## CP and Discrete Flavour Symmetries

based on JHEP 1304 (2013) 122 [arXiv:1211.6953] with Manfred Lindner (HD) and Michael A. Schmidt (Melbourne)

Planck 2013, Bonn
Martin Holthausen
Max-Planck-Institut für Kernphysik
. . Heidelberg


## Lepton mixing from discrete groups



residual symmetry of $\mathrm{M}_{\nu}$

$$
\rho\left(g_{\nu}\right)^{T} M_{\nu} \rho\left(g_{\nu}\right)=M_{\nu}
$$

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{e}}=\langle\mathrm{T}\rangle=\mathrm{Z}_{3} \\
& \rho(T)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{G}_{\nu}=\langle\mathrm{S}, \mathrm{U}\rangle=\mathrm{Z}_{2} \times \mathrm{Z}_{2} \\
\rho(S)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \rho(U)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

$\left(Z_{2} \times Z_{2}\right.$ most general choice if mixing angles do not depend on masses \& Majorana $\nu \mathrm{s}$ )

$$
\Omega_{\nu}^{\dagger} \rho\left(g_{\nu}\right) \Omega_{\nu}=\rho\left(g_{\nu}\right)_{\operatorname{diag}}
$$ mixing matrix determined from symmetry up to interchanging of rows/columns and diagonal phase matrix

tri-bimaximal mixing (TBM)

$$
\mathrm{G}_{\nu}=\langle\mathrm{S}, \mathrm{U}\rangle=\mathrm{Z}_{2} \mathrm{x} \mathrm{Z}_{2}
$$

misaligned non-commuting symmetries lead to

$$
\Omega_{e}^{\dagger} \rho\left(g_{e}\right) \Omega_{e}=\rho\left(g_{e}\right)_{d i a g}
$$

## Since it worked so nicely last time...


use discrete symmetry groups to predict leptonic CP phase(s)

## CP Phase from Discrete Groups

- Take smallish group $\left(\mathrm{A}_{4}, \mathrm{~S}_{4}\right.$, $\mathrm{T}^{\prime}, \ldots$. ) and assume $\Theta_{13}$ is generated at NLO
- TM1, TM2,... [e.g. King, Luhn 13]
- Impose CP on Lagrangian and break it spontaneously. [Lee 73,
 Branco 80]
- Can complex Clebsch-Gordon coefficients be the origin of CP violation?


## CP Phase from Discrete Groups

- Take smallish group $\left(\mathrm{A}_{4}, \mathrm{~S}_{4}\right.$, $\mathrm{T}^{\mathbf{}}, \ldots .$. ) and assume $\Theta_{13}$ is generated at NLO
- TM1, TM2,... le.g. King, Luhn 13]
- Impose CP on Lagrangian and


Mu-Chun Chen ${ }^{1, *}$ and K.T. Mahanthappa ${ }^{2, \dagger}$
${ }^{1}$ Department of Physics $\mathcal{G}$ Astronomy, University of California, Irvine, CA 92697-4575, USA
${ }^{2}$ Department of Physics, University of Colorado at Boulder, Boulder, CO 80309-0390, USA

## Abstract

We propose the complex group theoretical Clebsch-Gordon coefficients as a novel origin of CP violation. This is manifest in our model based on $\mathrm{SU}(5)$ combined with the $T^{\prime}$ group as the family symmetry. The complex CG coefficients in $T^{\prime}$ lead to explicit CP violation which is thus geometrical in origin. The predicted CP violation measures in the quark sector are consistent with the current experimental data. The corrections due to leptonic Dirac CP violating phase gives the experimental best fit value for the solar mixing angle, and we also gets the right amount of the baryonic asymmetry.

