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Introduction to neutralino-stop 
coannihilation



✤ Relic density of dark matter given by WMAP:                                                           (3%)

and now by Planck:                                                              (2%)

✤ Puts strong constraints on SUSY models. Can be calculated from Boltzmann 
equation:

✤ Where the thermally averaged total cross-section is:

✤ Different tools calculating dark matter relic density exists, such as MicrOmegas, 
DarkSUSY and SuperIso Relic.
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Only degenerate NLSP contributes

ΩCDMh2 = 0.1199 ± 0.0027

ΩCDMh2 = 0.1126 ± 0.0036



Neutralino-stop coannihilation
✤ Neutralino LSP is the most studied dark matter candidate.

✤ It can coannihilate with a close-in-mass-NLSP, the top squark for example.

✤ Neutralino-stop coannihilation can reduce relic density to the experimental value.

✤ Gives a very thin compatible region in parameter space, expected to be shifted by 
NLO corrections.

✤ The total contribution depends on the neutralino-stop mass difference 

✤ The relative contributions will depend on the spectrum (masses and couplings)
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A light stop?
✤ Neutralino-stop coannihilation require a rather light stop

✤ Possible because large top Yukawa coupling enhance mixing and RGE running

✤ Still compatible with experimental constraints

✤ Flavour constraints are OK if MFV assumed since the lightest stop is mostly 
right-handed (RGE).

✤ LHC limit on production not very stringent since if stop is a degenerate NLSP, 
produced jets are soft, i.e. hard to trigger and detect.

✤ Stop sector is constrained by the Higgs boson mass observation (maximal 
mixing), lightest stop can be as light as 200 GeV, if the other stop is heavy 
enough.
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Realistic light stop scenario with relevant constraints discussed in arXiv:1212.6847
(A. Delgado, G. F. Giudice, G. Isidori, M. Pierini, A. Strumia)



pMSSM scenarios

✤ We choose 2 realistic scenarios with different features

✤ Masses of first generation squarks, μ and tanβ are significantly different:

✤ Higgs final state is dominant in both, but in the scenario II vector bosons 
final states also contribute significantly:

M1 Mq̃1,2 Mq̃3 M�̃ Tt mA µ tanβ
I 306.9 2037.7 709.7 1499.3 1806.5 1495.6 2616.1 9.0
II 470.6 1261.2 905.3 1963.2 1514.8 1343.1 725.9 18.3

mχ̃0
1

mt̃1 Ωχh2 χ̃0
1t̃1 → th0 χ̃0

1t̃1 → tZ0 χ̃0
1t̃1 → bW+

I 307.1 350.0 0.114 38.5% 3.4% 5.9%
II 467.3 509.4 0.116 24.6% 10.7% 3.4%



Next-to-Leading Order cross-
sections



Tree-level diagrams

φ ≡ h
0
, H

0
, A

0
, H

+

V ≡ γ, Z, W

✤ We have calculated the cross-sections at NLO in SUSY-QCD for neutralino-stop 
coannihilation into electroweak gauge bosons, and Higgs bosons.
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Virtual correction diagrams

8

q

q

q

g

q

q

qj˜

g̃

qi˜

qi˜

qi˜

g

qi˜

qj˜

q

g̃

qi˜ qj˜

qk˜

FIG. 4. Self-energy corrections for the quarks and squarks at one-loop level in QCD contributing to neutralino-squark co-
annihilation.
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FIG. 5. Vertex corrections at one-loop level contributing to neutralino-squark co-annihilation into quark and Higgs (φ) or
electroweak gauge (V ) boson. The diagram involving the V − g − q̃ − q̃ vertex is present only for the case of a gauge boson in
the final state.

ing angles θb and θt, but shares some important features
with the RS2 scheme introduced in Ref. [45].

