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Introduction

Baryon asymmetry of the universe (BAU)

nB

nγ
=

{
(5.1− 6.5)× 10−10 (BBN)
6.04± 0.8× 10−10 (CMB)

Sakharov’s conditions

B violation

CP violation

Processes that violate
B and CP out of
equilibrium

Baryogenesis through leptogenesis

[Fukugita, Yanagida]

Creation of a lepton asymmetry in the
decay of heavy particles

Conversion to a baryon asymmetry by
electroweak sphalerons

C =
YB

YB−L

=
28

79
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Model based on a Grand Unified Theory with gauge group SO(10).
[M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

1 complex scalar triplet
∆ = (∆++, ∆+, ∆0)

3 pairs of vector-like heavy
lepton doublets

Lα =

(
Nα

Eα

)

︸ ︷︷ ︸

L=1

, L̄α =

(
N̄α

Ēα

)

︸ ︷︷ ︸

L=−1

1 real scalar triplet
T = (T+, T 0, T−) & 1 real
scalar singlet S

New couplings

fαβ∆ℓαℓβ (∆L = 2)

fαβ∆
†L̄αL̄β (∆L = 2)

µ∆†HH

cR fαβRL̄αℓβ (R = S or T )

The Yukawa couplings are related
by SO(10) symmetry
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Benôıt Schmauch



Introduction
Presentation of the model

CP asymmetry
Boltzmann equations

Results
Conclusion

Model based on a Grand Unified Theory with gauge group SO(10).
[M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

1 complex scalar triplet
∆ = (∆++, ∆+, ∆0)

3 pairs of vector-like heavy
lepton doublets

Lα =

(
Nα

Eα

)

︸ ︷︷ ︸

L=1

, L̄α =

(
N̄α

Ēα
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In this framework, SM neutrinos acquire a Majorana mass through the
type II seesaw mechanism
[Schechter & al. - Lazarides & al. - Mohapatra & al. - Wetterich]

να νβ

µ

fαβ νβ

H
0

H
0

1
M2

∆
∆0 (mν)αβ =

1

2
µfαβ

v
2

M2
∆

Coupling matrix

fαβ =
2M2

∆

µv2
(mν)αβ
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We consider the CP asymmetries in the decays of the three scalars.

CP asymmetries

ǫ∆ = 2
Γ(∆† → ℓℓ)− Γ(∆→ ℓcℓc)

Γ∆ + Γ∆†

ǫR =
Γ(R → ℓL̄)− Γ(R → ℓcL̄c)

ΓR
R = S , T

For instance, in ∆→ ℓcℓc decay, the asymmetry comes from

Benôıt Schmauch
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Γ(R → ℓL̄)− Γ(R → ℓcL̄c)

ΓR
R = S , T

For instance, in ∆→ ℓcℓc decay, the asymmetry comes from

R

L̄ρ

L̄σ

ℓα

ℓβ

ℓα

ℓβ

∆ ∆
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The asymmetry vanishes if ML̄1
,ML̄2

,ML̄3
> M∆ or if

ML̄1
,ML̄2

,ML̄3
≪ M∆.

CP asymmetries

With the assumption ML̄1
≪ M∆,S,T ≪ ML̄2,3

(so that L̄2 and L̄3
decouple from the dynamics) one gets

ǫ∆ =
1

4π

Im[f11(f
†ff †)11]

Tr(ff †)

∑

R=S,T

c2Rg

(
M2

R

M2
∆

)

ǫS = −
3

16π

Im[f11(f
†ff †)11]

(ff †)11
g

(
M2

∆

M2
S

)

ǫT = −
1

16π

Im[f11(f
†ff †)11]

(ff †)11
g

(
M2

∆

M2
T

)
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The CP asymmetry depends only on the scalar masses, the coupling µ,
and neutrino parameters

In particular

Im[f11(f
†ff †)11] =

(
2M2

∆

µv2

)4
(
−m1m2∆m2

21c
2
12c

4
13s

2
12 sin 2ρ

+m1m3∆m2
31c

2
12c

2
13s

2
13 sin 2(σ − ρ) +m2m3∆m2

32c
2
13s

2
12s

2
13 sin 2σ

)
,

mi : eigenvalues of mν (physical neutrino masses)
m̄ =

√

m2
1 +m2

2 +m2
3

∆m2
ij = m2

i −m2
j

cij = cos θij , sij = sin θij

ρ and σ are Majorana phases.
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Boltzmann equations

3 equations for the scalar densities with the general form

sHz
dYa

dz
= −(Da + Sa), z =

M∆

T

Da ∝ Γa: decays and inverse decays of particle a

Sa: scatterings consuming a (typically electroweak annihilations)

We also need the asymmetries in Standard Model leptons ∆ℓ, in
heavy leptons ∆L̄1

, in Higgs doublets ∆H and in triplets ∆∆

sHz
d∆a

dz
= ǫbaDb −Wa

ǫba : CP asymmetry in the decay of b into a+ ...
Wa: washout due to inverse decays and scatterings

Benôıt Schmauch
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Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, ’99]

If charged lepton Yukawa interactions are in equilibrium
(T < 1012 GeV for τ , T < 109 GeV for µ) lepton flavours are
distinguishable
⇒ For T < 109 GeV, write 3 Boltzmann equations for ∆ℓe , ∆ℓµ and
∆ℓτ .

