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Orbifolds

» MSSM models can be obtained from the Heterotic orbifold models
such as Zgit, Zp X Lo, Lo X Zg,...

Blaszczyk, Buchmiiller, Groot Nibbelink, Hamaguchi, Kim, Kobayashi, Kyae, Lebedev, Nilles, Oehlmann, Quevedo, Raby,
Ramos-Sanchez, Ratz, Riihle, Trapletti, Vaudrevange, Wingerter, ...

» Couplings can be computed exactly since orbifold CFT is free.
Vanishing of certain couplings can be related to a symmetry of the
effective field theory (EFT)!

R-Symmetries

» An elegant way to forbid certain dangerous proton decay operators
in SUSY models.

> Required in certain constructions where the p-problem is solved.
Casas, Mufioz'93; Lebedev et. al.’08, Kappl et. al."09

» In models with extra dimensions, R-symmetries arise naturally as
remnants of the Lorentz group in internal space.



» Heterotic Orbifolds and Lattice Automorphisms
» R-Symmeries from Correlation Functions

» Conclusions and Outlook



Heterotic Orbifolds and Lattice Automorphisms

» Assume the target space of the heterotic string to be of the form
6 @3 @3

T
MlO—M3,1X?—M3,1Xm—M3,1X?

P is an isometry of ['¢ which we take as Zy, with 6 = (01, 0,,03) its
generating element.
The orbifold is called factorizable if e = ', x 5 x I'7.

» String boundary conditions:
Z(o+m1)=0Z(0,7) + X (KN eS j=1,2,3

» Action of P has some fixed points z, which fall into conjugacy
classes

[ze] = {z{ | zt = hz for some h € S},

supporting twisted string states.



Heterotic Orbifolds and Lattice Automorphisms

» We search for elements in Aut(I'g) C O(6) which are consistent with
orbifolding. We identify the following decomposition

Aut(le) =G x FXx Ex D
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» We search for elements in Aut(I'g) C O(6) which are consistent with
orbifolding. We identify the following decomposition

Aut(le) =G x FXx Ex D

v

G: Exchange between twisted sectors

v

F: Exchange between conjugacy classes within twisted sectors

v

E: Reflections that leave the conjugacy classes invariant

v

D: Rotations that preserve conjugacy classes

— candidates for R-symmetries in the EFT.



Heterotic Orbifolds and Lattice Automorphisms

Results:

» factorizable:

| I Lattice | Twist | Orbifold Automorphisms
73 SU(3)xSU(3)xSU(3) | 1(1,1,-2) 61, 62, 03
7y SO(4)xSO(4)xS0(4) | 1(1,1,-2) 6162, (01)%, 63
Zi6—1 Gy X G2XSU(3) %(17 1, 72) 616,, 63
Zi6—11 G XSU(3)><SO(4) %(17 2, 73) 61, 62, 63

— plane-by-plane twist invariance only for prime planes

6

11
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Results:
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tic Orbifolds and Lattice Au

Results:
» factorizable:

| I Lattice | Twist | Orbifold Automorphisms
Zs SU(3)xSU(3)xSU(3) | 1(1,1,-2) 61, 02, 03
Za SO(4)xSO(4)xS0(4) | 1(1,1,-2) 6162, (61)%, 63
Z5,1 Gz X GzXSU(?)) %(17 17 —2) 9192, 93
Ze—11 G2xSU(3)xSO(4) 1(1,2,-3) 61, 62, 03

— plane-by-plane twist invariance only for prime planes

» non-factorizable:

| || Lattice [ Twist | Orbifold Automorphisms

Za SU(4)xSU(4) | %(1,1,-2) 0, (61)?

Ze—11 SU(6)xSU(2) 3(1,2,-3) 0
Z7 SU(7) 1(1,2,-3) 0

/A SO(5)xS0(9) | 1(2,1,-3) 6, (61)?

Zg_11 SO(8)xS0(4) | 3(1,3,—4) 0, 03

Zaa—1 SU(3)x Fy +(4,1,-5) 0, 6

Zio—11 FaxSO(4) +(1,5,-6) 0, 03

6/11



R-Symmetries from Correlation Functions

» The strength of the L point coupling ¥¢-—2, is given by
(Ve Ve VB ... V). = Correlators can be used to construct W O &L,

» The emission vertices for strings twisted by 6% are given by
3 . i - i ! ! .
Ve = e ¢ [T (0N (0X/)L el%H" eiPaX ol
i=1
f'
VF — e¢/2 VB(qsh — qgh))
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» The strength of the L point coupling ¥¢-—2, is given by
(Ve Ve VB ... V). = Correlators can be used to construct W O &L,

» The emission vertices for strings twisted by 6% are given by
3 . i - ! ! .
Ve = e ¢ [T (0N (0X/)L el%H" eiPaX ol
i=1
f‘
VF — e¢/2 VB(qsh — qgh))

» Twist fields o ), create twisted vacua out of the untwisted one.