1. Quark sector

The process of neutralino-stop co-annihilation consid-
ered here involves only quarks and squarks of the third
generation. We will therefore discuss only the case of
massive quarks. The parameters to be renormalized are
the quark fields and masses. We perform the wave-
function renormalization by introducing counterterms
δZL,R for each chirality of the third-generation quarks

(

qL
qR

)

→

(

1 + 1
2
δZL 0

0 1 + 1
2δZR

)(

qL
qR

)

. (3.1)

The wave-function renormalization constants are fixed
by requiring the external quark propagators to have unit
residue even at one-loop order. This leads to the follow-

ing expression for the massive quarks (q = t, b)

δZL = "
{

−ΠL(m
2
q)−m2

q

[

Π̇L(m
2
q) + Π̇R(m

2
q)
]

+
1

2mq

[

ΠSL(m
2
q)−ΠSR(m

2
q)
]

−mq

[

Π̇SL(m
2
q) + Π̇SR(m

2
q)
]}

, (3.2)

δZR = δZL(L ↔ R) , (3.3)

where ΠL,R(k2) and ΠSL,SR(k2) stand for the vector and
the scalar parts of the two-point Green’s function as de-
fined in Ref. [46] and Π̇(m2) =

[

∂
∂k2Π(k2)

]

k2=m2
.

After the wave-function renormalization has been per-
formed, we still have to renormalize the masses of the
quarks. Although both the top and bottom quark are
heavy, their properties are very different, and so is our
treatment of their masses. On the one hand, the top
quark does not form bound states and its physical mass is
directly measurable. Therefore in our calculation, we use
the physical (on-shell) top quark mass mt = 173.1 GeV.
This implies using the on-shell mass counterterm for the
top quark defined as

δmt =
1

2
"
{

mt

[

ΠL(m
2
t ) +ΠR(m

2
t )
]

(3.4)

+ΠSL(m
2
t ) +ΠSR(m

2
t )
}

.
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FIG. 6. Four-point diagrams at one-loop level contributing to neutralino-squark co-annihilation into quark and Higgs (φ) or
electroweak gauge (V ) boson. The last diagram involving the four-vertex is absent for a scalar in the final state.

On the other hand, the bottom quark forms hadrons
and its mass cannot be directly measured. Convention-
ally a mass parameter mb(mb) is extracted in the MS

renormalization scheme from the Standard Model analy-
sis of Υ sum rules [47]. In order to obtain the appropri-
ate bottom quark mass in the DR renormalization scheme
within the MSSM, we first use the Standard Model next-
to-next-to-leading order (NNLO) renormalization group
evolution to obtain the mass of the bottom quark at a

scale Q [48]. We then convert the MS mass mMS, SM
b (Q) to a

mass in the DR renormalization scheme mDR, SM
b (Q) while

still in the Standard Model [48]. Finally we apply the
threshold corrections including also contributions from
SUSY particles in the loop (denoted by ∆mb)

mDR, MSSM
b (Q) = mDR, SM

b (Q)−∆mb . (3.5)

The corresponding counterterm contains the pole in ε =
(4−D)/2 and can be written as

δmDR
b

mb
= (−2)

αsCF

4π

cε
ε
, (3.6)

where we factored out the constant cε = Γ(1 + ε)(4π)ε.
One prominent place where the quark masses enter the
calculation is through the Yukawa couplings of the Higgs
bosons to the quarks. Especially the Yukawa couplings
of the bottom quark was extensively studied in the de-
cays of Higgs bosons in the Standard Model. Important
QCD and top-quark induced corrections to the coupling
of Higgs bosons to bottom quarks were calculated up to
O(α4

s) [49] and can be used to define an effective Yukawa
coupling which includes these corrections as

[(

hMS,QCD,Φb

)

(Q)
]2

=
[(

hMS,Φb

)

(Q)
]2
[

1+∆QCD+∆Φ
t

]

, (3.7)

for each Higgs boson Φ = h0, H0, A0. The QCD correc-
tions ∆QCD are explicitly given by

∆QCD =
αs(Q)

π
CF
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4
+

α2
s(Q)

π2

[

35.94− 1.359nf

]

+
α3
s(Q)

π3

[

164.14− 25.77nf + 0.259n2
f

]

(3.8)

+
α4
s(Q)

π4

[

39.34− 220.9nf + 9.685n2
f − 0.0205n3

f

]

,

and the top-quark induced corrections ∆Φ
t for each Higgs

boson Φ read

∆h
t = ch(Q)

[

1.57−
2

3
log

Q2

m2
t
+

1

9
log2

m2
b(Q)

Q2

]

, (3.9)

∆H
t = cH(Q)

[

1.57−
2

3
log

Q2

m2
t
+

1

9
log2

m2
b(Q)

Q2

]

,

(3.10)

∆A
t = cA(Q)

[

23

6
− log

Q2

m2
t
+

1

6
log2

m2
b(Q)

Q2

]

. (3.11)

with
{

ch(Q), cH(Q), cA(Q)
}

=

α2
s(Q)

