Dark matter, singlet extensions of the ν MSM, and symmetries

(Based on arXiv:1210.6852)

Kyle Allison University of Oxford

Planck 2013, Bonn, Germany

May 23, 2013

OUTLINE

A SINGLET EXTENSION OF THE ν MSM Introduction: the ν MSM DM production from a Higgs singlet Hierarchical parameters

THE ν NMSM AND SYMMETRIES Flavour symmetries The ν NMSM + vacuum stabilization

CONCLUSIONS

INTRODUCTION: THE ν MSM

► Standard Model plus three right-handed neutrinos *N*₁, *N*₂, *N*₃ with masses below the electroweak scale

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \bar{N}_I i \partial_\mu \gamma^\mu N_I - F_{\alpha I} \bar{L}_\alpha N_I H - \frac{M_{IJ}}{2} \bar{N}_I^c N_J + \mathrm{h.c.}$$

- Experimental evidence for beyond the SM physics:
 - ▷ Dark matter \rightarrow N_1 is warm dark matter (\sim keV) produced through left-right neutrino mixing (Asaka, Blanchet, and Shaposhnikov, 2005)
 - ▷ Baryon asymmetry → Lepton asymmetry from oscillations of N_2, N_3 (~ GeV) converted to a baryon asymmetry through EW sphalerons (Asaka and Shaposhnikov, 2005)
 - ▷ Inflation → Higgs boson with a large non-minimal coupling to gravity is the inflaton (Bezrukov and Shaposhnikov, 2008)
- An economical, highly predictive, and tightly constrained model

A singlet extension: the $\nu NMSM$

► An extension of the *v*MSM by a Higgs singlet can address a serious issue with the model

Dark matter production

► The simplest, non-resonant production of DM in the *v*MSM is disfavoured by X-ray limits + small scale structure bounds

 $M_1^{
m NRP} \lesssim 2.2 \text{ keV}$ X-ray limits: $N_1 \rightarrow \nu \gamma$ (Watson, Li, and Polley, 2012) $M_1^{
m NRP} \gtrsim 13 \text{ keV}$ Lyman- α forest bound (Boyarsky et al., 2009)

- ► Alternatively, DM production through the decays of a Higgs singlet $\phi \rightarrow N_1 N_1$ can satisfy the Lyman- α bound (Shaposhnikov and Tkachev, 2006)
- We refer to this extension as the ν NMSM

$$\Delta \mathcal{L} = -F_{lpha l} ar{L}_{lpha} N_{l} H - rac{\lambda_{IJ}}{2} \phi ar{N}_{l}^{c} N_{J} + ext{h.c.}, \qquad \lambda_{11} \sim 4 imes 10^{-9} \left(rac{m_{\phi}}{\langle \phi
angle}
ight)^{1/3}$$

• Bonus: Singlet provides an origin for Majorana masses $M_{IJ} = \lambda_{IJ} \langle \phi \rangle$!

A singlet extension: the $\nu NMSM$

 We are free to choose a scalar potential for φ that can solve other possible issues with the νMSM

Vacuum stability

- ► For $m_h \simeq 125-126$ GeV, the SM potential develops an instability below $M_{\rm Pl}$ unless the top quark mass is 2σ below its central value (Elias-Miro et al., 2012)
- ► A Higgs singlet can stabilize the EW vacuum by changing the running of λ or through a threshold effect (Lebedev, 2012; Elias-Miro et al., 2012)

Inflation

- ► For Higgs inflation, tree-level unitarity breaks down below the inflationary scale; it is unclear if this model can be realized
- ► Alternatively, the Higgs singlet of the *v*NMSM can be the inflaton (Shaposhnikov and Tkachev, 2006)

HIERARCHICAL PARAMETERS

- ► The *v*NMSM, with a particular choice of scalar sector, is therefore a well-motivated model
- Like the νMSM, it requires a specific hierarchy of Yukawa couplings F_{αI} and Majorana masses M_{IJ} = λ_{IJ} ⟨φ⟩ without an obvious origin

$$\begin{split} F_{\alpha 1} &\lesssim 10^{-13}, & F_{\alpha 2} \sim 10^{-7}, & F_{\alpha 3} \sim 10^{-(7\dots 10)}, \\ \lambda_{11} &\sim 4 \times 10^{-9} \left(\frac{m_{\phi}}{\langle \phi \rangle}\right)^{1/3}, & \lambda_{23} \sim \frac{\text{GeV}}{\langle \phi \rangle}, & \lambda_{22}, \lambda_{33} \sim \frac{\text{meV-MeV}}{\langle \phi \rangle} \end{split}$$

- An important question is whether this pattern of couplings can be realized from an underlying symmetry — and if so, what implications does it have
- We argue that such a symmetry can be found, but it requires a complex φ with some experimental signatures that are distinct from the νMSM

FLAVOUR SYMMETRIES

 First consider how the structure of the νNMSM Lagrangian can arise without regard to the size of the couplings F_{αI} and λ_{II}

$$\Delta \mathcal{L} = -F_{lpha I} ar{L}_{lpha} N_I H - rac{\lambda_{IJ}}{2} \phi ar{N}_I^c N_J + ext{h.c.}$$

- Global U(1) symmetry:
 - \triangleright Can arise from a global U(1) under which ϕ is charged (complex)
 - ▷ Low-scale global symmetries can come from a local U(1) that becomes massive via the Stueckelberg mechanism (Burgess et al., 2008)
 - ▷ Local U(1) must satisfy anomaly cancellation conditions

