A predictive scheme for triplet leptogenesis

Benoît Schmauch
IPhT - CEA Saclay

Based on work done in collaboration with Stéphane Lavignac

Introduction

Baryon asymmetry of the universe (BAU)

$$
\frac{n_{B}}{n_{\gamma}}=\left\{\begin{array}{l}
(5.1-6.5) \times 10^{-10}(\mathrm{BBN}) \\
6.04 \pm 0.8 \times 10^{-10}(\mathrm{CMB})
\end{array}\right.
$$

Sakharov's conditions

- B violation
- CP violation
- Processes that violate B and CP out of equilibrium

Baryogenesis through leptogenesis

[Fukugita, Yanagida]

- Creation of a lepton asymmetry in the decay of heavy particles
- Conversion to a baryon asymmetry by electroweak sphalerons

$$
C=\frac{Y_{B}}{Y_{B-L}}=\frac{28}{79}
$$

(1) Presentation of the model

2 $C P$ asymmetry
(3) Boltzmann equations
(4) Results

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

New couplings

- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta} \quad(R=S$ or $T)$

The Yukawa couplings are related by $S O(10)$ symmetry

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet $\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)$
- 3 pairs of vector-like heavy lepton doublets

- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

New couplings

- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$

- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta} \quad(R=S$ or $T)$

The Yukawa couplings are related by $S O(10)$ symmetry

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet $\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)$
- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta} \quad(R=S$ or $T)$

The Yukawa couplings are related by $S O(10)$ symmetry

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- 1 real scalar triplet

$$
T=\left(T^{+}, T^{0}, T^{-}\right) \& 1 \text { real }
$$ scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$

- 1 real scalar triplet

$$
T=\left(T^{+}, T^{0}, T^{-}\right) \& 1 \text { real }
$$ scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$
- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta}(R=S$ or $T)$
- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$
- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$

- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$
- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta} \quad(R=S$ or $T)$
- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$
- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta} \quad(R=S$ or $T)$

The Yukawa couplings are related by $S O(10)$ symmetry

- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

Model based on a Grand Unified Theory with gauge group SO(10). [M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content

- 1 complex scalar triplet

$$
\Delta=\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)
$$

- 3 pairs of vector-like heavy lepton doublets

$$
\underbrace{\mathcal{L}_{\alpha}=\binom{\mathcal{N}_{\alpha}}{\mathcal{E}_{\alpha}}}_{L=1}, \underbrace{\overline{\mathcal{L}}_{\alpha}=\binom{\overline{\mathcal{N}}_{\alpha}}{\overline{\mathcal{E}}_{\alpha}}}_{L=-1}
$$

New couplings

- $f_{\alpha \beta} \Delta \ell_{\alpha} \ell_{\beta}(\Delta L=2)$
- $f_{\alpha \beta} \Delta^{\dagger} \overline{\mathcal{L}}_{\alpha} \overline{\mathcal{L}}_{\beta}(\Delta L=2)$
- $\mu \Delta^{\dagger} H H$
- $c_{R} f_{\alpha \beta} R \overline{\mathcal{L}}_{\alpha} \ell_{\beta}(R=S$ or $T)$

The Yukawa couplings are related by $S O(10)$ symmetry

- 1 real scalar triplet $T=\left(T^{+}, T^{0}, T^{-}\right) \& 1$ real scalar singlet S

In this framework, SM neutrinos acquire a Majorana mass through the type II seesaw mechanism
[Schechter \& al. - Lazarides \& al. - Mohapatra \& al. - Wetterich]

Coupling matrix

In this framework, SM neutrinos acquire a Majorana mass through the type II seesaw mechanism
[Schechter \& al. - Lazarides \& al. - Mohapatra \& al. - Wetterich]

Coupling matrix

$$
f_{\alpha \beta}=\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\left(m_{\nu}\right)_{\alpha \beta}
$$

(1) Presentation of the model

(2) CP asymmetry
(3) Boltzmann equations
(4) Results

We consider the $C P$ asymmetries in the decays of the three scalars.