π2

{ 1

tanα tanβ
,
tanα

tanβ
,

1

tan2 β

}

. (3.12)

We take into account these corrections excluding the one-
loop part as it is provided consistently through our own
calculation.
In the MSSM, the Yukawa coupling to bottom quarks

can receive large corrections for large tanβ or large Ab,
even beyond the next-to-leading order, which can affect
our analysis. Therefore, in addition, we include these
corrections that can be resummed to all orders in pertur-
bation theory [50, 51]. Denoting the resummable part by
∆b we redefine the bottom quark Yukawa couplings as

hMSSM,hb (Q) =
hMS,QCD,hb (Q)

1 +∆b

[

1−
∆b

tanα tanβ

]

, (3.13)

hMSSM,Hb (Q) =
hMS,QCD,Hb (Q)

1 +∆b

[

1 +∆b
tanα

tanβ

]

, (3.14)

hMSSM,Ab (Q) =
hMS,QCD,Ab (Q)

1 +∆b

[

1−
∆b

tan2 β

]

. (3.15)

In the same way as for the QCD corrections, we exclude
the one-loop part of these SUSY-QCD corrections and
include only the resummed remainder, since the one-loop
part is already present in our calculation.

2. Squark sector

As in the above discussion for quarks, we will address
here only the squarks of the third generation, i.e. stops
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FIG. 4. Self-energy corrections for the quarks and squarks at one-loop level in QCD contributing to neutralino-squark co-
annihilation.
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FIG. 5. Vertex corrections at one-loop level contributing to neutralino-squark co-annihilation into quark and Higgs (φ) or
electroweak gauge (V ) boson. The diagram involving the V − g − q̃ − q̃ vertex is present only for the case of a gauge boson in
the final state.

ing angles θb and θt, but shares some important features
with the RS2 scheme introduced in Ref. [45].

1. Quark sector

The process of neutralino-stop co-annihilation consid-
ered here involves only quarks and squarks of the third
generation. We will therefore discuss only the case of
massive quarks. The parameters to be renormalized are
the quark fields and masses. We perform the wave-
function renormalization by introducing counterterms
δZL,R for each chirality of the third-generation quarks

(

qL
qR

)

→

(

1 + 1
2
δZL 0

0 1 + 1
2δZR

)(

qL
qR

)

. (3.1)

The wave-function renormalization constants are fixed
by requiring the external quark propagators to have unit
residue even at one-loop order. This leads to the follow-

ing expression for the massive quarks (q = t, b)

δZL = "
{

−ΠL(m
2
q)−m2

q

[

Π̇L(m
2
q) + Π̇R(m

2
q)
]

+
1

2mq

[

ΠSL(m
2
q)−ΠSR(m

2
q)
]

−mq

[

Π̇SL(m
2
q) + Π̇SR(m

2
q)
]}

, (3.2)

δZR = δZL(L ↔ R) , (3.3)

where ΠL,R(k2) and ΠSL,SR(k2) stand for the vector and
the scalar parts of the two-point Green’s function as de-
fined in Ref. [46] and Π̇(m2) =

[

∂
∂k2Π(k2)

]

k2=m2
.

After the wave-function renormalization has been per-
formed, we still have to renormalize the masses of the
quarks. Although both the top and bottom quark are
heavy, their properties are very different, and so is our
treatment of their masses. On the one hand, the top
quark does not form bound states and its physical mass is
directly measurable. Therefore in our calculation, we use
the physical (on-shell) top quark mass mt = 173.1 GeV.
This implies using the on-shell mass counterterm for the
top quark defined as

δmt =
1

2
"
{

mt

[

ΠL(m
2
t ) +ΠR(m

2
t )
]

(3.4)

+ΠSL(m
2
t ) +ΠSR(m

2
t )
}

.



