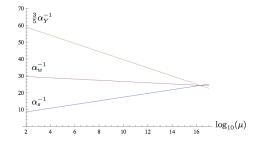
Low-energy predictions of yukawa-deflected gauge mediations models

Tomasz Jeliński

Department of Field Theory and Particle Physics

University of Silesia, Katowice, Poland

Planck 2013, Bonn, 20-24 May

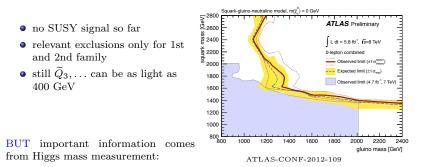

(人間) ション ション

-

1. MSSM

Still the best candidate for BSM is softly broken MSSM:

- ${l \circ}\,$ solves problem of quadratic corrections to m_{h^0}
- $\bullet~{\rm dark}~{\rm matter}~{\rm candidate} \rightarrow {\rm LSP}$
- better unification of gauge couplings at $10^{16} \text{ GeV} \rightarrow \text{hint for GUT model}$



Problems:

- one needs additional sector which breaks SUSY communicate with MSSM
- fine-tuning
- a lot of parameters (soft terms) → explain them using RGE and some simple set of initial conditions at high scale (← GUT model)

2. LHC vs. MSSM

What do the LHC searches tell us about MSSM?

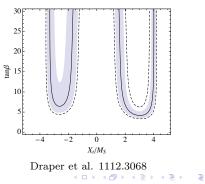
• $m \sim 125 \text{ GeV} \rightarrow \text{need}$ for large loop corrections

ASSUME other MSSM Higgses are much heavier and masses of $\tilde{Q}_{1,2}$ and \tilde{g} are bigger than 1.5 TeV.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

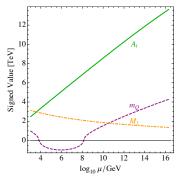
-

3. 1-loop corrections to m_{h^0}


• dominant contribution from top quarks and stops (due to $y_t \sim 1$):

$$m_{h^0}^2 = m_Z^2 \cos^2 2\beta + \frac{3m_t^4}{4\pi^2 v^2} \left[\ln \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right] \approx (125 \,\text{GeV})^2,$$

 $M_S = \sqrt{m_{\tilde{t}_1} m_{\tilde{t}_2}}$ $X_t = A_t - \mu \cot \beta$

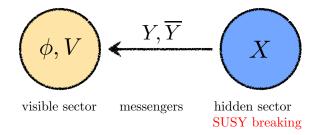

A-terms:

$$V_{\text{soft}} \supset y_t A_t H_u \widetilde{Q}_3 \widetilde{U}_3^c \longrightarrow y_t A_t h_0 \widetilde{t}_1 \widetilde{t}_2$$

4. How to generate large A-terms?

• value of A-term gives initial condition for RGE evolution

Draper et al. 1112.3068


• how to get A-terms in GUT model?

$$\mu \frac{dA_t}{d\mu} \sim y_t^2 A_t + g_3^2 M_3$$

E> < E>

크

5. SUSY breaking mediation

- such structure is dictated by SUSY
- mediation = interactions between Y, \overline{Y} and other fields
- singlet $\langle X \rangle = M + \theta^2 F \rightarrow$ spontaneous SUSY breaking
- X does not interact via superpotential with visible sector
- $\bullet\,$ messengers have large masses e.g. $M\sim 10^{14}~{\rm GeV}$

6. SUSY breaking mediation

- supergravity
 - no control over FCNC at all \rightarrow arbitrary mixings between families
- gauge interactions
 - no FCNC effects at M scale (small mixing generated via RGE)
 - $A \approx 0$ at M scale
 - $m_{h^0} \sim 125 \text{ GeV} \rightarrow M \gtrsim 10^{14} \text{ GeV}$ (i.e. here A need long RGE evolution)
- Yukawa (and gauge) interactions
 - mild hierarchy of additional couplings \longrightarrow FCNC effects suppressed

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● つくで

- A-terms $\neq 0$ at M scale
- easy to satisfy $m_{h^0} \sim 125 \text{ GeV}$ even for $M \sim 10^5 \text{ GeV}$
- rich phenomenology

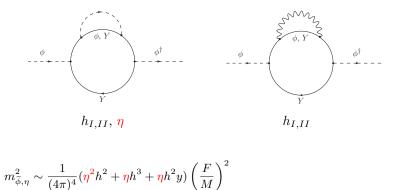
7. Messenger couplings

Focus on: SU(5) unification model with messengers in $5+\overline{5}$ and $10+\overline{10}$

