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Lepton mixing from discrete groups 
complete flavour group 

residual symmetry of (Me Me+)   residual symmetry of Mν 

Gf 

misaligned non-commuting 
symmetries lead to 

[He, Keum, Volkas ‘06; 
Lam’07,‘08; 
Altarelli,Feruglio’05, 
Feruglio, 
Hagedorn,Toroop’11] 

 

Ge=〈T〉=Z3 Gν=〈S,U〉=Z2xZ2  

mixing matrix determined from symmetry 
up to interchanging of rows/columns and 
diagonal phase matrix 

tri-bimaximal 
mixing (TBM) 

(Z3 smallest choice, but can also be 
continuous) 

(Z2xZ2 most general choice if mixing angles do not 
depend on masses & Majorana νs) 

Gν=〈S,U〉=Z2xZ2  

Gν=〈S〉=Z2  

tri-maximal mixing (TM2) 

LH leptons 3-dim rep. 

[Lin’10, Shimizu et al.‘11,Luhn,King’11,...] 
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[10�5 eV2] [10�3 eV2] [10�1] [10�1] [10�2] [⇡]

best fit 7.62+.19
�.19 2.55+.06

�.09 3.20+.16
�.17 6.13+.22

�.40 2.46+.29
�.28 0.8+1.2

�.8

3� range 7.12� 8.20 2.31� 2.74 2.7� 3.7 3.6� 6.8 1.7� 3.3 0� 2

Table 1: Global fit of neutrino oscillation parameters (for normal ordering of neutrino masses) adapted

from [17]. The errors of the best fit values indicate the one sigma ranges. In the global fit there are two nearly

degenerate minima at sin2 ✓23 = 0.430+.031
�.030, see Figure 1.

only the structure of flavor symmetry group and its remnant symmetries are assumed and we

do not consider the breaking mechanism i.e. how the required vacuum alignment needed to

achieve the remnant symmetries is dynamically realized.

The PMNS matrix is defined as

UPMNS = V †
e V⌫ (1)

and can be determined from the unitary matrices Ve and V⌫ satisfying

V T
e MeM

†
eV

⇤
e = diag(m2

e,m
2
µ,m

2
⌧ ) and V T

⌫ M⌫V⌫ = diag(m1,m2,m3), (2)

where the mass matrices are defined by L = eTMeec +
1
2⌫

TM⌫⌫. We will now review how

certain mixing patterns can be understood as a consequence of mismatched horizontal sym-

metries acting on the charged lepton and neutrino sectors [11–13; 26–28]4. Let us assume

for this purpose that there is a (discrete) symmetry group Gf under which the left-handed

lepton doublets L = (⌫, e) transform under a faithful unitary 3-dimensional representation

⇢ : Gf ! GL(3, ):

L ! ⇢(g)L, g 2 Gf . (3)

The experimental data clearly shows (i) that all lepton masses are unequal and (ii) there is

mixing amongst all three mass eigenstates. Therefore this symmetry cannot be a symmetry

of the entire Lagrangian but it has to be broken to di↵erent subgroups Ge and G⌫ (with

trivial intersection) in the charged lepton and neutrino sectors, respectively. If the fermions

transform as

e ! ⇢(ge)e, ⌫ ! ⇢(g⌫)⌫, ge 2 Ge, g⌫ 2 G⌫ , (4)

for the symmetry to hold, the mass matrices have to fulfil

⇢(ge)
TMeM

†
e⇢(ge)

⇤ = MeM
†
e and ⇢(g⌫)

TM⌫⇢(g⌫) = M⌫ . (5)

Choosing Ge or G⌫ to be a non-abelian group would lead to a degenerate mass spectrum,

as their representations cannot be decomposed into three inequivalent one-dimensional rep-

resentations of Ge or G⌫ . This scenario is not compatible with the case of three distinguished

4We here follow the presentation and convention in [26; 27].
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⇢(S) =

0

@
1 0 0
0 �1 0
0 0 �1

1

A ⇢(U) =

0

@
1 0 0
0 0 1
0 1 0

1

A⇢(T ) =

0

@
0 1 0
0 0 1
1 0 0

1

A

neutrino and charged lepton masses and we therefore restrict ourselves to the abelian case.

We further restrict ourselves to the case of Majorana neutrinos, which implies that there

cannot be a complex eigenvalue of the matrices ⇢(g⌫) and they therefore satisfy ⇢(g⌫)2 = 1,

and we can further choose det ⇢(g⌫) = 1. By further requiring three distinguishable Majorana

neutrinos the group G⌫ is restricted to be the Klein group Z2 ⇥ Z2. To be able to determine

(up to permutations of rows and columns) the mixing matrix from the group structure it is

necessary to have all neutrinos transform as inequivalent singlets of G⌫ . The same is true for

the charged leptons which shows that Ge cannot be smaller than Z3. We can now determine

the mixing via the unitary matrices ⌦e, ⌦⌫ that satisfy

⌦†
e⇢(ge)⌦e = ⇢(ge)diag, ⌦†

⌫⇢(g⌫)⌦⌫ = ⇢(g⌫)diag (6)

where ⇢(g)diag are diagonal unitary matrices. These conditions determine ⌦e, ⌦⌫ up to a

diagonal phase matrix Ke,⌫ and permutation matrices Pe,⌫

⌦e,⌫ ! ⌦e,⌫Ke,⌫Pe,⌫ . (7)

It follows from Eqn. (5) that up to the ambiguities of the last equation, Ve,⌫ are given by ⌦e,⌫ .

This can be seen as

⌦T
e MeM

†
e⌦

⇤
e = ⌦T

e ⇢
TMeM

†
e⇢

⇤⌦⇤
e = ⇢Tdiag⌦

T
e MeM

†
e⌦

⇤
e⇢

⇤
diag

has to be diagonal (only a diagonal matrix is invariant when conjugated by a arbitrary phase

matrix) and the phasing and permutation freedom can be used to bring it into the form

diag(m2
e,m

2
µ,m

2
⌧ ), and analogously for ⌦⌫ . From these group theoretical considerations we

can thus determine the PMNS matrix

UPMNS = ⌦†
e⌦⌫ (8)

up to a permutation of rows and columns. It should not be surprising that it is not possible

to uniquely pin down the mixing matrix, as it is not possible to predict lepton masses in this

approach.

Let us now try to apply this machinery to some interesting cases. We have seen that the

smallest residual symmetry in the charged lepton sector is given by a Ge =
⌦
T |T 3 = E

↵ ⇠= Z3.

We use a basis where the generator is given by

⇢(T ) = T3 ⌘

0

B@
0 1 0

0 0 1

1 0 0

1

CA . (9)

This matrix will be our standard 3-dimensional representation of Z3 and the notation T3 will

be used throughout this work. It is diagonalized by

⌦†
e⇢(T )⌦e = diag(1,!2,!) and ⌦e = ⌦T ⌘ 1p

3

0

B@
1 1 1

1 !2 !

1 ! !2

1

CA , (10)
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and ! = ei2⇡/3. Having fixed the basis by choosing the Z3 generator the way we just did, it is

now essentially a question of choosing generators and studying the predicted mixing matrix.

Let us first look at the case where there is only one generator S of G⌫ , satisfying ⇢(S)2 = 1

and det ⇢(S) = 1:
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Obviously this does not completely fix the leptonic mixing matrix yet, as the first and third

eigenvalue are the same and the corresponding eigenstates can be rotated into each other

without breaking the symmetry. To completely fix the mixing matrix we have to enlarge G⌫
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and G⌫ = hS, Ui ⇠=
Z
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we discussed in the last section, there are three logical ways to construct the flavour
group:

• all remnant symmetries are accidental, i.e. there is no flavour symmetry and the remnant
symmetries only emerge because of the chosen particle content etc. No model without
some flavour symmetry is known where this can be the case. However, so called indirect
models [64] are of this type as the symmetries of the mass matrices arise accidentally
and are di↵erent from the symmetries of the original models.

• some remnant symmetries are accidental, some are part of the flavour group. Some of
the most prominent models fall into this category, e.g. the flavour group A

4

is generated
by the generators S and T . In A

4

models [9, 10, 65–69] that predict TBM the symmetry
U is an accidental symmetry as we will discuss in detail in Section 2.4. This is why we
have also discussed the case G⌫ = hSi ⇠= Z

2

, which leads to trimaximal mixing, as this
is the most natural deformation of A

4

models.

• all remnant symmetries are part of Gf . The group generated by S, T and U is the
group S

4

[12, 70–86] , which has also been widely used for model building. It has been
claimed [12, 13] that this is the unique symmetry that leads to TBM but this claim is
obviously incorrect [84, 87] and results from the flawed notion that symmetries of the
mass matrices have to be symmetries of the Lagrangian. Models that realize the last
two cases are also known as direct models [64].

A tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations
is shown in Fig. 2.2. All of the groups represented in this graph will at some point be used in
this thesis and we therefore briefly describe them here.