Real correction diagrams
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FIG. 7. Real gluon emission diagrams at one-loop level contributing to neutralino-squark co-annihilation into quark and Higgs
(φ) or electroweak gauge (V ) boson. The last diagram involving the four-vertex is absent for a scalar in the final state.
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a double line.

be performed analytically in the limit of small energy of
the gluon - the so-called soft-gluon approximation. Di-
vergences obtained in the soft-gluon approximation then
cancel analytically with those coming from the virtual
corrections. In the soft-gluon approximation the phase-
space integration factorizes as

(

dσ

dΩ

)

soft

= F ×
(

dσ

dΩ

)

tree-level

, (3.25)

where F contains the integral over the phase-space of
the gluon and therefore also the divergence. Explicitly,
F contains integrals of the form

Iab = µ4−D

∫

|!k|≤∆E

dD−1k

(2π)D−4

1

k0
(a.b)

(k.a)(k.b)
, (3.26)

where k is the 4−momentum of the gluon and a and b
are 4−momenta of two external particles which can emit
a gluon. These integrals are given in Ref. [56, 58]. In
our case we use dimensional regularization to obtain an
explicit form of the divergence.
The phase-space slicing method introduces a cut ∆E

to separate the divergent part of the phase-space. It ap-
pears in the original real corrections as a lower limit on
the integration over the energy of the gluon and also ex-
plicitly in the cross section calculated in the soft-gluon
approximation. In principle the dependence on this cut
should completely vanish, but in practice the cancella-
tion is limited by the stability of numerical integration

of the real corrections. For practical purposes one has to
choose a value for the cut such that it is small enough
for the soft-gluon approximation to be valid in the region
of phase-space given by |#k| ≤ ∆E, but at the same time
large enough for the numerical integration of the real
correction to be still possible. We have verified that in
calculation all cross sections are insensitive to the choice
of this cut.

C. On-shell propagators

While including next-to-leading order corrections to
the studied neutralino co-annihilation processes, we have
to take care of a few subtleties. Some processes, al-
though well defined and separate at tree-level, cannot
be unambiguously defined and separated when NLO cor-
rections are considered. One such example is the process
χ̃0
1t̃1 → bW . Here, additional gluon radiation can be be

taken to be a real correction to the Wb process. However,
it can equally well be considered to be neutralino-stop
co-annihilation with a gluon and a top quark in the final
state where the top decays into a W -boson and a bottom
quark. Despite the fact that these processes cannot be
separated at NLO and one should strictly speaking in-
clude also their interference, for practical purposes it is
desirable to find a way how to separate them.
Due to the above mentioned complication, one has to

treat the process χ̃0
1t̃1 → bWg with care as it contains



Summary of the calculation

✤ All divergences are regularized in DR, using Passarino-Veltman integrals.

✤ Renormalization of UV divergences is done in a mixed On-Shell/DR scheme, valid in 
large regions of the MSSM parameter space.

✤ IR divergences are treated with a one-cutoff Phase Space Slicing method.

✤ Results have been implemented in a numerical fortran code, part of the DM@NLO 
project.

✤ The code is linked to MicrOmegas which compute the relic density.



Numerical results - Higgs

✤ MO and our tree-level are in perfect agreement

✤ Relative correction is ~ 30%



Numerical results - Z

✤ 10% difference between MO and our tree-level due to definition of squark mixing angle

✤ Relative correction is ~ -5% to -10%



Numerical results - W

✤ MO and our tree-level are in good agreement

✤ Relative correction is 10%



Impact of corrections on the relic 
density



Impact on the relic density

✤ The corrections reduce the relic density is reduced by 9%
✤ The difference between MO and NLO relic density in the favored region correspond to 

a difference in Tt  of 3 GeV.



Impact on the relic density

✤ The impact on the relic density is (obviously) larger when coannihilation is important
✤ The WMAP band lies precisely in this region
✤ Impact of corrections is bigger than experimental uncertainty



Impact on the relic density

✤ The impact is here smaller since correction on the Z final state is small and negative
✤ The WMAP band does not lies on the region of maximal impact
✤ Impact of corrections is comparable to experimental uncertainty



Conclusion



Conclusion

✤ Relic density of dark matter puts very strong constraints on Supersymmetric 
models.

✤ Neutralino stop coannihilation is one solution to achieve the correct relic density in 
the MSSM, and is still compatible with experimental constraints. 

✤ We have calculated the NLO SUSY-QCD corrections to the electroweak gauge and 
Higgs boson final states.

✤ One-loop correction on the cross-section is ~ 5 to 30% depending on the final state.

✤ Resulting correction on the relic density is ~ 5 to 10%, i.e. larger than the 
experimental uncertainty from WMAP (~ 3%).

✤ Considering Planck results these corrections are even more relevant.



Backup: Tree-level contributions



Tree-level contributions - Higgs



Tree-level contributions - Z/W



Backup: One-loop contributions



One-loop contributions - Higgs/Z


