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1. Introduction



PLANCK (and other) results strongly support inflation

⇒ What happened between inflation epoch and today?

Today’s subject

Use the IGW as a probe of BSM physics which governs
the evolution of the early universe

Photon

Neutrinos

Gravitational Waves



The history of our universe is imprinted in IGWs

⇒ The IGW spectrum is sensitive to the thermal history (and
hence to the BSM physics)

⇒ The IGW spectrum may be measured in (far) future by,
for e.g., BBO / DECIGO
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2. IGWs: Production and Evolution



Gravitational wave: Fluctuation of the metric

Metric: ds2 = −dt2 + a2(t)(δij + 2hij)dxidxj

Fourier modes:
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⇒ The amplitude of the IGW is proportional to Hinf



IGW evolution after inflation
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Evolution of IGWs: after inflation
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Present spectrum of the IGW in the simplest case
[Nakayama, Saito, Suwa & Yokoyama]

ΩGW(k) ≡
[

1

ρcrit

dρGW

d ln k

]
NOW

ΩGW(k < kR) ∼ const., if nothing happens after the reheating

• Ω̄GW ∝ H2
inf

• Ω̄GW ' 6 × 10−16
( r

0.1

)
r: tensor-to-scalar ratio

r < 0.11
[Planck Collaboration]

• kR depends on TR
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In future, IGWs may be seen by, for e.g., BBO & DECIGO

r = 0.1

r = 0.01

Expected sensitivity

Ult.-DECIGO

(Quantum Limit)

BBO-corr

FP-DECIGO

[Kudoh, Taruya, Hiramatsu & Himemoto]

Sun

Earth orbit

• f =
k

2π
' 2.7 Hz ×

(
THorizon-In

108 GeV

)
• f . 0.1 Hz: GWs from white dwarf binaries may dominate

[Farmer & Phinney]



3. Studying the Early Universe with IGWs
[Jinno, TM & Nakayama]



If “something” happens after reheating, ΩGW(k) is deformed

• Cosmic phase transition

• Domination by extra matter

• · · ·
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Case 1: Phase transition

Example: Peccei-Quinn symmetry breaking

Potential with thermal effects:

V (φ) =
g

24
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〈φ〉 '
{

0 : T > Tc

vφ: T < Tc

⇒ The universe may be once dominated by the potential
energy of φ (like thermal inflation)
[Lyth & Stewart]



Case 2: Temporary matter domination

• Scalar condensations (like saxion in SUSY PQ model)

• Other exotic particles

A scalar field once dominates the universe, then decays

• ρrad ∝ a−4

• ρmatter ∝ a−3
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IGW spectrum for two cases:
[Jinno, TM & Nakayama]

Phase Transition Particle Decay

h = 1

g = 0.001

g = 0.0001

R = 0.77

R = 0.25

Important parameter:
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Information in the IGW spectrum

• f∗ ⇒ Temperature of “something”

• R ⇒ Energy injection

• dΩGW/d ln k ⇒ Time scale of the event
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Case 3: Production of “dark radiation (DR)”

DR: Relativistic particle with large free-streaming length

• Candidates of dark radiation: NG bosons, like axion, · · ·

⇒ They can be produced in association with phase tran-
sition, for example

⇒ They may decay, or may be diluted afterwards

• Non-vanishing anisotropy inertia shows up
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With DR, the IGW spectrum shows characteristic feature
[Weinberg]

⇒ Suppression of low frequency mode of the IGW spectrum



Example 1: Phase transition with DR production

1. Phase transition, which produces DR

2. Decay of (some fraction of) “DR”
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Example 2: Freeze-out of DR

1. Phase transition, which produces dark-sector particles

2. Particles in the dark sector freeze-out

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

k / kPT

Ω
G

W

PT w/o DR
PT w/ DR + decay

Phase transition

DR decay

Freeze-out of DR

Energy fraction of DR

33 % before decay

13 % after decay; ∆Neff = 0.5



Example 3: DR domination in the early epoch

1. Universe was once dominated by DR

2. DR decays and reheats the SM sector
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4. Summary



The IGW spectrum contains information about early epoch

• Cosmic phase transition

• Temporary matter domination

• Production of dark-radiation-like fluid

• · · ·

Possible progresses in near future:

• Discovery of CMB B-mode signal (PLANCK / CMB in-
terferometric observations)

• Detection of GW by ground-based experiments (Advanced
LIGO / KAGRA) to establish the technology

• If these are done, we should better consider satellite-based
experiment to detect IGW