All of these groups may be written as semidirect products of two smaller groups. As the
concept of a semidirect product plays a prominent part in the later parts of the thesis we
define it here: given two groups N and H and a group homomorphism 7 ' : H ! Aut(N), one

7A (group) homomorphism ⇢ : G ! H is a mapping preserving the group structure, i.e. ⇢(g
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) =
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We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation.

This is manifest in our model based on SU(5) combined with the T ′ group as the family symmetry. The

complex CG coefficients in T ′ lead to explicit CP violation which is thus geometrical in origin. The predicted

CP violation measures in the quark sector are consistent with the current experimental data. The corrections

due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle,

and we also gets the right amount of the baryonic asymmetry.
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We consider in detail the non-renormalisable scalar potential of three Higgs doublets transform-
ing as an irreducible triplet of �(27) or �(54). We start from a renormalisable potential that
spontaneously leads to a vacuum with CP-violating phases independent of arbitrary parameters –
geometrical CP violation. Then we analyse to arbitrarily high order non-renormalisable terms that
are consistent with the symmetry and we demonstrate that inclusion of non-renormalisable terms
in the potential can preserve the geometrical CP-violating vacuum.
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The idea that the CP symmetry is violated sponta-
neously (SCPV) [1, 2] has remarkable physical conse-
quences. One starts from a CP invariant Lagrangian and
SCPV is achieved through meaningful complex phases of
the Higgs vacuum expectation values (VEVs) that break
the gauge symmetry group. One has further to require
that no field redefinition, compatible with the full sym-
metry of Lagrangian, evades all SCPV phases. SCPV
accounts for an elegant solution to the strong CP prob-
lem [3–10] and it alleviates the SUSY CP problem [11].
Also in perturbative string theory CP asymmetry can
in principle only arise spontaneously through VEVs of
moduli and matter fields [12–14].

An interesting possibility within the framework of
SCPV is when the CP phases become calculable, so
that the CP phases are independent of the Higgs poten-
tial parameter strengths [15] – geometrical CP violation

(GCPV). GCPV was first realised by imposing the non-
Abelian discrete symmetry �(27) [16] group on the full
Lagrangian [15]. GCPV was revisited recently [17] and a
new symmetry group �(54) [18, 19] leading to the same
Higgs potential was then proposed. One of major fea-
tures of GCPV is the fact that the phases of the VEVs
are stable against radiative corrections due to the pres-
ence of the non-Abelian discrete symmetry [20, 21].

Motivated by the promising leading order fermion mass
structures presented in Ref. [17], it turns out to be inter-
esting to obtain viable Yukawa structures for the lighter
generations arising at the non-renormalisable level. If
one drops the requirement of renormalisability, it be-
comes relevant to study whether the non-renormalisable

⇤ ivo.de@udo.edu
† david.costa@ist.utl.pt
‡ philipp.leser@tu-dortmund.de

scalar potential resulting from these discrete groups are
still compatible with GCPV. In this Letter we complete
the analysis of the Higgs potential invariant under �(27)
or �(54) that leads to GCPV by allowing higher orders
scalar terms in the potential.

We use the properties of the underlying symmetry to
analyse the possible terms and classify them according to
their e↵ect on the vacuum. We proceed with the analy-
sis of both groups simultaneously. As an even number of
triplets is required to form an invariant (a consequence
of their SU(2) doublet nature) most of the di↵erences
between �(27) and �(54) can not manifest themselves
in the scalar potential with a single triplet representation
(and its conjugate). �(54) has an additional generator
that swaps only two components of the triplet, and this
combines any pair of �(27) invariants related by that
transformation into a single �(54) invariant - but it will
be apparent that this minor di↵erence does not a↵ect our
analysis of the scalar potential, as the cyclic permutation
of all three components is a generator shared by both
groups. We start by considering the renormalisable po-
tential Vren. This serves as a brief review of the relevant
results from [15, 17] and also to establish the notation.
Given the scalars Hi are SU(2) doublets (the upper in-
dex denotes they transform as a triplet of the symmetry),
invariant terms are present with an equal number of Hi

and H†
i (the lower index denotes H† transforms as the re-

spective conjugate representation under the symmetry).
A renormalisable potential Vren invariant under �(27) or
�(54) has then the following form:

Vren = HiH†
i + (HiH†

i )(H
jH†

j )

+(HiH†
i H

iH†
i ) + c✓

2

4
X

i 6=j 6=k

(Hi)2H†
jH

†
k + h.c
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claimed [12, 13] that this is the unique symmetry that leads to TBM but this claim is
obviously incorrect [84, 87] and results from the flawed notion that symmetries of the
mass matrices have to be symmetries of the Lagrangian. Models that realize the last
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the analysis of the Higgs potential invariant under �(27)
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scalar terms in the potential.
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We present a SUSY SUð5Þ # T0 unified flavor model with type I seesaw mechanism of neutrino mass

generation, which predicts the reactor neutrino angle to be !13 $ 0:14 close to the recent results from the

Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino

mixing angles, which are compatible with the existing data. The T0 breaking leads to tribimaximal mixing

in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The

model exhibits geometrical CP violation, where all complex phases have their origin from the complex

Clebsch-Gordan coefficients of T0. The values of the Dirac and Majorana CP violating phases are

predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a

value close to 90%: " ffi #=2' 0:45!c ffi 84:3%, !c being the Cabibbo angle. The neutrino mass spectrum

can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light

neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambig-

uous predictions for the neutrinoless double beta decay effective Majorana mass.
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I. INTRODUCTION

Understanding the origin of the patterns of neutrino
masses and mixing, emerging from the neutrino oscilla-
tion, 3H $ decay, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general
fundamental problem in particle physics of understanding
the origins of flavor, i.e., of the patterns of the quark,
charged lepton, and neutrino masses and of the quark and
lepton mixing.

At present we have compelling evidence for the exis-
tence of mixing of three light massive neutrinos %i, i ¼ 1,
2, 3, in the weak charged lepton current (see, e.g., Ref. [1]).
The massesmi of the three light neutrinos %i do not exceed
approximately 1 eV, mi & 1 eV, i.e., they are much
smaller than the masses of the charged leptons and quarks.
The three light neutrino mixing is described (to a good
approximation) by the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) 3# 3 unitary mixing matrix, UPMNS. In
the widely used standard parametrization [1], UPMNS is
expressed in terms of the solar, atmospheric, and reactor
neutrino mixing angles !12, !23, and !13, respectively, one
Dirac— ", and two Majorana [2]— $1 and $2 CP violat-
ing phases:

UPMNS ) U ¼ Vð!12; !23;!13;"ÞQð$1;$2Þ; (1.1)

where

V ¼
1 0 0

0 c23 s23

0 's23 c23

0
BB@

1
CCA

c13 0 s13e
'i"

0 1 0

's13e
i" 0 c13

0
BB@

1
CCA

#
c12 s12 0

's12 c12 0

0 0 1

0
BB@

1
CCA; (1.2)

and we have used the standard notation cij ) cos!ij, sij )
sin!ij, and

1

Q ¼ Diagðe'i$1=2; e'i$2=2; 1Þ: (1.3)

The neutrino oscillation data, accumulated over many
years, allowed us to determine the parameters that drive the
solar and atmospheric neutrino oscillations,!m2

* ) !m2
21,

!12 and j!m2
Aj ) j!m2

31j ffi j!m2
32j, !23, with a rather high

precision (see, e.g., Ref. [1]). Furthermore, there were
spectacular developments in the last year in what concerns
the angle !13. In June 2011 the T2K Collaboration reported
[3] evidence at 2:5& for a nonzero value of !13.
Subsequently the MINOS [4] and Double Chooz [5] col-
laborations also reported evidence for !13 ! 0, although
with a smaller statistical significance. Global analysis of
the neutrino oscillation data, including the data from the
T2K and MINOS experiments, performed in Ref. [6],
showed that actually sin!13 ! 0 at + 3&. In March 2012
the first data of the Daya Bay reactor antineutrino experi-
ment on !13 were published [7]. The value of sin

22!13 was
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1This parametrization differs from the standard one. We use it
for ‘‘technical’’ reasons related to the fitting code we will
employ. Obviously, the standard one can be obtained as
Diagð1;ei'21 ;ei'31 Þ¼ei$1=2Q, with '21 ¼ $1 ' $2 and '31¼$1.

PHYSICAL REVIEW D 86, 113003 (2012)

1550-7998=2012=86(11)=113003(21) 113003-1 ! 2012 American Physical Society



•  Take smallish group (A4, S4, 
T‘,....) and assume Θ13 is 
generated at NLO 
•  TM1, TM2,... [e.g. King, Luhn 13] 

•  Impose CP on Lagrangian and 
break it spontaneously. [Lee 73, 
Branco 80] 

•  Can complex Clebsch-Gordon 
coefficients be the origin of CP 
violation? 

CP Phase from Discrete Groups 2.3. Some Properties of Non-Abelian Discrete Symmetries

SU(3)

�(27)

PSL
2

(7)

T
7

S
4

A
4

�(96) SO(3)

Figure 2.2: Tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations.
The blue groups are used in so-called direct models, the red ones are used in indirect models (see text). The
location of the colored groups indicates the size of group with the smallest group A

4

, that contains 12 elements,
at the bottom.