## CP Phase from Discrete Groups

- Take smallish group $\left(\mathrm{A}_{4}, \mathrm{~S}_{4}\right.$, $\mathrm{T}^{\prime}, \ldots$. ) and assume $\Theta_{13}$ is generated at NLO
- TM1, TM2, ... [e.g. King, Luhn 13]
- Impose CP on Lagrangian and



## CP Phase from Discrete Groups

- Take smallish group $\left(\mathrm{A}_{4}, \mathrm{~S}_{4}\right.$, $\mathrm{T}^{\prime}, \ldots$. ) and assume $\Theta_{13}$ is generated at NLO
- TM1, TM2,... [e.g. King, Luhn 13]
- Impose CP on Lagrangian and


Group Theoretical Origin of CP Violation

## PHYSICAL REVIEW D 86, 113003 (2012)

Geometrical CP viola

Fakultät für Physik, Tech

Departamento de Física and Centro Universidade Técnica

We This is comple CP vio due to and we

Fakultät für Physik, Tech

We consider in detail the non ing as an irreducible triplet of spontaneously leads to a vacuur geometrical CP violation. Then are consistent with the symmet in the potential can preserve th

## A supersymmetric $\boldsymbol{S U}(\mathbf{5}) \times \boldsymbol{T}^{\prime}$ unified model of flavor with large $\boldsymbol{\theta}_{13}$

Aurora Meroni, ${ }^{1, *}$ S. T. Petcov, ${ }^{1,2, \dagger}$ and Martin Spinrath ${ }^{1, *}$<br>${ }^{1}$ SISSA/ISAS and INFN, Via Bonomea 265, I-34136 Trieste, Italy<br>${ }^{2}$ Kavli IPMU, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan (Received 12 September 2012; published 3 December 2012)

We present a SUSY $S U(5) \times T^{\prime}$ unified flavor model with type I seesaw mechanism of neutrino mass generation, which predicts the reactor neutrino angle to be $\theta_{13} \approx 0.14$ close to the recent results from the Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino mixing angles, which are compatible with the existing data. The $T^{\prime}$ breaking leads to tribimaximal mixing in the neutrino sector, which is perturbed by sizeable corrections from the charged lepton sector. The model exhibits geometrical $C P$ violation, where all complex phases have their origin from the complex Clebsch-Gordan coefficients of $T^{\prime}$. The values of the Dirac and Majorana $C P$ violating phases are predicted. For the Dirac phase in the standard parametrization of the neutrino mixing matrix we get a value close to $90^{\circ}: \delta \cong \pi / 2-0.45 \theta^{c} \cong 84.3^{\circ}, \theta^{c}$ being the Cabibbo angle. The neutrino mass spectrum can be with normal ordering ( 2 cases) or inverted ordering. In each case the values of the three light neutrino masses are predicted with relatively small uncertainties, which allows one to get also unambiguous predictions for the neutrinoless double beta decay effective Majorana mass

## CP Phase from Discrete Groups

- Take smallish group $\left(\mathrm{A}_{4}, \mathrm{~S}_{4}\right.$, $\mathrm{T}^{\mathbf{k}}, \ldots .$. ) and assume $\Theta_{13}$ is generated at NLO
- TM1, TM2,... le.g. King, Luhn 13]

- Impose CP on Lagrangian and

Group Theoretical Origin of CP Violation

## PHYSICAL REVIEW D 86, 113003 (2012)

A supersymmetric $\boldsymbol{S U}(\mathbf{5}) \times \boldsymbol{T}^{\prime}$ unified model of flavor with large $\boldsymbol{\theta}_{13}$

Aurora Meroni, ${ }^{1, *}$ S. T. Petcov, ${ }^{1,2, \dagger}$ and Martin Spinrath ${ }^{1, \#}$<br>${ }^{1}$ SISSA/ISAS and INFN, Via Bonomea 265, I-34136 Trieste, Italy<br>${ }^{2}$ Kavli IPMU, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan<br>(Received 12 September 2012; published 3 December 2012)

We present a SUSY $S U(5) \times T^{\prime}$ unified flavor model with type I seesaw mechanism of neutrino mass generation, which predicts the reactor neutrino angle to be $\theta_{13} \approx 0.14$ close to the recent results from the Daya Bay and RENO experiments. The model predicts also values of the solar and atmospheric neutrino