CP asymmetries

$$
\begin{aligned}
& \epsilon_{\Delta}=2 \frac{\Gamma\left(\Delta^{\dagger} \rightarrow \ell \ell\right)-\Gamma\left(\Delta \rightarrow \ell^{c} \ell^{c}\right)}{\Gamma_{\Delta}+\Gamma_{\Delta^{\dagger}}} \\
& \epsilon_{R}=\frac{\Gamma(R \rightarrow \ell \overline{\mathcal{L}})-\Gamma^{c}\left(R^{c} \rightarrow \ell^{c} \overline{\mathcal{L}}^{c}\right)}{\Gamma_{R}} \quad R=S, T
\end{aligned}
$$

We consider the $C P$ asymmetries in the decays of the three scalars.

CP asymmetries

$$
\begin{aligned}
& \epsilon_{\Delta}=2 \frac{\Gamma\left(\Delta^{\dagger} \rightarrow \ell \ell\right)-\Gamma\left(\Delta \rightarrow \ell^{c} \ell^{c}\right)}{\Gamma_{\Delta}+\Gamma_{\Delta^{\dagger}}} \\
& \epsilon_{R}=\frac{\Gamma(R \rightarrow \ell \overline{\mathcal{L}})-\Gamma^{c}\left(R \rightarrow \ell^{c} \overline{\mathcal{L}}^{c}\right)}{\Gamma_{R}} \quad R=S, T
\end{aligned}
$$

For instance, in $\Delta \rightarrow \ell^{c} \ell^{c}$ decay, the asymmetry comes from

The asymmetry vanishes if $M_{\overline{\mathcal{L}}_{1}}, M_{\overline{\mathcal{L}}_{2}}, M_{\overline{\mathcal{L}}_{3}}>M_{\Delta}$ or if $M_{\overline{\mathcal{L}}_{1}}, M_{\overline{\mathcal{L}}_{2}}, M_{\overline{\mathcal{L}}_{3}} \ll M_{\Delta}$.

CP asymmetries

With the assumption $M_{\overline{\mathcal{L}}_{1}} \ll M_{\Delta, S, T} \ll M_{\overline{\mathcal{L}}_{2,3}}$ (so that $\overline{\mathcal{L}}_{2}$ and $\overline{\mathcal{L}}_{3}$ decouple from the dynamics) one gets

The asymmetry vanishes if $M_{\overline{\mathcal{L}}_{1}}, M_{\overline{\mathcal{L}}_{2}}, M_{\overline{\mathcal{L}}_{3}}>M_{\Delta}$ or if $M_{\overline{\mathcal{L}}_{1}}, M_{\overline{\mathcal{L}}_{2}}, M_{\overline{\mathcal{L}}_{3}} \ll M_{\Delta}$.

CP asymmetries

With the assumption $M_{\overline{\mathcal{L}}_{1}} \ll M_{\Delta, S, T} \ll M_{\overline{\mathcal{L}}_{2,3}}$ (so that $\overline{\mathcal{L}}_{2}$ and $\overline{\mathcal{L}}_{3}$ decouple from the dynamics) one gets

$$
\begin{aligned}
& \epsilon_{\Delta}=\frac{1}{4 \pi} \frac{\operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]}{\operatorname{Tr}\left(f f^{\dagger}\right)} \sum_{R=S, T} c_{R}^{2} g\left(\frac{M_{R}^{2}}{M_{\Delta}^{2}}\right) \\
& \epsilon_{S}=-\frac{3}{16 \pi} \frac{\operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]}{\left(f f^{\dagger}\right)_{11}} g\left(\frac{M_{\Delta}^{2}}{M_{S}^{2}}\right) \\
& \epsilon_{T}=-\frac{1}{16 \pi} \frac{\operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]}{\left(f f^{\dagger}\right)_{11}} g\left(\frac{M_{\Delta}^{2}}{M_{T}^{2}}\right)
\end{aligned}
$$

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses) $\bar{m}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}$
- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

$$
\begin{aligned}
& \operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]=\left(\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\right)^{4}\left(-m_{1} m_{2} \Delta m_{21}^{2} c_{12}^{2} c_{13}^{4} s_{12}^{2} \sin 2 \rho\right. \\
& \left.\quad+m_{1} m_{3} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} s_{13}^{2} \sin 2(\sigma-\rho)+m_{2} m_{3} \Delta m_{32}^{2} c_{13}^{2} s_{12}^{2} s_{13}^{2} \sin 2 \sigma\right),
\end{aligned}
$$