If one accepts that there are the remnant symmetries Ge = hT i ⇠= Z
3

and G⌫ = hS, Ui ⇠=
Z

2

⇥ Z
2

we discussed in the last section, there are three logical ways to construct the flavour
group:

• all remnant symmetries are accidental, i.e. there is no flavour symmetry and the remnant
symmetries only emerge because of the chosen particle content etc. No model without
some flavour symmetry is known where this can be the case. However, so called indirect
models [64] are of this type as the symmetries of the mass matrices arise accidentally
and are di↵erent from the symmetries of the original models.

• some remnant symmetries are accidental, some are part of the flavour group. Some of
the most prominent models fall into this category, e.g. the flavour group A

4

is generated
by the generators S and T . In A

4

models [9, 10, 65–69] that predict TBM the symmetry
U is an accidental symmetry as we will discuss in detail in Section 2.4. This is why we
have also discussed the case G⌫ = hSi ⇠= Z

2

, which leads to trimaximal mixing, as this
is the most natural deformation of A

4

models.

• all remnant symmetries are part of Gf . The group generated by S, T and U is the
group S

4

[12, 70–86] , which has also been widely used for model building. It has been
claimed [12, 13] that this is the unique symmetry that leads to TBM but this claim is
obviously incorrect [84, 87] and results from the flawed notion that symmetries of the
mass matrices have to be symmetries of the Lagrangian. Models that realize the last
two cases are also known as direct models [64].

A tree of (selected) discrete subgroups of SU(3) that contain three-dimensional representations
is shown in Fig. 2.2. All of the groups represented in this graph will at some point be used in
this thesis and we therefore briefly describe them here.

All of these groups may be written as semidirect products of two smaller groups. As the
concept of a semidirect product plays a prominent part in the later parts of the thesis we
define it here: given two groups N and H and a group homomorphism 7 ' : H ! Aut(N), one

7A (group) homomorphism ⇢ : G ! H is a mapping preserving the group structure, i.e. ⇢(g
1

g
2

) =
⇢(g

1

)⇢(g
2

) 8g
1,2 2 G. A surjective homomorphism ⇢ : G ! H has the additional property im(⇢) = H.
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Abstract

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation.

This is manifest in our model based on SU(5) combined with the T ′ group as the family symmetry. The

complex CG coefficients in T ′ lead to explicit CP violation which is thus geometrical in origin. The predicted

CP violation measures in the quark sector are consistent with the current experimental data. The corrections

due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle,

and we also gets the right amount of the baryonic asymmetry.
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We consider in detail the non-renormalisable scalar potential of three Higgs doublets transform-
ing as an irreducible triplet of �(27) or �(54). We start from a renormalisable potential that
spontaneously leads to a vacuum with CP-violating phases independent of arbitrary parameters –
geometrical CP violation. Then we analyse to arbitrarily high order non-renormalisable terms that
are consistent with the symmetry and we demonstrate that inclusion of non-renormalisable terms
in the potential can preserve the geometrical CP-violating vacuum.

PACS numbers: 11.30.Hv, 12.60.Fr
Keywords: CP violation; Flavour symmetries; Extensions of Higgs sector

The idea that the CP symmetry is violated sponta-
neously (SCPV) [1, 2] has remarkable physical conse-
quences. One starts from a CP invariant Lagrangian and
SCPV is achieved through meaningful complex phases of
the Higgs vacuum expectation values (VEVs) that break
the gauge symmetry group. One has further to require
that no field redefinition, compatible with the full sym-
metry of Lagrangian, evades all SCPV phases. SCPV
accounts for an elegant solution to the strong CP prob-
lem [3–10] and it alleviates the SUSY CP problem [11].
Also in perturbative string theory CP asymmetry can
in principle only arise spontaneously through VEVs of
moduli and matter fields [12–14].

An interesting possibility within the framework of
SCPV is when the CP phases become calculable, so
that the CP phases are independent of the Higgs poten-
tial parameter strengths [15] – geometrical CP violation

(GCPV). GCPV was first realised by imposing the non-
Abelian discrete symmetry �(27) [16] group on the full
Lagrangian [15]. GCPV was revisited recently [17] and a
new symmetry group �(54) [18, 19] leading to the same
Higgs potential was then proposed. One of major fea-
tures of GCPV is the fact that the phases of the VEVs
are stable against radiative corrections due to the pres-
ence of the non-Abelian discrete symmetry [20, 21].

Motivated by the promising leading order fermion mass
structures presented in Ref. [17], it turns out to be inter-
esting to obtain viable Yukawa structures for the lighter
generations arising at the non-renormalisable level. If
one drops the requirement of renormalisability, it be-
comes relevant to study whether the non-renormalisable

⇤ ivo.de@udo.edu
† david.costa@ist.utl.pt
‡ philipp.leser@tu-dortmund.de

scalar potential resulting from these discrete groups are
still compatible with GCPV. In this Letter we complete
the analysis of the Higgs potential invariant under �(27)
or �(54) that leads to GCPV by allowing higher orders
scalar terms in the potential.

We use the properties of the underlying symmetry to
analyse the possible terms and classify them according to
their e↵ect on the vacuum. We proceed with the analy-
sis of both groups simultaneously. As an even number of
triplets is required to form an invariant (a consequence
of their SU(2) doublet nature) most of the di↵erences
between �(27) and �(54) can not manifest themselves
in the scalar potential with a single triplet representation
(and its conjugate). �(54) has an additional generator
that swaps only two components of the triplet, and this
combines any pair of �(27) invariants related by that
transformation into a single �(54) invariant - but it will
be apparent that this minor di↵erence does not a↵ect our
analysis of the scalar potential, as the cyclic permutation
of all three components is a generator shared by both
groups. We start by considering the renormalisable po-
tential Vren. This serves as a brief review of the relevant
results from [15, 17] and also to establish the notation.
Given the scalars Hi are SU(2) doublets (the upper in-
dex denotes they transform as a triplet of the symmetry),
invariant terms are present with an equal number of Hi

and H†
i (the lower index denotes H† transforms as the re-

spective conjugate representation under the symmetry).
A renormalisable potential Vren invariant under �(27) or
�(54) has then the following form:

Vren = HiH†
i + (HiH†

i )(H
jH†

j )

+(HiH†
i H

iH†
i ) + c✓

2

4
X

i 6=j 6=k

(Hi)2H†
jH

†
k + h.c

3

5 ,
(1)
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We present a SUSY SUð5Þ # T0 unified flavor model with type I seesaw mechanism of neutrino mass

generation, which predicts the reactor neutrino angle to be !13 $ 0:14 close to the recent results from the

Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino

mixing angles, which are compatible with the existing data. The T0 breaking leads to tribimaximal mixing

in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The

model exhibits geometrical CP violation, where all complex phases have their origin from the complex

Clebsch-Gordan coefficients of T0. The values of the Dirac and Majorana CP violating phases are

predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a

value close to 90%: " ffi #=2' 0:45!c ffi 84:3%, !c being the Cabibbo angle. The neutrino mass spectrum

can be with normal ordering (2 cases) or inverted ordering. In each case the values of the three light

neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambig-

uous predictions for the neutrinoless double beta decay effective Majorana mass.
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I. INTRODUCTION

Understanding the origin of the patterns of neutrino
masses and mixing, emerging from the neutrino oscilla-
tion, 3H $ decay, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general
fundamental problem in particle physics of understanding
the origins of flavor, i.e., of the patterns of the quark,
charged lepton, and neutrino masses and of the quark and
lepton mixing.

At present we have compelling evidence for the exis-
tence of mixing of three light massive neutrinos %i, i ¼ 1,
2, 3, in the weak charged lepton current (see, e.g., Ref. [1]).
The massesmi of the three light neutrinos %i do not exceed
approximately 1 eV, mi & 1 eV, i.e., they are much
smaller than the masses of the charged leptons and quarks.
The three light neutrino mixing is described (to a good
approximation) by the Pontecorvo, Maki, Nakagawa,
Sakata (PMNS) 3# 3 unitary mixing matrix, UPMNS. In
the widely used standard parametrization [1], UPMNS is
expressed in terms of the solar, atmospheric, and reactor
neutrino mixing angles !12, !23, and !13, respectively, one
Dirac— ", and two Majorana [2]— $1 and $2 CP violat-
ing phases:

UPMNS ) U ¼ Vð!12; !23;!13;"ÞQð$1;$2Þ; (1.1)

where

V ¼
1 0 0

0 c23 s23

0 's23 c23

0
BB@

1
CCA

c13 0 s13e
'i"

0 1 0

's13e
i" 0 c13

0
BB@

1
CCA

#
c12 s12 0

's12 c12 0

0 0 1

0
BB@

1
CCA; (1.2)

and we have used the standard notation cij ) cos!ij, sij )
sin!ij, and

1

Q ¼ Diagðe'i$1=2; e'i$2=2; 1Þ: (1.3)

The neutrino oscillation data, accumulated over many
years, allowed us to determine the parameters that drive the
solar and atmospheric neutrino oscillations,!m2

* ) !m2
21,

!12 and j!m2
Aj ) j!m2

31j ffi j!m2
32j, !23, with a rather high

precision (see, e.g., Ref. [1]). Furthermore, there were
spectacular developments in the last year in what concerns
the angle !13. In June 2011 the T2K Collaboration reported
[3] evidence at 2:5& for a nonzero value of !13.
Subsequently the MINOS [4] and Double Chooz [5] col-
laborations also reported evidence for !13 ! 0, although
with a smaller statistical significance. Global analysis of
the neutrino oscillation data, including the data from the
T2K and MINOS experiments, performed in Ref. [6],
showed that actually sin!13 ! 0 at + 3&. In March 2012
the first data of the Daya Bay reactor antineutrino experi-
ment on !13 were published [7]. The value of sin

22!13 was
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1This parametrization differs from the standard one. We use it
for ‘‘technical’’ reasons related to the fitting code we will
employ. Obviously, the standard one can be obtained as
Diagð1;ei'21 ;ei'31 Þ¼ei$1=2Q, with '21 ¼ $1 ' $2 and '31¼$1.
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Important Question for Model Building: 
 
How can CP be defined consistently in a theory with a discrete 
flavour symmetry? 