-1

—27ir
Ty = D € a0
r=0

Lauer, Mas, Nilles'91; Erler, Jungnickel, Lauer, Mas’'92

cf. 00k y) = € 2™ V04 4, with I: smallest integer s.t. 8'f = £ + A.



R-Symmetries from Correlation Functions

Correlation function factorizes as:

F = <eizfx:1 Pih,a'xl(za)> X <e12é:1 q:h,a'Hm(za)>
3 —
N Ni 3yl N i i i
X H < 8X oM, a(ax )Z L, a(ax )Za R’aa—(kl,wﬂa(kzydfﬂ .. .O'(kLwa)>

Dixon, Friedan, Martinec, Shenker'87; Hamidi, Vafa’'87; Font, Ibafiez, Nilles, Quevedo'88
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Correlation function factorizes as:

f = <ei fo:l pih,a'xl(za)> X <eiZé:1 q:’h’a-Hm(za)>
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i=1

Dixon, Friedan, Martinec, Shenker'87; Hamidi, Vafa’'87; Font, Ibafiez, Nilles, Quevedo'88

Selection rules for non vanishing couplings

L L
» Gauge invariance: Y ,_, pl, , =0

. L =
» H-momentum conservation: Y ._; gsh,a —Nr =1
» Space group selection rule.

» Rule 5: Depending on {k,} and classical solutions = restrictions on
N1, N1, and NR. Specific to each particular coupling!

Kobayashi, Parameswaran, Ramos-Sanchez, Zavala '11



R-Symmetries from Correlation Functions

» Upon splitting 90X = 90X + 0X,u between instantons (90X, = 0)
and quantum parts, the correlator simplifies to:

F= Z Ze*””za H
n= =0 rp = =0
with

T s Ze 10X —Ni—N f(|OX %, 0X0X.,, Quantum Pieces)
_/_/

D Invariant Blocks
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and quantum parts, the correlator simplifies to:

Foy- Ze*””zal’“aﬂ

n= =0 rp = =0
with
T s Ze 1(OX1) N =N =N f(|OX %, 0X0X.,, Quantum Pieces)
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D Invariant Blocks

» Very Important Remarks:
> In general, phases 7, can not be split into 2D contributions.

» 0X. enjoy symmetries from D C Aut(l's) (Only proven for
factorizable orbifolds).

» Quantum pieces are independent of the position of the fixed points

9/11



ymmetries from Correlation Functions

Using the elements of D we obtain:

» prime planes:

F o (YWENE-NR) 4 (g yMLMLRR) L (g )W)

=

> (d —N{w\'f{)a =1 mod NV

o

Kobayashi, Raby, Zhang'04
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R-Symmetries from Correlation Functions

Using the elements of D we obtain:
» prime planes:

F e ()MMNR) | ()M L (g0 D) MLV

=3 (dh— M+ M) =1 mod N

o

Kobayashi, Raby, Zhang'04

» non-prime planes:

F~ HZZe (19X |r)y ML VL) g=2min o o

i#j | Xxi,| n=0

= Z Zvi(qéth]iJr./\_fﬂ) +% | = Zvi mod 1

a i#] i#]

R-symmetries are still obtained, but the R-charges need to be redefined to

include the contribution of the v phases.
10/11



Conclusions and Outlook

» From the symmetries among instanton solutions we could read
of the R-symmetries expected for factorizable orbifolds.

» We conjectured which R-symmetries are to be expected in the
non-factorizable case, but the explicit CFT still needs to be worked
out!

» Traditional R-symmetries apply only for prime planes in factorizable
orbifolds.

» In general it gets a contribution from the ~-phases.
= Redefinition of R-charges of the fields!
= Generically more couplings allowed!

> In special cases there are further “coupling dependent” conditions
— 'Rule 6'.
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thank you
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Consider a toy example: T?/Zg on G, lattice:
» f-action: fe; = —e; — e, Hey = 3e; + 26

» 62 sector fixed points: zz =0, e/2, 2e/3

> 626262 coupling has two contributions:

F = e 2y Z e o (c’?Xd)NL N <0'(02,0)0'(02,e1/3)0'(02,0e1/3)>
X1
+e 2T Z e (OX )N N (0 (2,000 (62,061 /3) T (02,00 /3))
Xl

» overall factor
T~ o273 ((1)NL7/\7L + (92)NL7/\7L + (94)NL*J\7L>

4 2min ((G)NLf./\_fL + (93)NL7./\7L + (HS)NL*./\_/L)

» Selection rule:

3
ZNLa —M,a =0 mod 3

a=1