## Important Question for Model Building:

## How can CP be defined consistently in a theory with a discrete flavour symmetry?

## Problem

consider the group A4:

$$
A_{4}=\left\langle S, T \mid S^{2}=T^{3}=(S T)^{3}=E\right\rangle
$$

|  | $E$ | $T$ | $T^{2}$ | $S$ |
| :---: | :---: | :---: | :---: | :---: |
| $\underline{\mathbf{1}}_{\mathbf{1}}$ | 1 | 1 | 1 | 1 |

$$
\text { consider a triplet } \chi \sim \underline{3} \text { transforming as }
$$

$$
\rho_{\mathbf{3}_{1}}(S)=S_{3} \equiv\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \rho_{\mathbf{3}_{\mathbf{1}}}(T)=T_{3} \equiv\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

| $\underline{3}$ | 3 | 0 | 0 | -1 |
| :--- | :---: | :---: | :---: | :---: |

and a non-trivial singlet $\xi \sim \underline{\mathbf{1}}_{\mathbf{3}}\left(\underline{\underline{\mathbf{1}}}_{\mathbf{3}}(S)=1 \quad \rho_{\mathbf{1}_{\mathbf{3}}}(T)=\omega^{2}\right)$ under the CP transformation $\chi \rightarrow \chi^{*} \quad \xi \rightarrow \xi^{*}$ the A4 invariant

$$
I=\xi\left(\chi_{1} \chi_{1}+\omega^{2} \chi_{2} \chi_{2}+\omega \chi_{3} \chi_{3}\right) \sim \underline{\mathbf{1}}_{\mathbf{1}}
$$

is mapped to sth. not invariant:

$$
C P[I]=\xi^{*}\left(\chi_{1}^{*} \chi_{1}^{*}+\omega^{2} \chi_{2}^{*} \chi_{2}^{*}+\omega \chi_{3}^{*} \chi_{3}^{*}\right) \sim \underline{\mathbf{1}}_{\mathbf{2}}
$$

- CP extends the group A4 and forbids this invariant??
- Is is possible to impose CP without enlarging the group?


## How to define CP consistently

- Consider the vector made up out of all real(R), pseudo-real ( P ) and complex (C) representations of a given model

$$
\phi=\left(\begin{array}{lllll}
\varphi_{R}, & \varphi_{P}, & \varphi_{P}^{*}, & \varphi_{C}, & \varphi_{C}^{*}
\end{array}\right)^{T}
$$

- under the group G it transforms as $\phi \xrightarrow{G} \rho(g) \phi, \quad g \in G$.
- the (reducible) representation $\rho: G \rightarrow U(N)$ is assumed to be faithful and complex
- if not faithful then real symmetry group of theory is $G / \operatorname{ker} \rho$
- $\quad \rho$ is homomorphism: $\rho\left(\mathrm{a}^{*} \mathrm{~b}\right)=\rho(\mathrm{a}) \rho(\mathrm{b})$
- definition implies the existence of matrix $\mathbb{W} \phi^{*}=W \phi$ or

$$
\rho(g)^{*}=W \rho(g) W^{-1}
$$

$P: \varphi(t, \vec{x}) \rightarrow \varphi(t,-\vec{x})$
$C: \varphi(t, \vec{x}) \rightarrow \varphi^{*}(t, \vec{x})$

$$
C P: \varphi(t, \vec{x}) \rightarrow \varphi^{*}(t,-\vec{x})
$$

- here only Lorentz-scalars, generalization straightforward


## How to define CP consistently

- A generalized CP acts upon the vector
[Bernabeu, Branco, Gronau 86, ]

$$
\phi \xrightarrow{C P} U \phi^{*}
$$

where U is unitary, to leave the kinetic term invariant.