Problem 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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consider the group A4: 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented
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of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:
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In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

1

S
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(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten

19

(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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•  CP extends the group A4 and forbids this invariant??  
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How to define CP consistently 

overlooked in the literature 3.

The outline of the paper is as follows. In sec. 2, we define a generalised CP transfor-

mation and discuss its connection with the outer automorphism group. The implications of

a generalised CP transformation for the physical phases are discussed in sec. 3. In sec. 4,

we apply our general considerations to specific examples. In order to uniquely specify each

group, we denote it by SG(O,N) with O being its order and N , the number in the GAP [16]

SmallGroups catalogue [17]. In particular, we will discuss all groups of order less than 31

with a three-dimensional representation. Finally, we conclude in sec. 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [18] for an overview of discrete groups, which have been used

in the context of flavour symmetries.

2 Generalised CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group and

therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to higher

spin representations of the Lorentz group and continuous groups is straightforward. Let us

consider a scalar multiplet

� =
⇣

'R, 'P , '⇤
P , 'C , '⇤

C

⌘T
(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the discrete

group G. Note that � always contains the field and its complex conjugate. The discrete group

G acts on � as
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G�! ⇢(g)�, g 2 G. (2.2)

where ⇢ is a representation ⇢ : G ! GL(N,C), which is generally reducible. In fact ⇢(G) ⇢
U(N), since we are only considering unitary representations. The representation ⇢ decomposes
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A generalised CP transformation has to leave |@�|2 invariant and thus is of the form

�
CP�! U�⇤ (2.4)

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral groups

Dn and its double cover Qn [14; 15].

3

•  Consider the vector made up out of all real(R), pseudo-real (P) and 
complex (C) representations of a given model 

•  under the group G it transforms as   

overlooked in the literature 3.

The outline of the paper is as follows. In sec. 2, we define a generalised CP transfor-

mation and discuss its connection with the outer automorphism group. The implications of

a generalised CP transformation for the physical phases are discussed in sec. 3. In sec. 4,

we apply our general considerations to specific examples. In order to uniquely specify each

group, we denote it by SG(O,N) with O being its order and N , the number in the GAP [16]

SmallGroups catalogue [17]. In particular, we will discuss all groups of order less than 31

with a three-dimensional representation. Finally, we conclude in sec. 5.

For the convenience of the reader, we will briefly define all relevant group theoretical

notions in the text or in a footnote. More detailed knowledge can be gained from standard

group theory text books. See [18] for an overview of discrete groups, which have been used

in the context of flavour symmetries.

2 Generalised CP and the Outer Automorphism Group

In order to simplify the discussion, we will focus on finite discrete groups only. We do not

consider the transformation under the Lorentz group or any continuous symmetry group and

therefore restrict ourselves to scalar multiplets unless stated otherwise. An extension to higher

spin representations of the Lorentz group and continuous groups is straightforward. Let us

consider a scalar multiplet

� =
⇣

'R, 'P , '⇤
P , 'C , '⇤

C

⌘T
(2.1)

that contains fields in real(R), pseudo-real(P) and complex(C) representations of the discrete

group G. Note that � always contains the field and its complex conjugate. The discrete group

G acts on � as

�
G�! ⇢(g)�, g 2 G. (2.2)

where ⇢ is a representation ⇢ : G ! GL(N,C), which is generally reducible. In fact ⇢(G) ⇢
U(N), since we are only considering unitary representations. The representation ⇢ decomposes

in a block diagonal form

⇢ =

0

B

B

B

B

B

@

⇢R
⇢P

⇢⇤P
⇢C

⇢⇤C

1

C

C

C

C

C

A

. (2.3)

A generalised CP transformation has to leave |@�|2 invariant and thus is of the form

�
CP�! U�⇤ (2.4)

3Accidental CP symmetries have also been observed in scalar potentials in models based on dihedral groups

Dn and its double cover Qn [14; 15].

3

•  the (reducible) representation                                is assumed to be 
faithful and complex   
•  if not faithful then real symmetry group of theory is 
•   ρis homomorphism: ρ(a*b)=ρ(a)ρ(b)  

•  definition implies the existence of matrix W                     or   

⇢ : G ! U(N)

�

U�⇤

U⇢(g)⇤�⇤

⇢(g0)� = U⇢(g)⇤U�1�

CP g

g0 CP�1

Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation

matrices, because it generically interchanges representations, not only complex and pseudo-

real representations, but also real representations, which we will discuss later. If the repre-

sentation is real, i.e. ⇢ = ⇢⇤, there is always the trivial CP transformation � ! �⇤, which

acts trivially on the group. In the following, we will take ⇢ to be complex and faithful, i.e. ⇢

is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller

symmetry group isomorphic to G/ ker ⇢ and the restricted representation would be faithful.

Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently

⇢(g) = W⇢(g)⇤W�1, (2.5)

i.e. W exchanges the complex conjugate components of �. See sec. 4.1 and especially Eq. (4.3)

for a concrete example. Comparing first performing a group transformation and then per-

forming a CP transformation with the inverse order of operations and demanding that the

resulting transformation is contained in the symmetry group G of the theory, as shown in

Fig. 1, one finds the requirement that

U⇢(g)⇤U�1 2 Im⇢ ⌘ ⇢(G) , (2.6)

i.e. the CP transformation maps group elements ⇢(g) onto group elements ⇢(g0). We will

refer to this condition as consistency condition and denote models satisfying this condition

consistent. If the condition (2.6) is not fulfilled, the group G is not the full symmetry group

of the Lagrangian and one would have to consider the larger group, which closes under CP

transformations (2.6). We do not consider this case further and will assume that the groupG is

the full symmetry group of the Lagrangian. Hence, a generalised CP transformation preserves

the group multiplication, i.e. U⇢(g1g2)⇤U�1 = U⇢(g1)⇤U�1U⇢(g2)⇤U�1 and U ⇤U�1 = ,

and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =

µ(g1)µ(g2) 8g1,2 2 G, µ(g�1) = µ(g)�1, and µ(EG) = EH , where EG,H denotes the identity elements of G and

H, respectively.
5An automorphism µ of a group G is a bijective homomorphism µ : G ! G.
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real representations, but also real representations, which we will discuss later. If the repre-

sentation is real, i.e. ⇢ = ⇢⇤, there is always the trivial CP transformation � ! �⇤, which

acts trivially on the group. In the following, we will take ⇢ to be complex and faithful, i.e. ⇢

is injective. If ⇢ were not faithful then the theory would only be invariant under the smaller

symmetry group isomorphic to G/ ker ⇢ and the restricted representation would be faithful.

Note that Eq. (2.4) in combination with Eq. (2.1) implies the existence of a matrix W

with W 2 = 1 as well as �⇤ = W� and consequently
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and therefore is a homomorphism 4. Furthermore the CP transformation is bijective, since

U is unitary and therefore invertible. Hence, CP is an automorphism 5 of the group, as is

depicted in Fig. 2.

4A (group) homomorphism µ : G ! H is a mapping preserving the group structure, i.e. µ(g1g2) =
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Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G ! G of the group G.
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✓ : {0, ..., n� 1} ! Aut(G)

Inverse Direction: : Each automorphism u of G may 
be represented by such a matrix U. 