In the opposite case, lepton flavors are undistinguishable
⇒ For T > 1012 GeV, there are quantum correlations between the
various flavours to take into account.

Density matrix

∆nℓα = nℓα − nℓc
α
= 〈: ℓ†αℓα :〉 → ∆nαβ = 〈: ℓ†αℓβ :〉

We need to derive the Boltzmann equation for (∆ℓ)αβ =
∆nαβ
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Closed time-path formalism

Formalism used to describe quantum out of equilibrium phenomena,
applied to leptogenesis [W. Buchmüller & al., De Simone & al., Garbrecht & al.]

C = time-path that goes from 0 to ∞ and back

t+
−

G̃αβ = 〈TCℓαℓ̄β〉 Green’s function, time-ordered following the contour.

G̃ =

(
G++ −G+−

G−+ −G−−

)

For instance G−+
αβ (x , y) = −i〈ℓα(x)ℓ̄β(y)〉

Idea: Deduce the evolution equation of ∆nαβ = 〈: ℓ†αℓβ :〉 From the

equation of motion of G̃βα
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Schwinger-Dyson equation expresses G̃ as a function of the free
Green’s function G̃ 0 and the 1PI self-energy Σ̃

Σ̃ρσ= +
G̃αβ G̃

0
αβ G̃

0
αρ G̃σβ

One obtains the evolution equation for the density matrix by

noticing that
d∆nαβ

dt
= −Tr((i

−→
/∂ x + i

←−
/∂ y )G

−+
βα (x , y))|y=x

and by replacing
d∆nαβ

dt
→

d∆nαβ

dt
+ 3H∆nαβ = sHz

d(∆ℓ)αβ
dz

In the end, taking the classical limit, one obtains a Boltzmann
equation for the density matrix of lepton asymmetry (∆ℓ)αβ

sHz
d(∆ℓ)αβ

dz
= ǫ∆αβD∆ + ǫSαβDS + ǫTαβDT −Wαβ
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Figure: Evolution of the abundances for M∆ = MS = MT = 1013 GeV,
m1 = 10−3 eV and µ/M∆ = 0.2
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Final baryon asymmetry

Before the action of sphalerons

YB−L = ∆L̄1
− Tr(∆ℓ)

In the end, we obtain the BAU

nB

nγ
= 7.04× C × YB−L

To be viable, the model must allow

nB

nγ
∼ 6× 10−10
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Figure: Final baryon asymmetry as a function of m1 and M∆ = MS = MT for
µ/M∆ = 0.2. The red line indicates the observed BAU ∼ 6× 10−10.
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Figure: Final baryon asymmetry as a function of |(mν)ee | and M∆ = MS = MT

for µ/M∆ = 0.2.
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Figure: Final baryon asymmetry as a function of m1 and sin2 θ13 for
M∆ = MS = MT = 1013 GeV, µ/M∆ = 0.2.
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Conclusion

This scenario can account for a successful baryogenesis

The result is closely related to neutrino parameters thanks to the
relation

(mν)αβ =
µv2

M2
∆

fαβ

This scenario happens at a huge energy scale since M∆ > 1012 GeV
→ it cannot be tested directly

But this scenario could be ruled out
-for some values of |(mν)ee |
-if neutrinos are quasi-degenerate with m1 & 0.1 eV
-if the hierarchy is inverted
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The underlying SO(10) model

SO(10)
︷︸︸︷

16i =

SU(5)
︷ ︸︸ ︷

1016i
︸︷︷︸

(Qi ,u
c
i ,e

c
i )

⊕ 5̄16i
︸︷︷︸

(Li ,D̄i )

⊕ 116i
︸︷︷︸

νc
i

10i = 510i
︸︷︷︸

(L̄i ,Di )

⊕ 5̄10i
︸︷︷︸

(ℓi ,dc
i )

54 = 15⊕ 15
︸ ︷︷ ︸

(∆,∆†)

⊕ 24
︸︷︷︸

(S,T )

Lagrangian

L =
1

2
fij10i 10j 54 +

1

2
µ10H 10H 54 +

1

2
M2

5454
2
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Figure: Final baryon asymmetry as a function of m3 (inverted hierarchy) and
M∆ = MS = MT for µ/M∆ = 0.2.
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Figure: Final baryon asymmetry as a function of λℓ =
√

Tr(ff †) and
λH = µ/M∆ for m1 = 10−3 eV (normal hierarchy).
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Figure: Final baryon asymmetry as a function of λℓ =
√

Tr(ff †) and
λH = µ/M∆ for m3 = 10−3 eV (inverted hierarchy).
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