## CONSISTENCY CONDITION:

for gauge groups this has been investigated by [Grimus, Rebelo 95]

- If G is the complete symmetry group, CP has to close in G :



## CP and the automorphism group

- The consistency condition $U \rho(g)^{*} U^{-1} \in \operatorname{Im} \rho$ defines an automorphism


$$
U \rho(g)^{*} U^{-1}=\rho(u(g))
$$

- the matrcies $\{\mathrm{U}\}$ furnish a representation of the automorphism group

$$
\begin{aligned}
\rho((a \circ b)(g)) & =\rho(a(b(g)))=U(a) \rho(b(g))^{*} U(a)^{-1} \\
& =U(a) W \rho(b(g)) W^{-1} U(a)^{-1} \\
& =U(a) W U(b) \rho(g)^{*} U(b)^{-1} W^{-1} U^{-1}(a)
\end{aligned}
$$

$$
U(a \circ b)=U(a) W U(b)
$$

$$
\text { remember } \rho(g)^{*}=W \rho(g) W^{-1} \quad \begin{gathered}
\text { neutral: } \\
U(i d)
\end{gathered}=W \quad \text { inverse: } U\left(u^{-1}\right)=W U^{-1}(u) W^{-1}
$$

## CP and the automorphism group

Inverse Direction: : Each automorphism u of G may be represented by such a matrix $U$.

$$
U \rho(g)^{*} U^{-1}=\rho(u(g))
$$

Proof:

- Construct group extended by automorphism u ( $\mathrm{u}^{\mathrm{n}}=\mathrm{id}$ )
$G^{\prime}=G \rtimes_{\theta} Z_{n}$

$$
\theta:\{0, \ldots, n-1\} \rightarrow \operatorname{Aut}(G)
$$

$$
\theta(1)=u
$$

$$
\left(g_{1}, z_{1}\right) \star\left(g_{2}, z_{2}\right)=\left(g_{1} \theta_{z_{1}}\left(g_{2}\right), z_{1}+z_{2}\right)
$$

- u acts as conjugation within this group

$$
(E, 1) \star(g, 0) \star(E, 1)^{-1}=(u(g), 0)
$$

- Consider representation $\rho^{\prime}: G^{\prime} \rightarrow U(M)$ induced via $\rho^{\prime}(g, 0)=\rho(g)$
- automorphism u is represented by matrix

$$
\rho(u(g))=\rho^{\prime}(u(g), 0)
$$

$$
=\rho^{\prime}\left((E, 1) \star(g, 0) \star(E, 1)^{-1}\right)
$$

$$
U(u)=\rho^{\prime}((E, 1)) W^{\left.=\rho^{\prime}((E, 1)) \rho^{\prime}((g, 0))\right)^{\prime}((E, 1))^{-1}}
$$

$$
=\rho^{\prime}((E, 1)) W \rho(g)^{*} W^{-1} \rho^{\prime}((E, 1))^{-1}
$$

| A |  | E | $T$ | $T^{2}$ | $S$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| there is | $\underline{1}_{1}$ | 1 | 1 | 1 | 1 |
| $u:(S, T) \rightarrow\left(S, T^{2}\right)$. | 12 | 1 | $\omega$ | $\omega^{2}$ | 1 |
|  | $\underline{1}$ | 1 | $\omega^{2}$ | $\omega$ | 1 |
| ${ }_{\boldsymbol{3}_{\mathbf{3}_{1}}(T)=T_{3}}\left(\begin{array}{llll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1\end{array}\right)$ |  | 3 | 0 | 0 | -1 |

as long as the theory only contains 3 -dimensional representations, there are 2 possibilities for $U \rho(g)^{*} U^{-1} \in \operatorname{Im} \rho$

$$
\begin{aligned}
U & =\mathbb{1}_{3} \\
\rho(T)^{*} & =\rho(T)
\end{aligned}
$$

trivial map

$$
\underline{\mathbf{3}} \rightarrow U_{3} \underline{\mathbf{3}}^{*}
$$


inner automorphism

## CP vs. $\mathrm{A}_{4}$

$\cap$ the , CP transformation' that is trivial with regard to $\mathrm{A}_{4}$ runs into trouble if one considers a non-trivial singlet $\xi \sim \underline{1}_{\mathbf{3}}$ in addition to the triplet $\chi \sim \underline{\mathbf{3}}$
$\cap$ if one would use $\chi \rightarrow \chi^{*}$ and $\xi \rightarrow \xi^{*}$ one finds that the invariant is mapped to sth. non-invariant

$$
\begin{aligned}
& \mathbf{1}_{\mathbf{1}} \sim(\chi \chi)_{\mathbf{1}_{\mathbf{2}}} \underset{\text { with }}{(\phi \phi)_{\mathbf{1}_{\mathbf{2}}}=\frac{1}{\sqrt{3}}\left(\phi_{1} \phi_{1}+\omega^{2} \phi_{2} \phi_{2}+\omega \phi_{3} \phi_{3}\right)}
\end{aligned}
$$