•   Construct group extended by automorphism u (un=id) 
  

(g1, z1) ? (g2, z2) = (g1✓z1(g2), z1 + z2)
•  u acts as conjugation within this group 

(E, 1) ? (g, 0) ? (E, 1)�1 = (u(g), 0)
•  Consider representation                                induced via  ⇢0 : G0 ! U(M) ⇢0(g, 0) = ⇢(g)

⇢(u(g)) = ⇢0(u(g), 0)

= ⇢0((E, 1) ? (g, 0) ? (E, 1)�1)

= ⇢0((E, 1))⇢0((g, 0))⇢0((E, 1))�1

= ⇢0((E, 1))W⇢(g)⇤W�1⇢0((E, 1))�1

•  automorphism u is 
represented by matrix 

U(u) = ⇢0((E, 1))W

Proof: 



CP vs. A4 

In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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that
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can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]
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that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that
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U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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Figure 1: CP definition.

with U being a unitary matrix, which is not necessarily block-diagonal as the representation
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In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘
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@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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Chapter 2. Discrete Symmetry Groups and Lepton Mixing

1

S
TS

T

ST2

TST

ST

STS

T2

T2S

TST2

T2ST

(a) Cayley Graph of A
4

. Figure 3: The A
4

symmetry of tetrahedron.

From these forms, it is found obviously that A
4

is isomorphic to �(12) ' (Z
2

⇥ Z
2

) o Z
3

,
which is explained in section 9.

They are classified by the conjugacy classes as

C
1

: {a
1

}, h = 1,
C

3

: {a
2

, a
3

, a
4

}, h = 2,
C

4

: {b
1

, b
2

, b
3

, b
4

, }, h = 3,
C

4

0 : {c
1

, c
2

, c
3

, c
4

, }, h = 3,

(67)

where we have also shown the orders of each element in the conjugacy class by h. There
are four conjugacy classes and there must be four irreducible representations, i.e. m

1

+
m

2

+ m
3

+ · · · = 4.
The orthogonality relation (11) requires

X

↵

[�↵(C
1

)]2 =
X

n

mnn2 = m
1

+ 4m
2

+ 9m
3

+ · · · = 12, (68)

for mi, which satisfy m
1

+ m
2

+ m
3

+ · · · = 4. The solution is obtained as (m
1

, m
2

, m
3

) =
(3, 0, 1). That is, the A

4

group has three singlets, 1, 10, and 100, and a single triplet 3,
where the triplet corresponds to (66).

Another algebraic definition of A
4

is often used in the literature. We denote a
1

= e,
a

2

= s and b
1

= t. They satisfy the following algebraic relations,

s2 = t3 = (st)3 = e. (69)

The closed algebra of these elements, s and t, is defined as the A
4

. It is straightforward
to write all of ai, bi and ci elements by s and t. Then, the conjugacy classes are rewritten
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(b) Geometrical interpretation of A
4

.

Figure 2.3: The symmetry group A
4

.The twelve group elements are connected by the generators S (red) and
T (blue). The picture 2.3b is taken from [88].

can define the semidirect product group N o' H via the multiplication rule

(n
1

, h
1

) ⇤ (n
2

, h
2

) = (n
1

'h
1

(n
2

), h
1

h
2

) for n
1,2 2 N and h

1,2 2 H. (2.35)

Note that there can be more than one semidirect product between two groups, but in the
following we will often drop the index ', as long as it is clear which group we are referring
to. (Another equivalent definition we will use is that a group G is a semidirect product of a
subgroup H and normal8 subgroup N if there exists a homomorphism G ! H which is the
identity on H and whose kernel9 is N.)

Let us present in some detail the case of the smallest group in Fig. 2.2, namely the
tetrahedral group A

4

. We will give the details for the other groups in the appendix. The group
A

4

may be written as A
4

⇠= (Z
2

⇥ Z
2

) o Z
3

where the Klein group N ⇠= Z
2

⇥ Z
2

is defined
by

⌦
S, X|X2 = S2 = E, XS = SX

↵
, the group H ⇠= Z

3

is defined by
⌦
T |T 3 = E

↵
and the

semidirect product is given by

'T (S) = TST�1 = XS, 'T (X) = TXT�1 = S. (2.36)

Note that the last relation allows one to replace one generator of N , e.g. X = T 2ST , and we
arrive at the standard presentation of A

4

:
⌦
S, T |S2 = T 3 = E, (ST )3 = E

↵
, (2.37)

that is represented graphically in Fig. 2.3a.
The other small groups in the tree shown in Fig. 2.2 can be represented in a similar way 10:

�(3n2) ⇠= (Zn ⇥ Zn) o Z
3

, �(6n2) ⇠= (Zn ⇥ Zn) o S
3

, Tn
⇠= Zn o Z

3

(2.38)

where S
4

⇠= �(24) and the defining homomorphisms are given in App. A.1. S
3

denotes the
group of permutations of three elements. It is in itself a semi-direct product S

3

⇠= Z
3

o Z
2

=⌦
r, a; r3 = a2 = E, ara�1 = r2

↵
and is not to be confused with the matrix defined in Eq. (2.27).

8A normal subgroup N of a group G, denoted by N C G, is a subgroup, which is invariant under conjugation
by an arbitrary group element of G, i.e. gNg�1 = N .

9The kernel of a representation ⇢ is defined by ker ⇢ = {g 2 G|⇢(g) = }.
10With respect to particle physics, �(3n2) has been studied in [89–92],T

7

has been studied in [93–95]and
�(6n2) has been studied in [88, 96].
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CP vs. A4 
" the ‚CP transformation‘ that is trivial with regard to A4 runs into 

trouble if one considers a non-trivial singlet                in addition 
to the triplet 

" if one would use                and                one finds that the 
invariant is mapped to sth. non-invariant 

encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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In terms of the subgroup Z3 = hT i, it decomposes in the direct sum of the representations 12
and 13 of Z3 with the group generator ⇢(T ) = ⇢2((T, id)). The automorphism u is represented

by the matrix U 0 = ⇢2((E, u)) and ⇢(g) ! ⇢(u(g)) = U 0⇢(g)U 0�1 and therefore the non-trivial

CP transformation belonging to the automorphism u is given by ⇢(g) ! ⇢(u(g)) = U⇢(g)⇤U�1

with U = U 0W = 2, as we have found above. Clearly the trivial automorphism corresponds

to (E, id) and is represented by U 0 = 2 or U = W .

4.2 A4
⇠= (Z2 ⇥ Z2) o Z3

⇠= SG(12, 3)

There is a complete classification of automorphism groups for the alternating groups An,

which is shown in Tab. 2a. Most of them have a very similar structure. We will discuss

the specific case of A4 =
⌦

S, T |S2 = T 3 = (ST )3 = E
↵

11 in detail. It is very important for

Z(Sn) Aut(Sn) Inn(Sn) Out(Sn)

n � 4, n 6= 6 Z1 Sn An Z2

n = 1, 2 Zn Z1 Z1 Z1

n = 3 Z3 Z2 Z1 Z2

n = 6 Z1 S6 o Z2 A6 Z2 ⇥ Z2

(a) Structure of the automorphism group of An

E T T 2 S

11 1 1 1 1

12 1 ! !2 1

13 1 !2 ! 1

3 3 0 0 -1

(b) Character Table of A4.

Table 2: Relevant group structure of the alternating groups An.

model building and serves as our first non-trivial example. As it can be seen in Tab. 2a,

only the identity element commutes with all other elements and the natural homomorphism

n : A4 ! Aut(A4) defined by n(g) = conj(g) is therefore injective. There is one non-trivial

outer automorphism u : (S, T ) ! (S, T 2). Here and in the following, we only give the action

of automorphisms on the generators of the group, which uniquely defines an automorphism.

The character table of A4 is given in Tab. 2b and it is easy to verify that the automorphism

u represents a symmetry of the character table, again interchanging the representations 12
and 13. Let us first discuss the case where we have only one real scalar field in the real

representation � ⇠ 31 using the Ma-Rajasekaran[23] basis:

⇢31
(S) = S3 ⌘

0

B

@

1 0 0

0 �1 0

0 0 �1

1

C

A

, ⇢31
(T ) = T3 ⌘

0

B

@

0 1 0

0 0 1

1 0 0

1

C

A

. (4.7)

In this basis both group generators are real (⇢(g)⇤ = ⇢(g) 2 Im⇢) and one might be tempted

to take U = 3 as this fulfils Eq. (2.6). However, the map derived from U = 3 via Eq. (2.8)

is not equal to u : (S, T ) ! (S, T 2), but the trivial automorphism idA4 , which is obviously

not outer and therefore does not lead to additional constraints on the couplings12. One also

11A4 has been introduced as flavour symmetry in the lepton sector in [23].
12Obviously it still acts non-trivially on the space-time symmetry group as well as possibly the gauge group.
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the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)
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� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =
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B

B
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@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1

C

C

C

A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =

0

B

B
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@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

1

C

C

C

A

, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

0

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

A

, T =

0
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@

1 0 0

0 !2 0

0 0 !

1
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A

(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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⇠ ! ⇠

if one does not want to extend the group one therefore has 
the options 

g 2 G

⇢(g)⇤ U⇢(g)⇤U�1 = ⇢(g0)

u(g) = g0 2 G

⇢
⇢�1

u : G ! G

Figure 2: The matrix U that appears in the definition of CP defines an automorphism

u : G ! G of the group G.