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses)
\square
- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

$$
\begin{aligned}
& \mathcal{I} m\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]=\left(\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\right)^{4}\left(-m_{1} m_{2} \Delta m_{21}^{2} c_{12}^{2} c_{13}^{4} s_{12}^{2} \sin 2 \rho\right. \\
& \left.\quad+m_{1} m_{3} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} s_{13}^{2} \sin 2(\sigma-\rho)+m_{2} m_{3} \Delta m_{32}^{2} c_{13}^{2} s_{12}^{2} s_{13}^{2} \sin 2 \sigma\right),
\end{aligned}
$$

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses)

$$
\bar{m}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}
$$

- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

$$
\begin{aligned}
& \operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]=\left(\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\right)^{4}\left(-m_{1} m_{2} \Delta m_{21}^{2} c_{12}^{2} c_{13}^{4} s_{12}^{2} \sin 2 \rho\right. \\
& \left.\quad+m_{1} m_{3} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} s_{13}^{2} \sin 2(\sigma-\rho)+m_{2} m_{3} \Delta m_{32}^{2} c_{13}^{2} s_{12}^{2} s_{13}^{2} \sin 2 \sigma\right),
\end{aligned}
$$

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses)

$$
\bar{m}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}
$$

- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

$$
\begin{aligned}
& \operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]=\left(\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\right)^{4}\left(-m_{1} m_{2} \Delta m_{21}^{2} c_{12}^{2} c_{13}^{4} s_{12}^{2} \sin 2 \rho\right. \\
& \left.\quad+m_{1} m_{3} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} s_{13}^{2} \sin 2(\sigma-\rho)+m_{2} m_{3} \Delta m_{32}^{2} c_{13}^{2} s_{12}^{2} s_{13}^{2} \sin 2 \sigma\right),
\end{aligned}
$$

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses)

$$
\bar{m}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}
$$

- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

The CP asymmetry depends only on the scalar masses, the coupling μ, and neutrino parameters

In particular

$$
\begin{aligned}
& \operatorname{Im}\left[f_{11}\left(f^{\dagger} f f^{\dagger}\right)_{11}\right]=\left(\frac{2 M_{\Delta}^{2}}{\mu v^{2}}\right)^{4}\left(-m_{1} m_{2} \Delta m_{21}^{2} c_{12}^{2} c_{13}^{4} s_{12}^{2} \sin 2 \rho\right. \\
& \left.\quad+m_{1} m_{3} \Delta m_{31}^{2} c_{12}^{2} c_{13}^{2} s_{13}^{2} \sin 2(\sigma-\rho)+m_{2} m_{3} \Delta m_{32}^{2} c_{13}^{2} s_{12}^{2} s_{13}^{2} \sin 2 \sigma\right),
\end{aligned}
$$

- m_{i} : eigenvalues of m_{ν} (physical neutrino masses) $\bar{m}=\sqrt{m_{1}^{2}+m_{2}^{2}+m_{3}^{2}}$
- $\Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}$
- $c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j}$
- ρ and σ are Majorana phases.

(1) Presentation of the model

(2) CP asymmetry
(3) Boltzmann equations

4 Results

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}:$ decays and inverse decays of particle a
S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\bar{L}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$$
s H z \frac{d \Delta_{a}}{d z}=\epsilon_{a}^{b} D_{b}-W_{a}
$$

> $\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+$
> W_{a} : washout due to inverse decays and scatterings

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}$: decays and inverse decays of particle a
S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\overline{\mathcal{L}}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$$
s H z \frac{d \Delta_{a}}{d z}=\epsilon_{a}^{b} D_{b}-W_{a}
$$

$\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+$
 W_{a} : washout due to inverse decays and scatterings

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}:$ decays and inverse decays of particle a S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\overline{\mathcal{L}}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+\ldots$
$W_{a}:$ washout due to inverse decays and scatterings

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}:$ decays and inverse decays of particle a S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\overline{\mathcal{L}}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$$
s H z \frac{d \Delta_{a}}{d z}=\epsilon_{a}^{b} D_{b}-W_{a}
$$

$\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+\ldots$
$W_{a}:$ washout due to inverse decays and scatterings

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}:$ decays and inverse decays of particle a
S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\overline{\mathcal{L}}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$$
s H z \frac{d \Delta_{a}}{d z}=\epsilon_{a}^{b} D_{b}-W_{a}
$$

