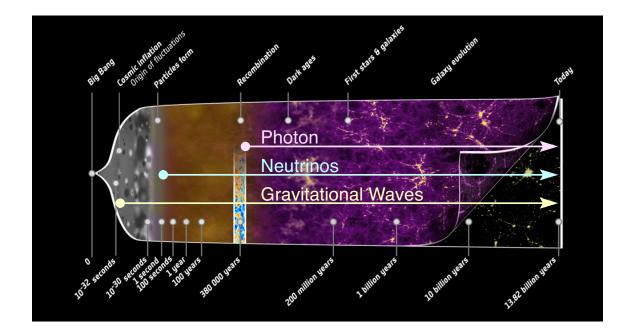
Probing Beyond-the-Standard-Model Physics with Inflationary Gravitational Waves (IGWs)

Takeo Moroi (Tokyo)

Refs:

Jinno, TM and Nakayama, PLB713 ('12) 129 Jinno, TM and Nakayama, PRD86 ('12) 123502 Jinno, TM and Nakayama, in preparation

PLANCK 2013, '13.05.24


1. Introduction

PLANCK (and other) results strongly support inflation

 \Rightarrow What happened between inflation epoch and today?

Today's subject

Use the IGW as a probe of BSM physics which governs the evolution of the early universe

The history of our universe is imprinted in IGWs

- ⇒ The IGW spectrum is sensitive to the thermal history (and hence to the BSM physics)
- \Rightarrow The IGW spectrum may be measured in (far) future by, for e.g., BBO / DECIGO

<u>Outline</u>

- 1. Introduction
- 2. Gravitational Waves: Production and Evolution
- 3. Studying the Early Universe with IGWs
- 4. Summary

2. IGWs: Production and Evolution

Gravitational wave: Fluctuation of the metric

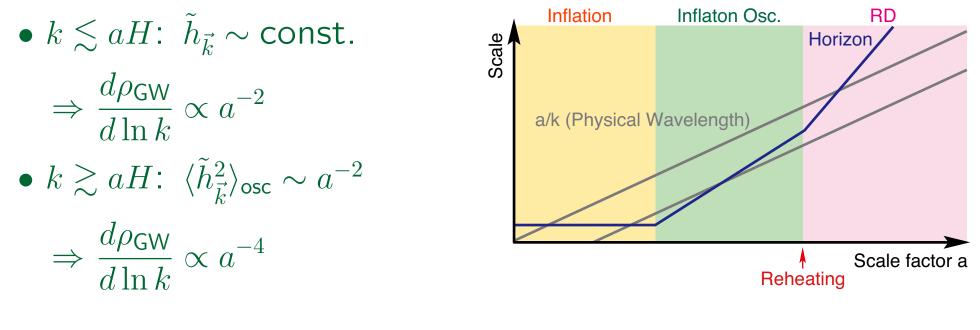
Metric:
$$ds^2 = -dt^2 + a^2(t)(\delta_{ij} + 2h_{ij})dx^i dx^j$$

Fourier modes:

$$h_{ij}(t,\vec{x}) = \frac{1}{M_{\rm PI}} \sum_{\lambda=+,\times} \int \frac{d^3\vec{k}}{(2\pi)^3} \tilde{h}_{\vec{k}}^{(\lambda)}(t) \epsilon_{ij}^{(\lambda)} e^{i\vec{k}\vec{x}}$$

 $\epsilon_{ij}^{(\lambda)}$: polarization tensor (transverse & traceless)

Quantum fluctuation generated during inflation


$$\Delta_h^2(k \ll aH) \equiv \frac{k^3}{2\pi^2 V} \times \frac{1}{M_{\rm Pl}^2} \sum_{\lambda} \left\langle |\tilde{h}_{\vec{k}}^{(\lambda)}|^2 \right\rangle_{\rm inflation} \simeq \frac{2}{M_{\rm Pl}^2} \left(\frac{H_{\rm inf}}{2\pi}\right)^2$$

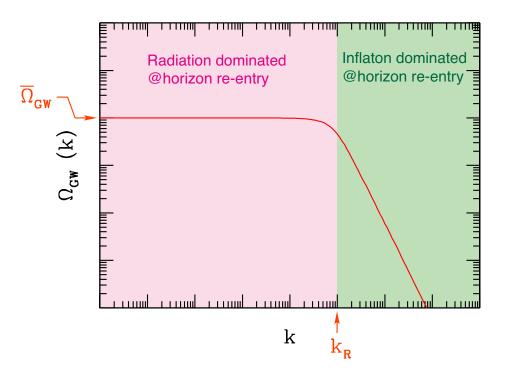
 \Rightarrow The amplitude of the IGW is proportional to ${\it H}_{\rm inf}$