Indeed, the possible matrices U of Eq. (2.6) form a representation of the automorphism

group 6 Aut(G) of G, which we are showing in the following.
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U⇢(g)⇤U�1 = ⇢(u(g)) . (2.8)
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Vice versa, if u : G ! G is an automorphism, we can explicitly construct a matrix U in

the following way. We first extend G to a group G0 containing G as a normal subgroup and

u(g) = g0gg0�1 8g 2 G with g0 2 G0. This can be achieved as follows. Taking the order of u 7

to be ord(u) = n, we define the homomorphism

✓ : Zn = ({0, .., n� 1},+) ! Aut(G) : 1 ! ✓1 ⌘ u , (2.9)

which has a trivial kernel. This homomorphism thus defines the semi-direct product group
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automorphism ofG0 and we can obtain a matrix representation of u by the standard techniques

for finding matrix representations of groups, for example by using the computer algebra system

GAP [16] .

6The automorphism group Aut(G) is the set of all automorphisms of G with composition as group multi-

plication.
7The order of a group element u of G is given by the smallest n 2 with un = idG.
8An inner automorphism µh of a group G is an automorphism, which is represented by conjugation with

an element h 2 G, i.e. µh ⌘ conj(h) : g ! hgh�1. If an automorphism can not be represented by conjugation

with a group element, it is called an outer automorphism.
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to fulfil the consistency condition 

encounters this problem as soon as one considers contractions such as

(��)12
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1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘
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1 0 0

0 0 1

0 1 0

1
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A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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Note that complex VEVs of the 
type (1,z,z*) conserve this CP 



CP vs. A4 - Application 
� = (�1,�2,�3)

T ⇠ 3•  consider a triplet of Higgs doublets 

� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1

C

C

C

A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =

0

B

B

B

@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 3

1

C

C

C

A

, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
1

3

0

B

@

�1 2 2

2 �1 2

2 2 �1

1

C

A

, T =

0

B

@

1 0 0

0 !2 0

0 0 !

1

C

A

(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+

⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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•  there is one phase-dependent term in the potential 

It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘


⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

!


⇣

�†
1�2

⌘2
+

⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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•   the CP trafo                      would restrict the phase to be zero 

•  even for non-vanishing phase, the VEV configuration  
can be obtained. [Toorop et. al. 2011] 

•  Spontaneous CP restoration?? 
•  This can be understood if one considers the CP transformation 

•  this is a symmetry of the potential for any phase of λ5  
•  also the VEVs preserve the CP transformation 
•  therefore this CP is conserved in this case 

•  accidental CP transformations seem to be origin of ‚calculable phases‘ 

It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘

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⇣
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⇣
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!


⇣
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+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

= I (4.20)

and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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It can be easily checked that the generalised CP transformation � ! U3�⇤ acts as

I ⌘
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and thus does not give a restriction on the phase of �5. Note that the naive CP transformation

� ! �⇤ transforms the group invariant I into I⇤ and therefore restricts �5 to be real as was

e.g. done in Ref. [25]. However, we have seen that this naive CP transformation cannot

be consistently implemented on the Lagrangian level if there are complex representations,

unless it is either the trivial generalised CP transformation, idA4 , or the symmetry group

A4 is extended such that it is closed under this naive CP transformation. Therefore it is

inappropriate to call the phase of �5 a CP phase. This also explains an observation made in

Ref. [24], where it was shown that even for arg �5 6= 0 the VEV configuration

h�i = V (1, 1, 1), h�i = V (1, 0, 0) V 2 , (4.21)

which of course respects both, the trivial as well as the non-trivial, generalised CP transfor-

mations, can be obtained without fine-tuning. This would have been somewhat surprising, as

usually symmetry conserving solutions cannot be obtained from explicitly symmetry breaking

potentials. However, the phase of �5 does not break the consistent definition of generalised

CP, i.e. does not violate condition (2.6), as does the VEV configuration (4.21), therefore

everything is consistent.

4.3 T 0 ⇠= SG(24, 3)

The group T 0 =
⌦

S, T |S4 = T 3 = (ST )3 = E
↵ ⇠= SL(2, 3) 15, is also an important group in

the context of CP violation [6; 7]. It has two elements Z(T 0) = {E,S2} ⇠= Z2 that commute

with all group elements and therefore Inn(T 0) ⇠= T 0/Z(T 0) ⇠= A4. There is one non-trivial

outer automorphism (up to inner automorphisms) u : (S, T ) ! (S3, T 2). Therefore the

automorphism structure can be summarised as:

Z(T 0) ⇠= Z2 Aut(T 0) ⇠= S4 (4.22)

Inn(T 0) ⇠= A4 Out(T 0) ⇠= Z2

A non-trivial CP transformation therefore has to be a representation of u in the sense of

Eq. (2.6). Let us now see how it is represented for the various representations of T 0.

There is a faithful pseudo-real representation

21 : S = A1, T = !A2 (4.23)

with �†
2S�2 = S⇤ and �†

2T�2 = T ⇤ and the two faithful complex representations

22 : S = A1 T = !2A2; 23 : S = A1, T = A2 (4.24)

15T 0 has been first discussed in a particle physics context in [32].
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� ! U3�⇤ = U3�. Adding the generator U to A4 results in S4 because A4 can be embedded

in Aut(G).

Summarising our discussion, there is only one non-trivial CP transformation (up to inner

automorphisms) acting on the reducible representation � ⇠ 11 � 12 � 13 � 3, which takes

the form � ! U�⇤ with

U =
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 U3

1
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C
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A

. (4.14)

The trivial CP transformation corresponding to the trivial automorphism idA4 is determined

by � ! U�⇤ with

U =
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0 1 0 0
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, (4.15)

which is equivalent to the transformation � ! � as can be easily checked. There are no other

CP transformations (up to inner automorphisms).

Since this case is of some relevance to model building, let us dwell on it a bit more and

repeat the discussion for the basis

S =
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�1 2 2

2 �1 2
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(4.16)

first used by Altarelli and Feruglio[28]. Here the group elements are complex but the Clebsch-

Gordon coe�cients are real. The unique result of Eq. (2.6) is U = 3 up to inner automor-

phisms. This basis is therefore a CP basis, as defined in Eq. (2.21). Note that in this

basis

(��)12
= (�2�2 + �1�3 + �3�1), (��)13

= (�3�3 + �1�2 + �2�1) (4.17)

and thus

(��)12
! [(��)12

]⇤ ⇠ 13. (4.18)

as it should be.

Let us look at a physical situation where a certain confusion about the definition of CP

can be alleviated by our definition14. If one considers the potential for one electroweak Higgs

doublet transforming as 31 denoted by � = (�1,�2,�3)T in the basis (4.7), there is one

potentially complex coupling in the potential [23; 24; 26]

�5 (�†�)31

⇣

�†�
⌘

31
+ h.c. = �5



⇣

�†
1�2

⌘2
+
⇣

�†
2�3

⌘2
+
⇣

�†
3�1

⌘2
�

+ h.c.. (4.19)

14For a related discussion, see [29–31].
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encounters this problem as soon as one considers contractions such as

(��)12
=

1p
3

�

�1�1 + !2�2�2 + !�3�3
�

(4.8)

which transform under this ”CP” � ! U�⇤ = � as

(��)12
! (��)12

⇠ 12 (4.9)

which is in conflict with the expectation that CP should involve complex conjugation such

that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.10)

Just imagine that the theory contains a real scalar triplet � ⇠ 3 and a singlet ⇠ ⇠ 13. If

one defines CP as � ! � and ⇠ ! ⇠⇤ then the invariant (��)12
⇠ under CP is mapped to

(��)12
⇠⇤, which is not invariant under the group and it is forbidden by the combination of

A4 and this definition of CP. Looking at this definition of CP, i.e. � ! �⇤ and ⇠ ! ⇠⇤, we

can easily check that it does not fulfil the consistency condition in Eq. (2.6) and therefore

the true symmetry group of the Lagrangian is not A4, but the group generated by A4 and

this CP transformation. However, it has been (implicitly) used in a number of works [24–

26]13 without properly taking into account the enlarged symmetry group with its additional

restrictions on the Lagrangian.

If we instead use the non-trivial solution of Eq. (2.6), which has been discussed in [12]

U = U3 ⌘

0

B

@

1 0 0

0 0 1

0 1 0

1

C

A

(4.11)

that corresponds to the outer automorphism u : (S, T ) ! (S, T 2) we immediately see that

(��)12
! [(��)12

]⇤ ⇠ 13. (4.12)

Note that this is the only non-trivial definition of CP (up to inner automorphisms) in any

theory that involves the complex representations, since the outer automorphism group is Z2.