$\cap$ this can be readily understood if one looks at how this , CP transformation' $\phi \rightarrow \mathrm{U} \phi^{*}$ acts upon $\quad \phi=\left(\xi, \xi^{*}, \chi\right)^{T}$

- naive CP corresponds to $\mathrm{U}=1_{5}$

ค $\mathrm{A}_{4}$ does not close under this CP:

$$
U \rho(T)^{*} U^{-1}=\rho(T)^{*} \notin \rho(G)
$$

$\cap$ the real flavour group is larger, this has to be considered when constructing Lagrangian
considerea wnen constructing Lagrangian

$$
\begin{aligned}
& \rho(T)=\operatorname{diag}\left(\omega, \omega^{2}, T_{3}\right) \\
& \rho(S)=\operatorname{diag}\left(1,1, S_{3}\right)
\end{aligned}
$$

## CP vs. $\mathrm{A}_{4}$

if one does not want to extend the group one therefore has the options


| $U=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & \mathbb{1}_{3}\end{array}\right)$. |
| :---: |
| trivial map |
| $\chi \rightarrow \chi^{*}$ |
| $\xi \rightarrow \xi$ |

to fulfil the consistency condition

$$
U \rho(g)^{*} U^{-1}=\rho(u(g))
$$

Note that complex VEVs of the type $\left(1, z, z^{*}\right)$ conserve this CP

$$
U_{3} \equiv\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

## CP vs. $\mathrm{A}_{4}$ - Application

- consider a triplet of Higgs doublets $\chi=\left(\chi_{1}, \chi_{2}, \chi_{3}\right)^{T} \sim \underline{\mathbf{3}}$
- there is one phase-dependent term in the potential

$$
\lambda_{5}\left(\chi^{\dagger} \chi\right)_{\mathbf{3}_{1}}\left(\chi^{\dagger} \chi\right)_{\underline{\mathbf{3}}_{\mathbf{1}}}+\text { h.c. }=\lambda_{5}\left[\left(\chi_{1}^{\dagger} \chi_{2}\right)^{2}+\left(\chi_{2}^{\dagger} \chi_{3}\right)^{2}+\left(\chi_{3}^{\dagger} \chi_{1}\right)^{2}\right]+\text { h.c. }
$$

- the CP trafo $\chi \rightarrow \chi^{*} \quad$ would restrict the phase to be zero
- even for non-vanishing phase, the VEV configuration $\langle\chi\rangle=V(1,1,1) . V \in \mathbb{R}$ can be obtained. [Toorop et. al. 2011]
- Spontaneous CP restoration??
- This can be understood if one considers the CP transformation $\chi \rightarrow U_{3} \chi^{*}$
- this is a symmetry of the potential for any phase of $\lambda_{5}$
- also the VEVs preserve the CP transformation
- therefore this CP is conserved in this case
- accidental CP transformations seem to be origin of ,calculable phases‘


## Geometric CP violation in $\Delta$ (27)

$$
\Delta(27)=\left\langle A, B \mid A^{3}=B^{3}=(A B)^{3}=E\right\rangle
$$

automorphism group generated by $u_{2}:(A, B) \rightarrow\left(A B A B, B^{2}\right) \quad u_{1}:(A, B) \rightarrow\left(A B A^{2}, B^{2} A B\right)$
red