IGW evolution after inflation

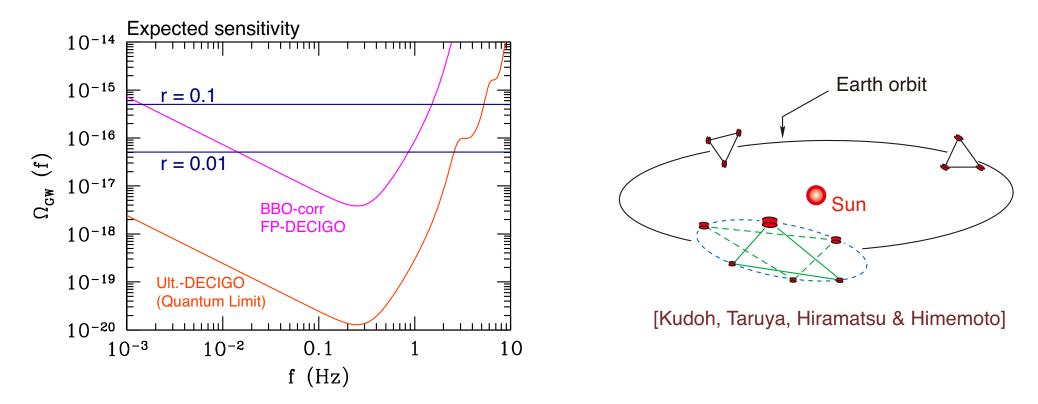
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{1}{M_{\rm Pl}^2}T_{\mu\nu} \quad \Rightarrow \quad \ddot{\tilde{h}}_{\vec{k}}^{(\lambda)} + 3H\dot{\tilde{h}}_{\vec{k}}^{(\lambda)} + \frac{k^2}{a^2(t)}\tilde{h}_{\vec{k}}^{(\lambda)} \simeq 0$$

Evolution of IGWs: after inflation

$$\frac{d\rho_{\mathsf{GW}}}{d\ln k} = \frac{k^3}{2\pi^2 V} \sum_{\lambda} \left[\frac{1}{2} \left| \dot{\tilde{h}}_{\vec{k}}^{(\lambda)} \right|^2 + \frac{1}{2} \left(\frac{k}{a} \right)^2 \left| \tilde{h}_{\vec{k}}^{(\lambda)} \right|^2 \right]$$


Present spectrum of the IGW in the simplest case

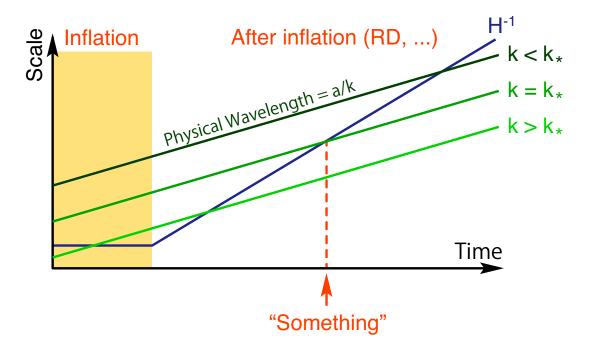
[Nakayama, Saito, Suwa & Yokoyama]


$$\Omega_{\rm GW}(k) \equiv \left[\frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm GW}}{d\ln k}\right]_{\rm NOW}$$

 $\Omega_{\rm GW}(k < k_{\rm R}) \sim {\rm const.}$, if nothing happens after the reheating

- $\overline{\Omega}_{\rm GW} \propto H_{\rm inf}^2$ • $\overline{\Omega}_{\rm GW} \simeq 6 \times 10^{-16} \left(\frac{r}{0.1}\right)$ *r*: tensor-to-scalar ratio *r* < 0.11 [Planck Collaboration]
- $k_{\rm R}$ depends on $T_{\rm R}$

In future, IGWs may be seen by, for e.g., BBO & DECIGO


•
$$f = \frac{k}{2\pi} \simeq 2.7 \text{ Hz} \times \left(\frac{T_{\text{Horizon-In}}}{10^8 \text{ GeV}}\right)$$