Using Eq. (2.6), we can immediately see that the solution U = 3 for ⇢ ⇠ 3 leads to

the trivial automorphism idA4 (up to inner automorphism), when it is extended to the other

representations. Let us consider the vector � = (⇠, ⇠⇤,�)T with ⇠ ⇠ 13 and � ⇠ 31 which

transforms as

⇢(S) = diag(1, 1, S3) ⇢(T ) = diag(!,!2, T3) (4.13)

and clearly fulfils ⇢(S)⇤ = ⇢(S) 2 Im⇢ and ⇢(T )⇤ /2 Im⇢. We are therefore forced to use

U = diag(1, 1, U3), which gives U⇢(T )⇤U�1 = ⇢(T 2) 2 Im⇢ and U⇢(S)⇤U�1 = ⇢(S) 2 Im⇢

and represents the outer automorphism u : (S, T ) ! (S, T 2). The only consistent (meaning

satisfying condition (2.6)) non-trivial CP transformation in this theory is thus ⇠ ! ⇠⇤ and

13The discussion of CP in Ref. [24] has been corrected in Ref. [27].
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Geometric CP violation in Δ (27) 

E BABA ABA A BAB AB A2 B2 B BA2BAB AB2ABA

11 1 1 1 1 1 1 1 1 1 1 1

12 1 ! !2 1 ! !2 1 ! !2 1 1

13 1 !2 ! 1 !2 ! 1 !2 ! 1 1

14 1 ! ! !2 !2 !2 ! 1 1 1 1

15 1 !2 1 !2 1 ! ! ! !2 1 1

16 1 1 !2 !2 ! 1 ! !2 ! 1 1

17 1 !2 !2 ! ! ! !2 1 1 1 1

18 1 1 ! ! !2 1 !2 ! !2 1 1

19 1 ! 1 ! 1 !2 !2 !2 ! 1 1

3 3 . . . . . . . . 3! 3!2

3⇤ 3 . . . . . . . . 3!2 3!

Table 3: Character table of �(27). The first line indicates representatives of the di↵erent

conjugacy classes. Zeroes in the character table are denoted by a dot . and ! is the third root

of unity ! = e2⇡i/3. The arrows illustrate the generators of the outer automorphism group

u1(blue) and u2(red).

and

U(u2) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ =

0

B

@

!2 0 0

0 0 !

0 !2 0

1

C

A

. (4.47)

All automorphisms can be generated from the generators ui by composition and the repre-

sentation matrices U(aut) may be obtained with the help of Eq. (2.17). We have therefore

found a complete classification of possible CP transformations that may be implemented in a

model based on �(27). There are 48 outer automorphisms generated by u1 and u2 that may

in principle give physically distinct CP transformations with distinct physical implications,

however as a model that is invariant under CP will also be invariant under CPn it is su�cient

to consider which subgroups of the automorphism groups is realised.

It is instructive to look at some of these subgroups in detail. Let us for example consider

the CP transformation � ! �⇤ or U(h1) = 3 that corresponds to the outer automorphism

h1 : (A,B) ! (A,B2), which can be expressed in terms of the generators as h1 = u1 � u22 �
u�1
1 � u2 � u�1

1 � u�1
2 � u�1

1 � conj(A)�1 � u�1
1 . This outer automorphism squares to one and

therefore generates a Z2 subgroup of the automorphism group. Contrary to the situation

we have encountered before, where the outer automorphism group was a Z2, this is not

the only solution. As a further example we may consider the Z2 subgroup generated by

u1 � u22 � u
�1
1 � u2 � u�1

1 � u�2
2 with h2 : (A,B) ! (ABA,B) which according to Eq. (2.17) is

represented by

U(h2) =

0

B

@

! 0 0

0 0 1

0 1 0

1

C

A

. (4.48)
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For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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automorphism group generated by 



What are calculable phases? 

•  the potential only contains one phase dependent term 

•  if coupling λ4 multiplying I is positive, the global minimum is at 
     (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  if coupling λ4 is negative, the global minimum is at  
       (or  a configuration that can be obtained by acting on this vacuum with a group element) 

•  These phases do not depend on potential parameters! 
•  can this be used to predict (leptonic) CP phases? 
•  can they be understood in terms of generalized CP? 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation

 

H

H⇤

!

= U

 

H⇤

H

!

with U =

 

0 Ũ

Ũ⇤ 0

!

, Ũ =

0

B

@

0 0 !2

0 1 0

! 0 0

1

C

A
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I ⌘ (H†
1H2)(H

†
1H3) + (H†

2H3)(H
†
2H1) + (H†

3H1)(H
†
3H2)
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This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP
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⇢(A) =

0

@
0 1 0
0 0 1
1 0 0

1

A ⇢(B) =

0

@
1 0 0
0 ! 0
0 0 !2

1

A

•  consider again a triplet of Higgs doublets 
    which transforms as 



Potential Dependence of Phases 
"   in general you expect two different kinds of vacua of a CP 

conserving potential 
" either VEV is real, conserves CP and phase does not depend 

on potential parameters 
" or VEV is complex, breaks CP and phase depends on 

potential parameters 
 

invariant under ' ! '⇤
' = Aei↵

all parameters real 

V = m2
1'

⇤'+m2
2('

2
+ '⇤2

) + �1('
⇤')2 + �2('

4
+ '⇤4

)

= m2
1A

2
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2A
2
cos 2↵+ �1A

4
+ �2A

4
cos 4↵

Example: 

cos

2 ↵ =

2�2m2
1 + �1m2

2 � 2�2m2
2

4�2m2
1

A =
m1p

2
p
2�2 � �1

A = �
p

�m12 � 2m22p
2
p
�1 + 2�2

↵ = 0



What are calculable phases? 
•  The vacuum of the form                                leaves invariant the CP 

transformation 

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i
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3
(H†

iHi)
2 +

X

i 6=j

(H†
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†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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H ! ⇢(B2)H⇤ =

0

@
1 0 0
0 !2 0
0 0 !

1

AH⇤

•  which is a symmetry of I+I* 
•  no surprise there, CP symmetric potential has CP symmetric ground 

state 
•  for the other solution                           there is no group element that 

leaves H invariant 
•  this was interpreted as geometrical CP violation 

hHi = ⇢(g)hHi⇤

We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by
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2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.
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Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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Ũ⇤ 0

!

, Ũ =
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We investigate the possibility of having spontaneous T violation arising from complex vacuum expectation values with 
calculable phases, assuming geometrical values, entirely determined by the symmetry of the scalar potential. 

It is well known [1 ] that in a theory with spon- 
taneous T violation, the breaking of this discrete sym- 
metry originates in phases coming from complex vac- 
uum expectation values (VEV's) of neutral scalars. In 
general, these phases depend on the values of the ar- 
bitrary parameters of the scalar potential. In this paper, 
we analyse the possibility of having these vacuum 
phases as "calculable quantities", assuming geometri- 
cal values entirely determined by some extra symme- 
try present in the scalar potential. We are particularly 
interested in investigating whether VEV's of this type 
can indeed cause a genuine breaking of T invariance. 
At this point it is worthwhile to dwell on the motiva- 
tion for investigating the above question. Obviously, 
having a calculable T-violating phase would represent 
one less free parameter in the theory. The desirability 
of having "geometrical values" for T-violating vacuum 
angles stems also from a phenomenological reason. 
The recently obtained constraints on the quark mix- 
ing angles [2] suggest that for a not very heavy top 
quark mass the Kobayashi-Maskawa (KM) phase 
(6KM) could be rather large [3]. However, a large val- 
ue for t~KM is hard to understand within the class of 
models which attempt to express t~KM , together with 
the other quark mixing angles, in terms of quark mass 
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ratios. Typically [4], one obtains too small values for 
tSKM , incompatible with the observed strength of CP 
breaking. The hope is then that in the class of theories 
considered here ~iKM can be both calculable and natu- 
rally large. 

Next, we shall search for a minimal model with cal- 
culable T-violating vacuum angles. We restrict our- 
selves to the Glashow-Weinberg-Salam model with n 
scalar multiplets ¢i transforming as SU(2) doublets. 
We will start by deriving some general conditions 
which have to be satisfied in order to have a T-invari- 
ant vacuum. Since we will consider theories which 
may be invariant under linear transformations which 
mix the various ~i's, we will assume the most general 
T transformation, defined by: 

T~i T -  I = Ui]¢~ / . (1) 

If the vacuum is T-invariant, then the following rela- 
tion can be easily derived: 

Ui~(Ol~]lO)* = (01~il0). (2) 

Given a particular set of VEV's, the simplest way of 
investigating whether they correspond to a T-breaking 
solution, is to construct an unitary matrix U satisfying 
eq. (2). If  there is no matrix Uwhich satisfies eq. (2) 
and corresponds at the same time to a symmetry of 
the lagrangian, namely: 
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Calculable Phases as a Result of an 
accidental generalized CP transformation 

" every automorphism corresponds to a generalized CP 
transformation 
" automorphism group of Δ (27) is of order 432, 

generated by 

"   this allows one to search for CP transformation that 
leaves                           invariant and gives a real λ4  

" indeed there is such a CP transformation: 

 

For usual spontaneous breaking of CP one would expect the phases of the fields to depend

on potential parameters and therefore not be determined by the group symmetry structure.

The only way to get ’calculable phases’, i.e. phases that do not depend on potential para-

meters, seems to be if this CP breaking vacua is connected to an additional (accidental) CP

symmetry of the potential as is the case for �(27) (see sec. 4.4). For T 0, however, there cannot

be such an additional generalised CP besides the CP transformations which are connected

to the unique non-trivial CP transformation by some group transformation, since the outer

automorphism group is Z2.