blue

|  | $E$ | $B A B A$ | $A B A$ | A | $B A B$ | $A B$ | $A^{2}$ | $B^{2}$ | B | $B A^{2} B A B$ | $A B^{2} A B A$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{1}_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $1_{2}$ | 1 | $\omega$ | $\omega^{2}$ | 1 | $\omega$ | $\omega^{2}$ | 1 | $\omega$ | $\omega^{2}$ | 1 | 1 |
| 13 | 1 | $\omega^{2}$ | $\omega$ | 1 | $\omega^{2}$ | $\omega$ | 1 | $\omega^{2}$ | $\omega$ | 1 | 1 |
| $1_{4}{ }^{1}$ | 1 | $\omega$ | $\omega$ | $\omega^{2}$ | $\omega^{2}$ | $\omega^{2}$ | $\omega$ | 1 | 1 | 1 | 1 |
| ${ }^{1}$ | 1 | $\omega^{2}$ | 1 | $\omega^{2}$ | 1 | $\omega$ | $\omega$ | $\omega$ | $\omega^{2}$ | 1 | 1 |
| ${ }^{1} 1$ | 1 | 1 | $\omega^{2}$ | $\omega^{2}$ | $\omega$ | 1 | $\omega$ | $\omega^{2}$ | $\omega$ | 1 | 1 |
| $\underline{17}^{1}$ | 1 | $\omega^{2}$ | $\omega^{2}$ | $\omega$ | $\omega$ | $\omega$ | $\omega^{2}$ | 1 | 1 | 1 | 1 |
| 18 | 1 | 1 | $\omega$ | $\omega$ | $\omega^{2}$ | 1 | $\omega^{2}$ | $\omega$ | $\omega^{2}$ | 1 | 1 |
| 19 | 1 | $\omega$ | 1 | $\omega$ | 1 | $\omega^{2}$ | $\omega^{2}$ | $\omega^{2}$ | $\omega$ | 1 | 1 |
| $\underline{3}$ | 3 |  |  |  |  | . |  |  |  | $3 \omega$ | $3 \omega^{2}$ |
| $\underline{3}^{*}$ | 3 |  |  |  |  |  |  |  |  | $3 \omega^{2}$ | $3 \omega$ |

## What are calculable phases?

- consider again a triplet of Higgs doublets $H=\left(H_{1}, H_{2}, H_{3}\right) \sim \underline{\mathbf{3}}$ which transforms as

$$
\rho(A)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) \quad \rho(B)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right)
$$

- the potential only contains one phase dependent term

$$
I \equiv\left(H_{1}^{\dagger} H_{2}\right)\left(H_{1}^{\dagger} H_{3}\right)+\left(H_{2}^{\dagger} H_{3}\right)\left(H_{2}^{\dagger} H_{1}\right)+\left(H_{3}^{\dagger} H_{1}\right)\left(H_{3}^{\dagger} H_{2}\right)
$$

- if coupling $\lambda_{4}$ multiplying I is positive, the global minimum is at (or a configuration that can be obtained by acting on this vacuum with a group element) $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$
- if coupling $\lambda_{4}$ is negative, the global minimum is at (or a configuration that can be obtained by acting on this vacuum with a group element) $\langle H\rangle=\frac{b}{\sqrt{3}}\left(1, \omega, \omega^{2}\right)$
- These phases do not depend on potential parameters!
- can this be used to predict (leptonic) CP phases?
- can they be understood in terms of generalized CP?


## Potential Dependence of Phases

○ in general you expect two different kinds of vacua of a CP conserving potential

- either VEV is real, conserves CP and phase does not depend on potential parameters
$\cap$ or VEV is complex, breaks CP and phase depends on potential parameters
Example:
all parameters real

$$
\begin{aligned}
V & =m_{1}^{2} \varphi^{*} \varphi+m_{2}^{2}\left(\varphi^{2}+\varphi^{* 2}\right)+\lambda_{1}\left(\varphi^{*} \varphi\right)^{2}+\lambda_{2}\left(\varphi^{4}+\varphi^{* 4}\right) \\
& =m_{1}^{2} A^{2}+m_{2}^{2} A^{2} \cos 2 \alpha+\lambda_{1} A^{4}+\lambda_{2} A^{4} \cos 4 \alpha
\end{aligned}
$$

invariant under $\varphi \rightarrow \varphi^{*}$

$$
\varphi=A e^{\mathrm{i} \alpha}
$$

$$
\begin{gathered}
\cos ^{2} \alpha=\frac{2 \lambda_{2} m_{1}^{2}+\lambda_{1} m_{2}^{2}-2 \lambda_{2} m_{2}^{2}}{4 \lambda_{2} m_{1}^{2}} \\
A=\frac{m_{1}}{\sqrt{2} \sqrt{2 \lambda_{2}-\lambda 1}}
\end{gathered}
$$