• $f \lesssim 0.1~{\rm Hz:}~{\rm GWs}$ from white dwarf binaries may dominate [Farmer & Phinney]

3. Studying the Early Universe with IGWs [Jinno, TM & Nakayama]

If "something" happens after reheating, $\Omega_{\rm GW}(k)$ is deformed

- Cosmic phase transition
- Domination by extra matter
- • •

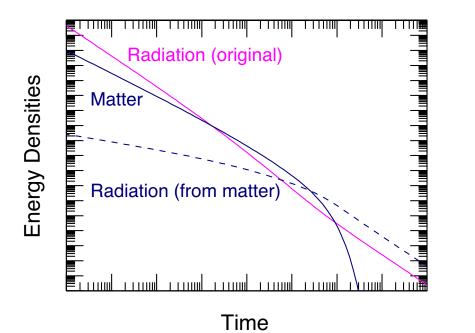
 $\Rightarrow \Omega_{\rm GW}(k)$ at $k \sim k_*$ is deformed

Case 1: Phase transition

Example: Peccei-Quinn symmetry breaking

7

Potential with thermal effects:

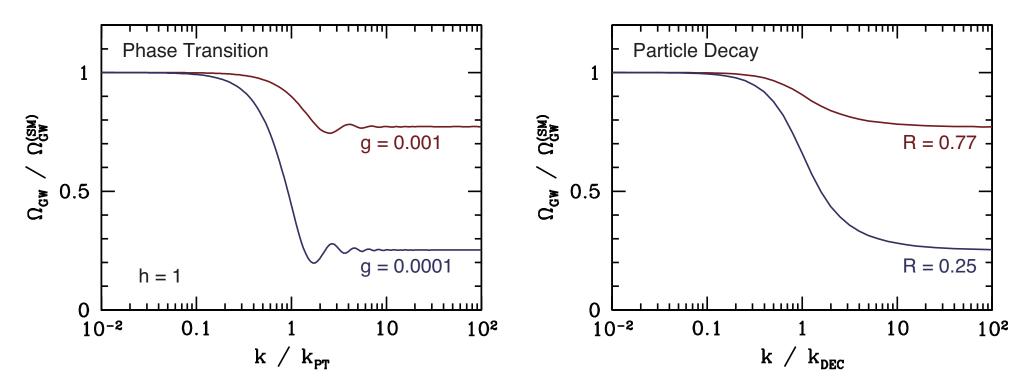

 \Rightarrow The universe may be once dominated by the potential energy of ϕ (like thermal inflation)

[Lyth & Stewart]

Case 2: Temporary matter domination

- Scalar condensations (like saxion in SUSY PQ model)
- Other exotic particles

A scalar field once dominates the universe, then decays

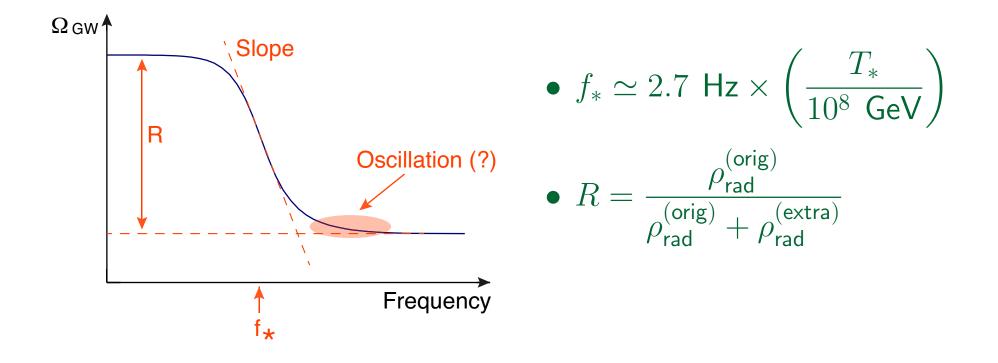


•
$$\rho_{\rm rad} \propto a^{-4}$$

•
$$ho_{
m matter} \propto a^{-3}$$

IGW spectrum for two cases:

[Jinno, TM & Nakayama]



