Two ultimate tests of constrained supersymmetry

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

PLANCK 2013, 23.05.2013

based on arXiv:1302.5956 (to appear in JHEP) KK, L.Roszkowski, E.Sessolo

Grants for innovation. Project operated within the Foundation for Polish Science "WELCOME" co-financed by the European Regional Development Fund

Outline

- **1. Bayesian statistics**
- 2. CMSSM results of the global scan
- **3. CMSSM experimental tests**
- 4. Conclusions

A theoretical model is described by *N* free parameters:

 $m = (m_1, m_2, \dots m_N)$

The model gives a set of physical predictions $\xi(m)$:

 $\xi = (\xi_1, \xi_2, \dots, \xi_K)$

The values of $\xi(m)$ are measured experimentally *d*:

 $d = (d_1, d_2, \dots d_K)$

The question is:

How can we quantify probability of obtaining parameters m, by looking at the data d, accounting for all theoretical and experimental uncertainties?

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem:

$$p(m|d) = \frac{p(d|\xi(m))\pi(m)}{p(d)}$$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data d, given an expected value of observable *§(m)*.

Prior *pdf*: what we know about hypothesis *m* BEFORE seeing the data *d*.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem: $p(m|d) = \frac{p(d|\xi(m))\pi(m)}{p(d)}$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data d, given an expected value of observable *§(m)*.

Prior *pdf*: what we know about hypothesis *m* BEFORE seeing the data *d*.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem:

 $p(m|d) = \underbrace{p(d|\xi(m))\pi(m)}_{p(d)}$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data d, given an expected value of observable *§(m)*.

Prior *pdf*: what we know about hypothesis **m** BEFORE seeing the data **d**.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem: $p(m|d) = \frac{p(d|\xi(m))\pi(m)}{n(d)}$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data **d**, given an expected value of observable *E***(m)**.

Prior *pdf*: what we know about hypothesis **m** BEFORE seeing the data **d**.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem:

$$p(m|d) = \frac{p(d|\xi(m))\pi(m)}{p(d)}$$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data d, given an expected value of observable *§(m)*.

Prior *pdf*: what we know about hypothesis *m* BEFORE seeing the data *d*.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

The probability is a **measure of the degree of belief** about a set of parameters *m*, given the outcome *d*.

Bayes theorem:

$$p(m|d) = \frac{p(d|\xi(m))\pi(m)}{p(d)}$$

Posterior *pdf*: the probability about hypothesis **m** AFTER seeing the data **d**.

Likelihood: the probability of obtaining data **d**, given an expected value of observable *ξ(m)*.

Prior *pdf*: what we know about hypothesis **m** BEFORE seeing the data **d**.

Evidence: normalization constant (crucial for model comparison) – probability of obtaining the

particular set of data d given the theoretical model and irrespective of actual values of m

Marginalized *pdf* → **credible posterior regions** for specific parameters:

$$p(\psi_{i=1,\dots,r}|d) = \int p(m|d)d^{n-r}m$$

PLANCK 2013, 23.05.2013

CMSSM global scan

Constrained Minimal Supersymmetric Standard Model (CMSSM)

 \rightarrow soft SUSY parameters unified at the GUT-scale

Random <u>simultaneous</u> scan over 4 CMSSM + 4 SM parameters

CMSSM parameter	Prior Range	Prior Distribution
m_0	0.1, 20 (TeV)	Log
$m_{1/2}$	0.1, 10 (TeV)	Log
A_0	-20, 20 (TeV)	Linear
aneta	3, 62	Linear
$\operatorname{sgn}\mu$	+1 or -1	Fixed
Nuisance	Central value \pm std. dev.	Prior Distribution
M_t	$173.5 \pm 1.0 \; (\text{GeV})$	Gaussian
$m_b(m_b)_{\rm SM}^{\overline{MS}}$	$4.18 \pm 0.03 \; (\text{GeV})$	Gaussian
$\alpha_s (M_Z)^{\overline{MS}}$	0.1184 ± 0.0007	Gaussian
$1/\alpha_{\rm em}(M_Z)^{\overline{MS}}$	127.916 ± 0.015	Gaussian

PLANCK 2013, 23.05.2013

Experimental constraints

Measurement	Mean or Range	Error: (Exp., Th.)	Distribution
m_h by CMS	$125.8\mathrm{GeV}$	$0.6{ m GeV}, 3{ m GeV}$	Gaussian
$\Omega_{\chi}h^2$	0.1120	0.0056,10%	Gaussian
$\delta \left(g-2\right)^{\mathrm{SUSY}}_{\mu} \times 10^{10}$	28.7	8.0, 1.0	Gaussian
$\operatorname{BR}\left(\overline{B} \to X_s \gamma\right) \times 10^4$	3.43	0.22, 0.21	Gaussian
$BR(B_u \to \tau \nu) \times 10^4$	1.66	0.33, 0.38	Gaussian
ΔM_{B_s}	$17.719{\rm ps}^{-1}$	$0.043 \mathrm{ps^{-1}}, \ 2.400 \mathrm{ps^{-1}}$	Gaussian
$\sin^2 \theta_{\rm eff}$	0.23116	0.00012, 0.00015	Gaussian
M_W	80.385	0.015, 0.015	Gaussian
$BR\left(B_s \to \mu^+ \mu^-\right)_{current} \times 10^9$	3.2	+1.5 - 1.2, 10% (0.32)	Gaussian
Combination of:			
CMS razor 4.4/fb , $\sqrt{s}=7\mathrm{TeV}$	Likelihood map		Poisson
CMS $\alpha_T \ 11.7/\text{fb}$, $\sqrt{s} = 8 \text{ TeV}$	Likelihood map		Poisson

