

José Santiago (CAFPE and U. Granada)

Universidad de <mark>Granada</mark>

Based on: A. Carmona, M. Chala, J.S. 1205.2378 [JHEP] M. Chala, J.S. 1305.1940

Take-Home Message

SUSY should go back to EXOTICS!

Take-Home Message

SUSY should go back to EXOTICS!

Current searches motivated by SM or SUSY can be easily turned into powerful probes of many other models

 $Ht\bar{t}, \ Hb\bar{b}$ as probes of composite Higgs models

Outline

- Composite Higgs Models
- Partial Compositeness
- Resonances in Composite Higgs Models
 - Top/bottom partners
 - Heavy gluons
- Top/Bottom partner production at the LHC
- New Higgs channels through top/bottom partners
 - $Ht\bar{t}$ in Composite Higgs models
 - $Hb\bar{b}$ in Composite Higgs models
- Conclusions

Composite Higgs Models

The Higgs boson is a composite state of a new strongly coupled interaction
 Georgi, Kaplan et al. 84-85

 $SM \subset H$

E

 $G \to H + f \sim {
m TeV}$

1)

EWSB

Higgs mass protected by its finite size Extra protection if Higgs is a pseudo Goldstone boson

Must contain (at least) SO(4) custodial symmetry

Elementary sector

Strong sector

Measure of compositeness

Partial Compositeness

SM particles acquire their mass through linear coupling to the composite sector
 Kaplan 91

- Top/bottom partners:
 - The composite (vector-like) quarks t and b mix with to acquire their masses plus their partners under the global symmetries of the composite sector

• Top/bottom partners:

 $\begin{pmatrix} t_L \\ b_L \end{pmatrix} - \begin{bmatrix} T & X_{5/3} \\ B & T_{2/3} \end{bmatrix}$

 The composite (vector-like) quarks t and b mix with to acquire their masses plus their partners under the global symmetries of the composite sector

MCHM5 example: SO(5)/SO(4)

Agashe, Contino, Da Rold, Pomarol '06 Contino, Da Rold, Pomarol '06

 $egin{array}{ccc} B_{-1/3} & T \ Y_{-4/2} & B \end{array}$

• Top/bottom partners:

- The composite (vector-like) quarks t and b mix with to acquire their masses plus their partners under the global symmetries of the composite sector
- Naturalness and EWPT predict light top partners

Matsedonskyi, Panico, Wulzer '12; Redi, Tesi '12; Marzocca, Serone, Shu '12; Pomarol, Riva '12; Panico, Redi, Tesi, Wulzer '12

Carena, Pontón, J.S., Wagner '06-07; Anastasiou, Furlan, J.S. '09

Top/bottom partners:

- The composite (vector-like) quarks t and b mix with to acquire their masses plus their partners under the global symmetries of the composite sector
- Naturalness and EWPT predict light top partners
- Heavy gluons:
 - Partial top/bottom compositeness implies SU(3) is among the unbroken global symmetries
 - It is natural to expect QCD weakly gauged through linear mixing between elementary gluon and composite gluons

Top/Bottom partner production

- Traditional channels
 - Pair production (QCD)
 - (EW) single production

Contino, Servant '08; Aguilar-Saavedra '09; Mrazek, Wulzer '09; Dissertori, Furlan, Moorgat, Nef '10; De Simone, Matsedonskyi, Rattazzi, Wulzer '12; Cacciapaglia, De Andrea, Panizzi, Perries, Sordini '12; Pappadopulo, Thamm, Torre '13

Excellent reach if light, can be tested up to $M \sim 1.5 {
m TeV}$

Top/Bottom partner production

New channels

Single (or pair) production through heavy gluons

Barcelo, Carmona, Chala, Masip, J.S. '11; Bini, Contino, Vignaroli '11; Carmona, Chala, J.S. '12; Chala, J.S. '13

- Sizeable cross sections and distinctive kinematics
- Complementary to traditional channels
- Impressive reach!

$Ht\bar{t}$ in composite Higgs Models

• $pp \rightarrow G \rightarrow Tt \rightarrow Htt$: sizeable cross section and distinctive kinematics Carmona, Chala, J.S. '12

 Very hard (and quite boosted) particles in the final state

$Ht\bar{t}$ in composite Higgs Models• Results $M_G \lesssim 2.8 \text{ TeV (LHC8)}$
 $M_G \lesssim 4.5 - 4.8 \text{ TeV (LHC14)}$
Carmona, Chala, J.S. '12 $M_Q = \frac{M_G}{2}$

• $Hb\bar{b}$ can be copiously produced in CHMs

- Distinctive kinematics:
 - Heavy G and B: very hard decay products
 - Can use H->bb channel

Sizeable cross-section

- Why the large cross-section?
 - Lightest B quark decays into H b with BR=1
 - Non- (or rather slow-)decoupling effect
 - EWSB effects very important in bottom partners
 - B has a small coupling to b but large couplings to the rest of top and bottom partners
 - Interesting possibility: B the only accessible new quark at LHC with highly non-singlet behavior (see backup)
 - What about Equivalence Theorem? Fulfilled by heavier modes

Check out back-up slides (and ask me!)