4.4 �(27) ⇠= (Z3 ⇥ Z3) o Z3
⇠= SG(27, 3)

The group �(27) =
⌦

A,B|A3 = B3 = (AB)3 = E
↵

21 is another interesting group from the

standpoint of CP violation. Its automorphism structure is quite involved. The centre of

the group is isomorphic to Z3 and generated by the group element X = A2BAB2 with

conj(X) = id and the inner automorphism group has the structure Z3 ⇥ Z3. The outer

automorphism group is generated by

u1 : (A,B) ! (ABA2, B2AB) , u2 : (A,B) ! (ABAB,B2) . (4.41)

It is isomorphic to GL(2, 3), i.e. the general linear group of 2 ⇥ 2 matrices over the field

Z3. The multitude of outer automorphisms can be traced back to the various symmetries

of the character table shown in Tab. 3 that are due to the fact that there are so many

one-dimensional representations. Together with the inner automorphisms these generators

generate the full automorphism group, which is of order 432. In summary the automorphism

structure presents itself as:

Z(�(27)) ⇠= Z3 Aut(�(27)) ⇠= (((Z3 ⇥ Z3)oQ8)o Z3)o Z2 (4.42)

Inn(�(27)) ⇠= Z3 ⇥ Z3 Out(�(27)) ⇠= GL(2, 3) .

The outer automorphism u1 acts on the representations as

12 $ 14, 13 $ 17, 16 $ 18, 3 $ 3⇤ (4.43)

where e.g. 12 ! 14 is to be read as ⇢14
= ⇢12

� u1 etc., and the outer automorphism u2
acts as

12 ! 19 ! 18 ! 13 ! 15 ! 16 ! 12 (4.44)

From this it is trivial to determine the representations of the automorphisms for the one-

dimensional representations. Let us therefore focus on the three dimensional representation

3 generated by

⇢(A) = T3, ⇢(B) = diag(1,!,!2). (4.45)

The two generators of the outer automorphism group act on � ⇠ (3,3⇤) as

U(u1) =

 

Ũ 0

0 Ũ⇤

!

with Ũ =
1p
3

0

B

@

!2 ! 1

! !2 1

1 1 1

1

C

A

(4.46)

21�(27) has been first used in the lepton sector in [35].
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Ũ 0

0 Ũ⇤
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21�(27) has been first used in the lepton sector in [35].
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We will use this matrix later on. Let us now use this machinery to tackle a physical question,

namely the so-called geometrical CP violation. ’Geometrical’ CP-violation [4] denotes the

following: If one considers a triplet of Higgs doublets H = (H1, H2, H3) ⇠ 3 the only phase

dependent term in the scalar potential is given by

I ⌘
X

i 6=j 6=k

(H†
iHj)(H

†
iHk). (4.49)

Let us now investigate how the term transforms under the two generators u1 and u2 of the

outer automorphism group. We find

CPu1 [I] = �1

3
I⇤ +

2

3
I +

X

i

1

3
(H†

iHi)
2 +

X

i 6=j

(H†
iHi)(H

†
jHj), CPu2 [I] = !2I (4.50)

and we thus find the invariant combinations

CPu1 [I � I⇤] = I � I⇤ CPu3
2
[I] = I (4.51)

Clearly invariance under u1 requires further non-trivial relations among the other couplings

in the scalar potential which do not depend on phases and thus do not concern us here.

Let us investigate the case where the theory is invariant under h1 which corresponds to

the ’usual’ CP transformation � ! �⇤ and forces the coupling �4 multiplying I to be real.

For �4 < 0 one finds the global minimum

hHi = vp
3
(1,!,!2) (4.52)

and for �4 > 0 one finds

hHi = vp
3
(!2, 1, 1). (4.53)

Both VEV configurations correspond to generalised CP transformations H ! UH⇤. For

�4 < 0 it is for example given by U = ⇢(B2) which is clearly part of �(27) and therefore

up to an inner automorphism corresponds to h1. The phases of the VEVs thus do not imply

spontaneous CP violation. For �4 > 0 the VEV configuration leaves the CP transformation

corresponding to the outer automorphism h2 given in Eq. (4.48) invariant. However, there is

something that is much harder to understand about this VEV configuration: the generalised

CP symmetry corresponding to this configuration is not a symmetry of the Lagrangian. It

would be a symmetry if the phase of �4 would be the same as !, as CPh2 [I] = !I⇤. So here

we are confronted with the puzzling situation where a VEV configuration is more symmetric

than the original Lagrangian. This is also denoted as calculable phases.

This conundrum can be solved if there is a generalised CP trafo that is left invariant by

the VEV and is compatible with �4 being real. Since we have a complete classification of

all generalised CP transformations we can answer this question and indeed we find the CP

transformation
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which represents the outer automorphism u : (A,B) ! (AB2AB,AB2A2) via Eq. (2.8),

where u = u32 � conj(A) and that gives

CPu[hHi] = hHi for hHi = vp
3
(!2, 1, 1), CPu[I] = I (4.55)

Note that this CP transformation acts as H ! ŨH, which is not something you would

naively expect, but it is an outer automorphism and therefore it is justified to call it a

CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations

12 $ 13, 15 $ 19, 16 $ 18, (4.56)

making the ”CP-character” of the transformation more apparent. An alternative independent

explanation of geometric CP violation has been given in Ref. [31].

4.5 Z9 o Z3
⇠= SG(27, 4)

Similarly to �(27), the group Z9 o Z3 = SG(27, 4) =
⌦

A,B|A9 = B3 = BAB2A2 = E
↵

22 has

a more complicated automorphism group structure. The group is the semi-direct product

of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by

BAB�1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,

the inner automorphism group has the structure Z3 ⇥ Z3. The outer automorphism group is

generated by

u1 :(A,B) ! (AB,B2A6B2A3) (4.57)

u2 :(A,B) ! (AB4AB4A6, B2A6B2A6) .

and the structure of the automorphism group may be summarised as

Z(G) ⇠= Z3 Aut(G) ⇠= ((Z3 ⇥ Z3)o Z3)o Z2 (4.58)

Inn(G) ⇠= Z3 ⇥ Z3 Out(G) ⇠= S3 .

There is a faithful three dimensional representation given by

⇢(A) =

0

B

@

0 1 0

0 0 !2

!2 0 0

1

C

A

, ⇢(B) =

0

B

@

!2 0 0

0 1 0

0 0 !

1

C

A

. (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as

U(u1) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ = diag(1, 1,!2) (4.60)

22The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

Ref. [36].
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CP transformation. Furthermore, this becomes apparent when one looks at how the outer

automorphism u acts on representations. It interchanges the one-dimensional representations
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explanation of geometric CP violation has been given in Ref. [31].
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↵
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a more complicated automorphism group structure. The group is the semi-direct product

of Z9 generated by A (with A9 = E) with Z3 generated by B (with B3 = E) defined by

BAB�1 = A7. The centre of the group is isomorphic to Z3 and generated by A3. Hence,

the inner automorphism group has the structure Z3 ⇥ Z3. The outer automorphism group is

generated by

u1 :(A,B) ! (AB,B2A6B2A3) (4.57)

u2 :(A,B) ! (AB4AB4A6, B2A6B2A6) .

and the structure of the automorphism group may be summarised as

Z(G) ⇠= Z3 Aut(G) ⇠= ((Z3 ⇥ Z3)o Z3)o Z2 (4.58)

Inn(G) ⇠= Z3 ⇥ Z3 Out(G) ⇠= S3 .

There is a faithful three dimensional representation given by

⇢(A) =

0

B

@

0 1 0

0 0 !2

!2 0 0

1

C

A

, ⇢(B) =

0

B

@

!2 0 0

0 1 0

0 0 !

1

C

A

. (4.59)

The generators of the outer automorphisms can be obtained in the same way as before and

act on (3,3⇤) as

U(u1) =

 

0 Ũ

Ũ⇤ 0

!

with Ũ = diag(1, 1,!2) (4.60)

22The possibility of having Z9 o Z3 as a flavour group in the lepton sector has been first mentioned in

Ref. [36].

21



Calculable Phases as a Result of an 
accidental generalized CP transformation 

" it seems that geometric CP violation can always be 
explained as the result of an accidental generalized CP 
symmetry of the potential 

"   a symmetric potential can have a symmetric ground 
state 
" phases are dictated by accidental CP symmetry 
" explains the independence from potential parameters 

" this setup might still be interesting for phenomenlogy: 
" if accidental symmetry only of potential, not of 

Yukawas, it can be used to predict phases etc. 

" need groups with large outer automorphism group 



Conclusions 

" Consistency Conditions should be kept in mind when 
constructing models that contain CP and Flavour 
Symmetries 

" generalized CP transformations may be interpreted as 
furnishing a representation of the automorphism 
group 

" geometrical CP violation seems to be a consequence of 
(accidental) generalized CP symmetries of the potential 

" maybe automorphisms may be used in model building 
more generally 