$\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+\ldots$
W_{a} : washout due to inverse decays and scatterings

Boltzmann equations

- 3 equations for the scalar densities with the general form

$$
s H z \frac{d Y_{a}}{d z}=-\left(D_{a}+S_{a}\right), \quad z=\frac{M_{\Delta}}{T}
$$

$D_{a} \propto \Gamma_{a}:$ decays and inverse decays of particle a
S_{a} : scatterings consuming a (typically electroweak annihilations)

- We also need the asymmetries in Standard Model leptons Δ_{ℓ}, in heavy leptons $\Delta_{\overline{\mathcal{L}}_{1}}$, in Higgs doublets Δ_{H} and in triplets Δ_{Δ}

$$
s H z \frac{d \Delta_{a}}{d z}=\epsilon_{a}^{b} D_{b}-W_{a}
$$

$\epsilon_{a}^{b}: C P$ asymmetry in the decay of b into $a+\ldots$
W_{a} : washout due to inverse decays and scatterings

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

- If charged lepton Yukawa interactions are in equilibrium ($T<10^{12} \mathrm{GeV}$ for $\tau, T<10^{9} \mathrm{GeV}$ for μ) lepton flavours are distinguishable
\Rightarrow For $T<10^{9} \mathrm{GeV}$, write 3 Boltzmann equations for $\Delta_{\ell_{e},} \Delta_{\ell_{\mu}}$ and Δ
- In the opposite case, lepton flavors are undistinguishable \Rightarrow For $T>10^{12} \mathrm{GeV}$, there are quantum correlations between the various flavours to take into account.

Density matrix

We need to derive the Boltzmann equation for $\left(\Delta_{\ell}\right)$

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

- If charged lepton Yukawa interactions are in equilibrium ($T<10^{12} \mathrm{GeV}$ for $\tau, T<10^{9} \mathrm{GeV}$ for μ) lepton flavours are distinguishable \Rightarrow For $T<10^{9} \mathrm{GeV}$, write 3 Boltzmann equations for $\Delta_{\ell_{e}}, \Delta_{\ell_{\mu}}$ and $\Delta_{\ell_{\tau}}$.
- In the opposite case, lepton flavors are undistinguishable \Rightarrow For $T>10^{12} \mathrm{GeV}$, there are quantum correlations between the various flavours to take into account.

Density matrix

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

- If charged lepton Yukawa interactions are in equilibrium $\left(T<10^{12} \mathrm{GeV}\right.$ for $\tau, T<10^{9} \mathrm{GeV}$ for μ) lepton flavours are distinguishable \Rightarrow For $T<10^{9} \mathrm{GeV}$, write 3 Boltzmann equations for $\Delta_{\ell_{e}}, \Delta_{\ell_{\mu}}$ and $\Delta_{\ell_{\tau}}$.
- In the opposite case, lepton flavors are undistinguishable \Rightarrow For $T>10^{12} \mathrm{GeV}$, there are quantum correlations between the various flavours to take into account.

Density matrix

[^0]
Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

- If charged lepton Yukawa interactions are in equilibrium ($T<10^{12} \mathrm{GeV}$ for $\tau, T<10^{9} \mathrm{GeV}$ for μ) lepton flavours are distinguishable \Rightarrow For $T<10^{9} \mathrm{GeV}$, write 3 Boltzmann equations for $\Delta_{\ell_{e}}, \Delta_{\ell_{\mu}}$ and $\Delta_{\ell_{\tau}}$.
- In the opposite case, lepton flavors are undistinguishable \Rightarrow For $T>10^{12} \mathrm{GeV}$, there are quantum correlations between the various flavours to take into account.

Density matrix

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

- If charged lepton Yukawa interactions are in equilibrium ($T<10^{12} \mathrm{GeV}$ for $\tau, T<10^{9} \mathrm{GeV}$ for μ) lepton flavours are distinguishable \Rightarrow For $T<10^{9} \mathrm{GeV}$, write 3 Boltzmann equations for $\Delta_{\ell_{e}}, \Delta_{\ell_{\mu}}$ and $\Delta_{\ell_{\tau}}$.
- In the opposite case, lepton flavors are undistinguishable \Rightarrow For $T>10^{12} \mathrm{GeV}$, there are quantum correlations between the various flavours to take into account.