• $Hb\bar{b}$ can be copiously produced in CHMs

 $pp \to G \to bB \to Hbb \to 4b$

Very hard spectrum:

- Efficient trigger
- 4 hard b's: background killer

Irreducible QCD 4b is the only relevant background

• $Hb\bar{b}$ can be copiously produced in CHMs

 $pp \to G \to bB \to Hbb \to 4b$

• Boosted H:

- 2 b's merged for large MG
- Boosted techniques useful but background estimation harder

We stick to non-boosted techniques

- Analysis
 - We use MG/ME and ALPGEN + PYTHIA + DELPHES for simulations
 - Only relevant background is the irreducible QCD 4b
 - Basic cuts:

$$\begin{split} N_b &\geq 4, \quad N_l = 0, \quad p_T(b) \geq \begin{cases} 50 \text{ GeV (LHC8)}, \\ 60 \text{ GeV (LHC14)}, \end{cases} \\ p_T(b_1) &\geq \begin{cases} 200 \text{ GeV (LHC8)}, \\ 300 \text{ GeV (LHC14)}, \end{cases} \quad p_T(b_2) \geq \begin{cases} 100 \text{ GeV (LHC8)}, \\ 200 \text{ GeV (LHC14)}, \end{cases} \\ |m_{b_H b'_H} - m_H| \leq 30 \text{GeV} \end{split}$$

• Analysis $N_b \ge 4, \quad N_l = 0, \quad p_T(b) \ge \begin{cases} 50 \text{ GeV (LHC8)}, \\ 60 \text{ GeV (LHC14)}, \end{cases}$ $p_T(b_1) \ge \begin{cases} 200 \text{ GeV (LHC8)}, \\ 300 \text{ GeV (LHC14)}, \end{cases}$ $p_T(b_2) \ge \begin{cases} 100 \text{ GeV (LHC8)}, \\ 200 \text{ GeV (LHC14)}, \end{cases}$ $|m_{b_H b'_H} - m_H| \le 30 \text{GeV}$

Results: exclusion @ 8 TeV

CMS-PAS-SUS-12-24

Results: sensitivity @ 14 TeV (SigCalc [Cowan])

Domenech, Pomarol, Serra '12

$$\sqrt{s} = 14 \text{ TeV}, \mathcal{L} = 100 \text{ fb}^{-1}$$

Conclusions

- Top/bottom partners can be produced via heavy gluons in composite Higgs models
- Large cross-sections and particular kinematics provide excellent reach
- Processes that are already present in the SM (or SUSY models) with completely different origin:
 - Simple modifications of current analyses become powerful probes of the strong sector
 - Complementary tests of composite Higgs models $M_B \sim 1.5 \text{ TeV}$ at LHC8 $M_B \sim 2.5 \text{ TeV}$ at LHC14 Room for improvement In boosted regime

Back-up slides

Hbb in composite Higgs Models

- $Hb\bar{b}$ can be copiously produced in CHMs
 - Assumptions:
 - All fermionic resonances of similar masses before mixing
 - b_R has a non-negligible degree of compositeness

Hbb in composite Higgs Models

- $Hb\bar{b}$ can be copiously produced in CHMs
 - Assumptions:
 - All fermionic resonances of similar masses before mixing
 - b_R has a non-negligible degree of compositeness

Hbb in composite Higgs Models

• $Hb\bar{b}$: details of the analysis

$$\begin{split} N_b &\geq 4, \quad N_l = 0, \quad p_T(b) \geq \begin{cases} 50 \text{ GeV (LHC8)}, \\ 60 \text{ GeV (LHC14)}, \end{cases} \\ p_T(b_1) &\geq \begin{cases} 200 \text{ GeV (LHC8)}, \\ 300 \text{ GeV (LHC14)}, \end{cases} \quad p_T(b_2) \geq \begin{cases} 100 \text{ GeV (LHC8)}, \\ 200 \text{ GeV (LHC14)}, \end{cases} \\ |m_{b_H b'_H} - m_H| &\leq 30 \text{GeV} \end{cases} \end{split}$$

$8 \mathrm{TeV}$	N_b	N_l	p_T^b	$p_T^{b_1}$	$p_T^{b_2}$	$ m_{bb} - m_H $	m(4b)
Signal	16	99	68	99	99	56	89
Background	17	99	10	13	89	46	0.7
$14 \mathrm{TeV}$							
Signal	16	99	59	98	98	59	92
Background	20	99	12	7.6	63	36	11