Positive measurements: Gaussian distribution $\mathcal{L}(m) = \frac{1}{\sqrt{2\pi s}} e^{-\frac{(\xi(m)-d)^2}{2s^2}}$

PLANCK 2013, 23.05.2013

 $s = \sqrt{\sigma^2 + \tau^2}$

LHC limits on SUSY

more details \rightarrow talk by E.Sessolo, 21.05.13

SUSY Likelihood:

$$\mathcal{L}(s) = \int p(o|s;b') \exp\left[-rac{(b-b')^2}{2\delta b^2}
ight] db'$$

- full simulation of event generation + detector response (PYTHIA6, PGS4)
- closely follows the experimental analysis
- validated against the official limits

PLANCK 2013, 23.05.2013

PLANCK 2013, 23.05.2013

PLANCK 2013, 23.05.2013

PLANCK 2013, 23.05.2013

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_1\tilde{V}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

- neutralino-stau co-annihilation
- A-resonance annihilation
 enhanced annihilation into ZZ, WW, Zh€ (mixed bino-higgsino in Focus Point region, pure higgsino in 1TeV higgsino region)
- chargino coannihilation (1TH region)

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_1\tilde{V}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

- neutralino-stau co-annihilation
- A-resonance annihilation
 enhanced annihilation into ZZ, WW, Zh€ (mixed bino-higgsino in Focus Point region, pure higgsino in 1TeV higgsino region)
- chargino coannihilation (1TH region)

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{V}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

- neutralino-stau co-annihilation
- A-resonance annihilation
 enhanced annihilation into ZZ, WW, Zh€ (mixed bino-higgsino in Focus Point region, pure higgsino in 1TeV higgsino region)
- chargino coannihilation (1TH region)

$$\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{V}^3 + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

- neutralino-stau co-annihilation
- A-resonance annihilation
 enhanced annihilation into ZZ, WW, Zh€ (mixed bino-higgsino in Focus Point region, pure higgsino in 1TeV higgsino region)
- chargino coannihilation (1TH region)

Relic density in the AF region

Resonance condition: $m_A \approx 2m_\chi$

Relic density:

tanβ very limited:

AF region

48-55 (µ>0)

PLANCK 2013, 23.05.2013

Relic density in the AF region

Resonance condition: $m_A \approx 2m_\chi$

Relic density:

 $\begin{pmatrix} \chi \\ & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

tanβ very limited: 38-50 (µ<0)

AF region

PLANCK 2013, 23.05.2013

BR(B_s \rightarrow \mu^+\mu^-) in the AF

dominant charginosquark contribution

$$C_{S,P} = \mp \frac{m_{\mu}}{4\sin^2\theta_W M_W^2} \frac{\tan^3\beta}{m_A^2} \mathcal{F}_{\rm LO}$$

BR(B_s $\rightarrow \mu^+\mu^-$) in the AF

BR(B_s \rightarrow \mu^+\mu^-) - ultimate precision

Experimental error (~300 fb⁻¹) \rightarrow 5%

Theoretical error reduced to 5%

Central value ~ SM

BR(Bs → μ + μ -)=3.5 ± 0.25 x 10⁻⁹

AF region is gone!

PLANCK 2013, 23.05.2013

B_s→μ⁺μ⁻ : CMSSM vs NUHM

NUHM: m₀, m_{1/2}, A₀, tanβ, sgn(μ), m_{H_u}, m_{H_d}

$B_s \rightarrow \mu^+ \mu^-$ not constraining

PLANCK 2013, 23.05.2013

PROSPECTS FOR XENON1T

PLANCK 2013, 23.05.2013

PROSPECTS FOR XENON1T

PLANCK 2013, 23.05.2013

CMSSM - ultimate fate

- There is a tension between the BR(B_s $\rightarrow \mu^+\mu^-$) and relic density in the A-resonance region.
- The whole parameter space of CMSSM could be tested by the LHC 14 TeV and XENON-1T.
- It is important to use complementary experimental tests.

PLANCK 2013, 23.05.2013

How to compare theory with experiment

Goal: to determine the allowed parameter space of the model under study given the data; to quantify the 'goodness' of the results

HOWEVER...

- A lot of data
- Different statistical meaning: measurement ± errors, 95% CL limits, 90% CL limits, theoretical errors, ...
- Sometimes hardly consistent (recent R_{yy} from CMS and ATLAS)
- Sometimes favoring different parts of parameter space, eg. Higgs mass vs $(g\mbox{-}2)_{\mu}$

HOW TO TREAT IT CORRECTLY?

PLANCK 2013, 23.05.2013

PROSPECTS FOR XENON1T

 $p9MSSM \rightarrow talk by$ E.Sessolo, 21.05.13

Theoretical uncertainties:

- astrophysical
- nuclear physics (large)

 $\sum_{nN} \sim <N|u\bar{u}+d\bar{d}|N>$ σ_{p}^{SI}

Different determinations of $\sum_{\pi N}$: \rightarrow XENON100 constrains more/less

LHC limits on SUSY

 $p9MSSM \rightarrow talk by$ E.Sessolo, 21.05.13

Official CMS/ATLAS results:

only selected models: CMSSM, simplified models

SUSY Likelihood:

$$\mathcal{L}(s) = \int p(o|s;b') \exp\left[-rac{(b-b')^2}{2\delta b^2}
ight] db'$$

- full simulation of event generation + detector response (PYTHIA6, PGS4)
- closely follows the experimental analysis
- validated against the official limits

SUSY masses

Light SUSY (~1 TeV) still allowed in CMSSM

Higgs mass at 126 GeV