Density matrix

$$
\Delta n_{\ell_{\alpha}}=n_{\ell_{\alpha}}-n_{\ell_{\alpha}^{c}}=\left\langle: \ell_{\alpha}^{\dagger} \ell_{\alpha}:\right\rangle \rightarrow \Delta n_{\alpha \beta}=\left\langle: \ell_{\alpha}^{\dagger} \ell_{\beta}:\right\rangle
$$

We need to derive the Boltzmann equation for $\left(\Delta_{\ell}\right)_{\alpha \beta}=\frac{\Delta n_{\alpha \beta}}{s}$

Closed time-path formalism

Formalism used to describe quantum out of equilibrium phenomena, applied to leptogenesis [W. Buchmüller \& al., De Simone \& al., Garbrecht \& al.] $\mathcal{C}=$ time-path that goes from 0 to ∞ and back

$\tilde{G}_{\alpha \beta}=\left\langle\mathcal{T}_{\mathcal{C}} \ell_{\alpha} \bar{\ell}_{\beta}\right\rangle$ Green's function, time-ordered following the contour.

$$
\tilde{G}=\left(\begin{array}{ll}
G^{++} & -G^{+-} \\
G^{-+} & -G^{--}
\end{array}\right)
$$

For instance $G_{\alpha \beta}^{-+}(x, y)=-i\left\langle\ell_{\alpha}(x) \bar{\ell}_{\beta}(y)\right\rangle$
Idea: Deduce the evolution equation of $\Delta n_{\alpha \beta}=\left\langle: \ell_{\alpha}^{\dagger} \ell_{\beta}:\right\rangle$ From the equation of motion of $\tilde{G}_{\beta \alpha}$

- Schwinger-Dyson equation expresses \tilde{G} as a function of the free Green's function \tilde{G}^{0} and the 1 PI self-energy $\tilde{\Sigma}$

- One obtains the evolution equation for the density matrix by noticing that $\frac{d \Delta n_{\alpha \beta}}{d t}$
 and by replacing $\frac{d \Delta n_{\alpha \beta}}{d t} \rightarrow \frac{d \Delta n_{\alpha \beta}}{d t}+3 H \Delta n_{\alpha \beta}=s H z \frac{d(\Delta \ell) \alpha \beta}{d z}$
- In the end, taking the classical limit, one obtains a Boltzmann equation for the density matrix of lepton asymmetry $\left(\Delta_{\ell}\right)_{\alpha}$

- Schwinger-Dyson equation expresses \tilde{G} as a function of the free Green's function \tilde{G}^{0} and the 1PI self-energy $\tilde{\Sigma}$

- One obtains the evolution equation for the density matrix by noticing that $\frac{d \Delta n_{\alpha \beta}}{d t}=-\operatorname{Tr}\left(\left(i \overrightarrow{\not \partial}_{x}+i \overleftarrow{\not \partial}{ }_{y}\right) G_{\beta \alpha}^{-+}(x, y)\right)_{\mid y=x}$ and by replacing
- In the end, taking the classical limit, one obtains a Boltzmann equation for the density matrix of lepton asymmetry $\left(\Delta_{\ell}\right)$,

- Schwinger-Dyson equation expresses \tilde{G} as a function of the free Green's function \tilde{G}^{0} and the 1 PI self-energy $\tilde{\Sigma}$

- One obtains the evolution equation for the density matrix by noticing that $\frac{d \Delta n_{\alpha \beta}}{d t}=-\operatorname{Tr}\left(\left(i \vec{\partial}_{x}+i \overleftarrow{\partial}_{y}\right) G_{\beta \alpha}^{-+}(x, y)\right)_{\mid y=x}$ and by replacing $\frac{d \Delta n_{\alpha \beta}}{d t} \rightarrow \frac{d \Delta n_{\alpha \beta}}{d t}+3 H \Delta n_{\alpha \beta}=s H z \frac{d\left(\Delta_{\ell}\right)_{\alpha \beta}}{d z}$
- In the end, taking the classical limit, one obtains a Boltzmann equation for the density matrix of lepton asymmetry $\left(\Delta_{\ell}\right)_{\alpha}$

- Schwinger-Dyson equation expresses \tilde{G} as a function of the free Green's function \tilde{G}^{0} and the 1 PI self-energy $\tilde{\Sigma}$