							U_i			
U(1)	-1	-1	-1	-1	-1	1/3	1/3	1/3	0	2

- Discrete Z_N symmetry:
 - \triangleright Lagrangian can similarly arise from a Z_N symmetry, but spontaneous breaking of Z_N can lead to problematic domain walls (Casini and Sarkar, 2002)

FLAVOUR SYMMETRIES

- Now consider how we can produce the hierarchies in $F_{\alpha I}$ and λ_{IJ} for a complex $\phi = \phi + i\chi$
- To explain the small Yukawa couplings $F_{\alpha 1} \lesssim 10^{-13}$ and prevent the fast DM decay $N_1 \rightarrow \nu \chi$, introduce a Z_2 symmetry under which only N_1 is charged

$$F_{\alpha I} = \begin{pmatrix} 0 & F_{e2} & F_{e3} \\ 0 & F_{\mu 2} & F_{\mu 3} \\ 0 & F_{\tau 2} & F_{\tau 3} \end{pmatrix}, \quad \lambda_{IJ} = \begin{pmatrix} \lambda_{11} & 0 & 0 \\ 0 & \lambda_{22} & \lambda_{23} \\ 0 & \lambda_{23} & \lambda_{33} \end{pmatrix}$$

- ► The *Z*₂ symmetry implies *N*₁ is completely stable (no X-rays) and one left-handed neutrino is exactly massless!
- To generate hierarchies in the remaining *F*_{αI} and λ_{IJ}, can use the Froggatt-Nielsen mechanism:

$$f_{\alpha 2}\left(\underbrace{\frac{\langle\vartheta\rangle^{2}}{M_{\rm Pl}^{2}}}_{-2}\right)\underbrace{\bar{L}_{\alpha}N_{2}H}_{+2} \to F_{\alpha 2}\bar{L}_{\alpha}N_{2}H, \qquad \vartheta = \text{scalar "flavon" field}$$

The ν NMSM + vacuum stabilization

► To give a definite example of the Froggatt-Nielsen symmetry, consider a potential that can stabilize the EW vacuum via a scalar threshold effect (Elias-Miro et al., 2012)

$$V = \lambda_h (H^{\dagger} H - \frac{v^2}{2})^2 + \lambda_\phi (\phi^{\dagger} \phi - \frac{w^2}{2})^2 + 2\lambda_{h\phi} (H^{\dagger} H - \frac{v^2}{2})(\phi^{\dagger} \phi - \frac{w^2}{2}),$$

where
$$\delta \lambda \equiv \lambda_{h\phi}^2 / \lambda_{\phi} \simeq 0.01$$

- Choose $\lambda_{h\phi}$, $\lambda_{\phi} \sim 0.01$ and $w \equiv \langle \phi \rangle \simeq 10^8$ GeV (*Note: no attempt is made to explain scalar sector parameters*)
- For the large $\lambda_{h\phi} \sim 0.01$, this model has
 - $\triangleright~$ a $\Delta N_{\rm eff}\simeq 4/7$ contribution to the effective number of neutrino species from the Goldstone mode χ
 - $\triangleright~$ an invisible Higgs branching ratio of $\sim 20\text{--}30\%$

The ν NMSM + vacuum stabilization

► The required pattern of masses and couplings of the *v*NMSM can then be achieved for two flavon fields *∂*₁, *∂*₂ with

$$rac{\langle artheta_1
angle}{M_{
m Pl}} \simeq 10^{-8}, \qquad rac{\langle artheta_2
angle}{M_{
m Pl}} \simeq 10^{-7}$$

and a U(1) \times Z₃ \times Z₂ symmetry

	N_1	N_2	N_3	L_{α}	E_{α}	Q_i	U_i	D_i	H	ϕ	ϑ_1	ϑ_2
U(1)	-1	-1	-1	-1	-1	1/3	1/3	1/3	0	-1	3	0
Z_3	0	1	-1	0	0	0	0	0	0	0	0	1
U(1) Z ₃ Z ₂	1	0	0	0	0	0	0	0	0	0	0	0

► This is the simplest anomaly-free example we could find, though other charge assignments are possible

The ν NMSM + vacuum stabilization

► After the spontaneous symmetry breaking for ϑ₁, ϑ₂, the parameters of the low-energy *v*NMSM are

$$F_{\alpha 1} = 0,$$
 $F_{\alpha 2} \sim 1 \times 10^{-7},$ $F_{\alpha 3} \sim 1 \times 10^{-7},$

 $M_1 \sim 1 \text{ GeV}, \quad M_2 \simeq M_3 \sim 1 \text{ GeV}, \quad \Delta M_{23} \sim 100 \text{ eV}$

- N₁ can be much heavier than the keV scale in the νNMSM to avoid the Lyman-α forest bound
- ► This model demonstrates that it is possible to use an underlying symmetry to produce the hierarchical pattern of masses and couplings of the *v*NMSM, though the hierarchy problem in the scalar sector remains

CONCLUSIONS

- The νNMSM allows for DM production from the decays of a singlet φ that is consistent with experimental bounds and provides an origin for the Majorana masses
- We have shown how the hierarchical parameters of the νNMSM (excluding the scalar sector) can arise from an underlying symmetry for a complex φ
- Such a symmetry generically predicts completely stable N₁ (no X-ray signature) and one exactly massless left-handed neutrino
- For the specific U(1) × Z_3 × Z_2 example considered, the model can help stabilize the EW vacuum, has a contribution of $\Delta N_{\text{eff}} \simeq 4/7$, and has a large invisible branching ratio of the Higgs

Thank you for your attention!