## What are calculable phases?

- The vacuum of the form $\langle H\rangle=\frac{v}{\sqrt{3}}\left(1, \omega, \omega^{2}\right)$ leaves invariant the CP transformation

$$
H \rightarrow \rho\left(B^{2}\right) H^{*}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) H^{*}
$$

- which is a symmetry of $\mathrm{I}+\mathrm{I}^{*}$
- no surprise there, CP symmetric potential has CP symmetric ground state
- for the other solution $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$ there is no group element that leaves H invariant $\langle H\rangle=\rho(g)\langle H\rangle^{*}$
- this was interpreted as geometrical CP violation

GEOMETRICAL T-VIOLATION<br>G.C. BRANCO<br>and<br>J.-M. GERARD ${ }^{1}$ and W. GRIMUS

Instituto Nacional de Investigação Científica, Av. do Prof. Gama Pinto 2, Lisbon, Portugal
[Branco, Gerard and Grimus 1984; de Medeiros Varzielas, Emmanuel-Costa 2011;
Battacharyya, de Medeiros
Varzielas, Leser 2012]

## Calculable Phases as a Result of an accidental generalized CP transformation

○ every automorphism corresponds to a generalized CP transformation
○ automorphism group of $\Delta(27)$ is of order 432, generated by $u_{1}:(A, B) \rightarrow\left(A B A^{2}, B^{2} A B\right) \quad u_{2}:(A, B) \rightarrow\left(A B A B, B^{2}\right)$
$\cap$ this allows one to search for CP transformation that leaves $\langle H\rangle=\frac{v}{\sqrt{3}}\left(\omega^{2}, 1,1\right)$ invariant and gives a real $\lambda_{4}$
○ indeed there is such a CP transformation:

$$
\begin{gathered}
H \rightarrow \tilde{U} H \\
\tilde{U}=\left(\begin{array}{ccc}
0 & 0 & \omega^{2} \\
0 & 1 & 0 \\
\omega & 0 & 0
\end{array}\right) \\
u:(A, B) \rightarrow\left(A P_{u}[\langle H\rangle]=\langle H\rangle\right. \\
C P_{u}[I]=I \\
\left.\underline{\mathbf{1}}_{\mathbf{2}} \leftrightarrow \underline{\mathbf{1}}_{\mathbf{3}}, \quad \underline{\mathbf{1}}_{5} \leftrightarrow \underline{\mathbf{1}}_{\mathbf{9}}, \quad \underline{\mathbf{1}}_{6} \leftrightarrow \underline{\mathbf{1}}_{\mathbf{8}} A^{2}\right)
\end{gathered}
$$

## Calculable Phases as a Result of an accidental generalized CP transformation

○ it seems that geometric CP violation can always be explained as the result of an accidental generalized CP symmetry of the potential

○ a symmetric potential can have a symmetric ground state

○ phases are dictated by accidental CP symmetry
$\bigcirc$ explains the independence from potential parameters
$\cap$ this setup might still be interesting for phenomenlogy:
$\bigcirc$ if accidental symmetry only of potential, not of Yukawas, it can be used to predict phases etc.

○ need groups with large outer automorphism group

## Conclusions

○ Consistency Conditions should be kept in mind when constructing models that contain CP and Flavour Symmetries

○ generalized CP transformations may be interpreted as furnishing a representation of the automorphism group

○ geometrical CP violation seems to be a consequence of (accidental) generalized CP symmetries of the potential

○ maybe automorphisms may be used in model building more generally