- One obtains the evolution equation for the density matrix by noticing that $\frac{d \Delta n_{\alpha \beta}}{d t}=-\operatorname{Tr}\left(\left(i \vec{\phi}_{x}+i \overleftarrow{\partial}_{y}\right) G_{\beta \alpha}^{-+}(x, y)\right)_{\mid y=x}$ and by replacing $\frac{d \Delta n_{\alpha \beta}}{d t} \rightarrow \frac{d \Delta n_{\alpha \beta}}{d t}+3 H \Delta n_{\alpha \beta}=s H z \frac{d\left(\Delta_{\ell}\right)_{\alpha \beta}}{d z}$
- In the end, taking the classical limit, one obtains a Boltzmann equation for the density matrix of lepton asymmetry $\left(\Delta_{\ell}\right)_{\alpha \beta}$

$$
s H z \frac{d\left(\Delta_{\ell}\right)_{\alpha \beta}}{d z}=\epsilon_{\alpha \beta}^{\Delta} D_{\Delta}+\epsilon_{\alpha \beta}^{S} D_{S}+\epsilon_{\alpha \beta}^{T} D_{T}-\mathcal{W}_{\alpha \beta}
$$

Figure: Evolution of the abundances for $M_{\Delta}=M_{S}=M_{T}=10^{13} \mathrm{GeV}$, $m_{1}=10^{-3} \mathrm{eV}$ and $\mu / M_{\Delta}=0.2$

Final baryon asymmetry

- Before the action of sphalerons

$$
Y_{B-L}=\Delta_{\overline{\mathcal{L}}_{1}}-\operatorname{Tr}\left(\Delta_{\ell}\right)
$$

- In the end, we obtain the BAU

$$
\frac{n_{B}}{n_{\gamma}}=7.04 \times C \times Y_{B-L}
$$

- To be viable, the model must allow

$$
\frac{n_{B}}{n_{\gamma}} \sim 6 \times 10^{-10}
$$

Final baryon asymmetry

- Before the action of sphalerons

$$
Y_{B-L}=\Delta_{\overline{\mathcal{L}}_{1}}-\operatorname{Tr}\left(\Delta_{\ell}\right)
$$

- In the end, we obtain the BAU

$$
\frac{n_{B}}{n_{\gamma}}=7.04 \times C \times Y_{B-L}
$$

- To be viable, the model must allow

Final baryon asymmetry

- Before the action of sphalerons

$$
Y_{B-L}=\Delta_{\overline{\mathcal{L}}_{1}}-\operatorname{Tr}\left(\Delta_{\ell}\right)
$$

- In the end, we obtain the BAU

$$
\frac{n_{B}}{n_{\gamma}}=7.04 \times C \times Y_{B-L}
$$

- To be viable, the model must allow

$$
\frac{n_{B}}{n_{\gamma}} \sim 6 \times 10^{-10}
$$

(1) Presentation of the model

(2) CP asymmetry
(3) Boltzmann equations
(4) Results

Figure: Final baryon asymmetry as a function of m_{1} and $M_{\Delta}=M_{S}=M_{T}$ for $\mu / M_{\Delta}=0.2$. The red line indicates the observed BAU $\sim 6 \times 10^{-10}$

Figure: Final baryon asymmetry as a function of $\left|\left(m_{\nu}\right)_{e e}\right|$ and $M_{\Delta}=M_{S}=M_{T}$ for $\mu / M_{\Delta}=0.2$.
baryon asymmetry n_{B} / n_{γ}

Figure: Final baryon asymmetry as a function of m_{1} and $\sin ^{2} \theta_{13}$ for $M_{\Delta}=M_{S}=M_{T}=10^{13} \mathrm{GeV}, \mu / M \Delta=0.2$.