Important parameter:

$$R \equiv \left. \frac{\Omega_{\rm GW}(k)}{\Omega_{\rm GW}^{\rm (SM)}(k)} \right|_{k \gg k_{\rm PT}} = \frac{\rho_{\rm rad}^{\rm (orig)}}{\rho_{\rm rad}^{\rm (orig)} + \rho_{\rm rad}^{\rm (extra)}}$$

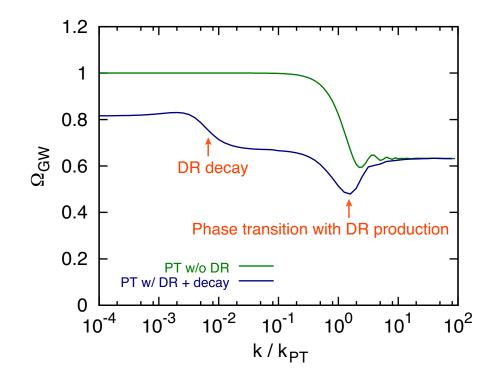
Information in the IGW spectrum

- $f_* \Rightarrow$ Temperature of "something"
- $R \Rightarrow$ Energy injection
- $d\Omega_{\rm GW}/d\ln k \Rightarrow$ Time scale of the event

Case 3: Production of "dark radiation (DR)"

DR: Relativistic particle with large free-streaming length

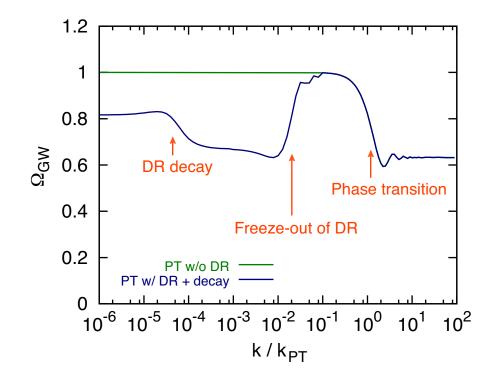
- \bullet Candidates of dark radiation: NG bosons, like axion, \cdots
 - \Rightarrow They can be produced in association with phase transition, for example
 - \Rightarrow They may decay, or may be diluted afterwards
- Non-vanishing anisotropy inertia shows up


$$\Rightarrow \ddot{\tilde{h}}_{\vec{k}}^{(\lambda)} + 3H\dot{\tilde{h}}_{\vec{k}}^{(\lambda)} + \frac{k^2}{a^2(t)}\tilde{h}_{\vec{k}}^{(\lambda)} = \frac{1}{M_{\mathsf{Pl}}^2} \times \text{(anisotropic inertia)}$$

With DR, the IGW spectrum shows characteristic feature [Weinberg]

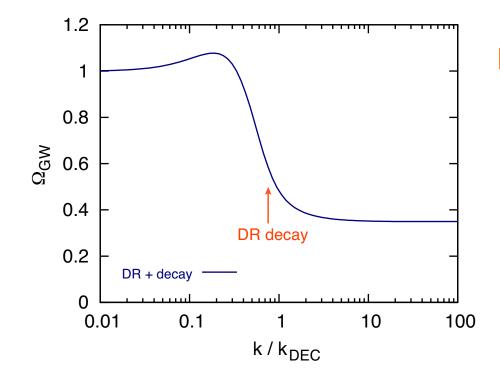
 \Rightarrow Suppression of low frequency mode of the IGW spectrum

Example 1: Phase transition with DR production


- 1. Phase transition, which produces DR
- 2. Decay of (some fraction of) "DR"

Energy fraction of DR 33~% before decay 13~% after decay; $\Delta N_{\rm eff}=0.5$

Example 2: Freeze-out of DR


- 1. Phase transition, which produces dark-sector particles
- 2. Particles in the dark sector freeze-out

Energy fraction of DR 33~% before decay 13~% after decay; $\Delta N_{\rm eff}=0.5$

Example 3: DR domination in the early epoch

- 1. Universe was once dominated by DR
- 2. DR decays and reheats the SM sector

Energy fraction of DR 100 % before decay 0 % after decay

4. Summary

The IGW spectrum contains information about early epoch

- Cosmic phase transition
- Temporary matter domination
- Production of dark-radiation-like fluid

• • • •

Possible progresses in near future:

- Discovery of CMB *B*-mode signal (PLANCK / CMB interferometric observations)
- Detection of GW by ground-based experiments (Advanced LIGO / KAGRA) to establish the technology
- If these are done, we should better consider satellite-based experiment to detect IGW