- matter ϕ_i in 5, $\overline{5}$ or 10 (in MSSM only 51010 and $\overline{5}\overline{5}10$)
- pair of messengers $\mathsf{Y} = (Y, \overline{Y})$

 $W_Y = \eta \mathbf{Y} \mathbf{Y} \mathbf{Y} + h_I^i \phi_i \mathbf{Y} \mathbf{Y} + h_{II}^{ij} \phi_i \phi_j \mathbf{Y}$

- allowed couplings: $5\,10\,10$, $\overline{5}\,\overline{5}\,10$, $\overline{5}\,\overline{10}\,\overline{10}$, $5\,5\,\overline{10}$
- *h_{I,II}* quite well explored (Yukawa-Deflected Gauge Mediation) usually some hierarchy in messenger-matter is assumed


see talks by: J. Pawełczyk, L. Callibbi

- couplings of three messengers $\eta \to$ additional effects!
 - relevant only if occur together with h_I or h_{II}
 - do not contribute to A-terms (nor to 1-loop masses)

8. Soft terms

• 2-loop contributions to soft masses

 $W_Y = \eta \mathbf{Y} \mathbf{Y} \mathbf{Y} + h_I \phi \mathbf{Y} \mathbf{Y} + h_{II} \phi \phi \mathbf{Y}$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

NEW CONTRIBUTIONS!

9. Phenomenological constraints

Assumptions:

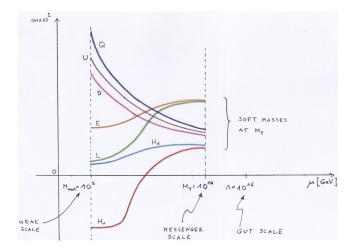
• no rapid proton decay via

$$\phi_{\overline{5}}\phi_{\overline{5}}\phi_{10}, \quad \frac{1}{M}\phi_{\overline{5}}\phi_{10}\phi_{10}\phi_{10} \quad \frac{1}{M^2}(\phi_{10}^{\dagger}\phi_{10})^2$$

- absence of μ/B_{μ} problem
- no $\mu H_u H_d$ term in the superpotential
- Higgs mass term via

$$\frac{1}{M_{GUT}}X^{\dagger}H_{u}H_{d}$$

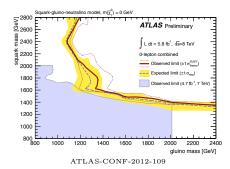
One needs additional selection rules \rightarrow e.g. global U(1) symmetry


• the simplest model restricted by U(1)

$$W_{\rm Y} = \frac{1}{2} h_{14} \phi_{10} Y_{\overline{5}} Y_{\overline{5}} + \frac{1}{2} \eta_2 Y_{\overline{5}} Y_{\overline{10}} Y_{\overline{10}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● つくで

10. Top-down analysis


Reverse the initial problem and evolve parameters from M to EWSB scale:

11. Phenomenology

Find spectrum and check if phenomenology is correct i.e.

- $m_{h^0} \approx 125 \,\mathrm{GeV}$
- no tachyons
- scalar potential bounded from below, no CCB
- $a_{\mu}, b \rightarrow s\gamma$
- ATLAS bounds on gluino and squarks of 1. and 2. generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

12. The simplest example

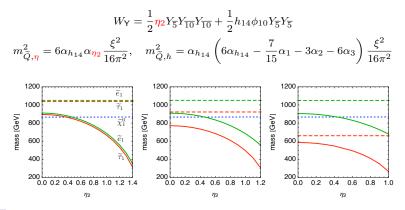


Figure: Plot of the particles masses vs. η_2 coupling for $\tan \beta = 10$ (left plot), $\tan \beta = 30$ (middle plot) and $\tan \beta = 50$ (right plot). h_{14} is set to 1.2, while $\xi = F/M$ scale is 1.6×10^5 GeV. Dashed lines show masses of the particles when $h_{14} = \eta_2 = 0$, which corresponds to the standard GMSB case. $\tilde{\tau}_1$ and $\tilde{\epsilon}_1$ are mostly right-handed.

$$\mu \frac{dm_{\tilde{E}_3}^2}{d\mu} = \dots + \frac{6}{10} g_1^2 m_{\tilde{Q},\eta}^2$$

- Yukawa-Deflected Gauge Mediation models naturally accommodate for left-right top squarks mixing
- in some cases superpotential couplings of three messengers are relevant to mass spectrum
- additional selection rules (e.g. global U(1)) are necessary to satisfy phenomenological constraints