Conclusion

- This scenario can account for a successful baryogenesis
- The result is closely related to neutrino parameters thanks to the relation

- This scenario happens at a huge energy scale since $M_{\Delta}>10^{12} \mathrm{GeV}$ \rightarrow it cannot be tested directly
- But this scenario could be ruled out -for some values of $\left|\left(m_{\nu}\right)_{e e}\right|$ -if neutrinos are quasi-degenerate with $m_{1} \gtrsim 0.1 \mathrm{eV}$ -if the hierarchy is inverted

Conclusion

- This scenario can account for a successful baryogenesis
- The result is closely related to neutrino parameters thanks to the relation

$$
\left(m_{\nu}\right)_{\alpha \beta}=\frac{\mu v^{2}}{M_{\Delta}^{2}} f_{\alpha \beta}
$$

- This scenario happens at a huge energy scale since $M_{\Delta}>10^{12} \mathrm{GeV}$ \rightarrow it cannot be tested directly
- But this scenario could be ruled out -for some values of $\left|\left(m_{\nu}\right)_{\text {ee }}\right|$ -if neutrinos are quasi-degenerate with $m_{1} \gtrsim 0.1 \mathrm{eV}$ -if the hierarchy is inverted

Conclusion

- This scenario can account for a successful baryogenesis
- The result is closely related to neutrino parameters thanks to the relation

$$
\left(m_{\nu}\right)_{\alpha \beta}=\frac{\mu v^{2}}{M_{\Delta}^{2}} f_{\alpha \beta}
$$

- This scenario happens at a huge energy scale since $M_{\Delta}>10^{12} \mathrm{GeV}$ \rightarrow it cannot be tested directly
- But this scenario could be ruled out -for some values of $\left|\left(m_{\nu}\right)_{e e}\right|$ -if neutrinos are quasi-degenerate with $m_{1} \gtrsim 0.1 \mathrm{eV}$ -if the hierarchy is inverted

Conclusion

- This scenario can account for a successful baryogenesis
- The result is closely related to neutrino parameters thanks to the relation

$$
\left(m_{\nu}\right)_{\alpha \beta}=\frac{\mu v^{2}}{M_{\Delta}^{2}} f_{\alpha \beta}
$$

- This scenario happens at a huge energy scale since $M_{\Delta}>10^{12} \mathrm{GeV}$ \rightarrow it cannot be tested directly
- But this scenario could be ruled out -for some values of $\left|\left(m_{\nu}\right)_{e e}\right|$
-if neutrinos are quasi-degenerate with $m_{1} \gtrsim 0.1 \mathrm{eV}$
-if the hierarchy is inverted

The underlying $S O(10)$ model

$$
\begin{aligned}
\overbrace{16_{i}}^{S O(10)} & =\overbrace{\underbrace{10_{i}^{16}}_{\left(Q_{i}, u_{i}^{c}, e_{i}^{c}\right)} \oplus \underbrace{\overline{5}_{i}^{16}}_{\left(\mathcal{L}_{i}, \overline{\mathcal{D}}_{i}\right)} \oplus \underbrace{1_{i}^{16}}_{\nu_{i}^{c}}}^{S U(5)} \\
10_{i} & =\underbrace{5_{i}^{10}}_{\left(\overline{\mathcal{L}}_{i}, \mathcal{D}_{i}\right)} \oplus \underbrace{\overline{5}_{i}^{10}}_{\left(\ell_{i}, d_{i}^{c}\right)} \\
54 & =\underbrace{15 \oplus \overline{15}}_{\left(\Delta, \Delta^{\dagger}\right)} \oplus \underbrace{24}_{(S, T)}
\end{aligned}
$$

Lagrangian

$$
\mathcal{L}=\frac{1}{2} f_{i j} 10_{i} 10_{j} 54+\frac{1}{2} \mu 10_{H} 10_{H} 54+\frac{1}{2} M_{54}^{2} 54^{2}
$$

Figure: Final baryon asymmetry as a function of m_{3} (inverted hierarchy) and $M_{\Delta}=M_{S}=M_{T}$ for $\mu / M_{\Delta}=0.2$.

Figure: Final baryon asymmetry as a function of $\lambda_{\ell}=\sqrt{\operatorname{Tr}\left(f f^{\dagger}\right)}$ and $\lambda_{H}=\mu / M_{\Delta}$ for $m_{1}=10^{-3} \mathrm{eV}$ (normal hierarchy).

Figure: Final baryon asymmetry as a function of $\lambda_{\ell}=\sqrt{\operatorname{Tr}\left(f f^{\dagger}\right)}$ and $\lambda_{H}=\mu / M_{\Delta}$ for $m_{3}=10^{-3} \mathrm{eV}$ (inverted hierarchy).

[^0]: We need to derive the Boltzmann equation for $\left(\Delta_{\ell}\right)$

