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Introduction

Introduction

Baryon asymmetry of the universe (BAU)

ng _ [(5.1-6.5) x 1071° (BBN)
~ 16.04+0.8 x 1071° (CMB)

Ny

Sakharov's conditions Baryogenesis through leptogenesis

@ B violation [Fukugita, Yanagida]
9 CP violation 9 Creation of a lepton asymmetry in the
@ Processes that violate decay of heavy particles
B and CP out of @ Conversion to a baryon asymmetry by
equilibrium electroweak sphalerons
Y, 28
c=_8 =
Ye—1 79

ot
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Presentation of the model

Model based on a Grand Unified Theory with gauge group SO(10).
[M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]
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Particle content

@ 1 complex scalar triplet
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Model based on a Grand Unified Theory with gauge group SO(10).
[M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content New couplings
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@ 3 pairs of vector-like heavy
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Model based on a Grand Unified Theory with gauge group SO(10).
[M. Frigerio, P. Hosteins, S. Lavignac, A. Romanino (2009)]

Particle content New couplings

@ 1 complex scalar triplet o foplylp (AL = 2)
A= (AT, AT, AO)

o fpATL,Lp (AL =2)
@ 3 pairs of vector-like heavy

lepton doublets o puAtHH
L (Na) Z <~/\7a> o CRfmﬁRZaéﬂ (R =Sor T)
T\&) T\ The Yukawa couplings are related

L=1 =1 by SO(10) symmetry

@ 1 real scalar triplet
T=(TH, T°% T7) &1 real
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Presentation of the model

In this framework, SM neutrinos acquire a Majorana mass through the
type Il seesaw mechanism
[Schechter & al. - Lazarides & al. - Mohapatra & al. - Wetterich]

HOS Ay & “H° N \ /
Y
AO*LZ > (my) _llf,,v_2
MA l/aﬁ*2/radMi

Vq ﬁx B Vg
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Presentation of the model

In this framework, SM neutrinos acquire a Majorana mass through the
type Il seesaw mechanism
[Schechter & al. - Lazarides & al. - Mohapatra & al. - Wetterich]

N /
X 2
L.

1
AO*M_i > (Mv)ap = E,urfuﬁ Mi

Vo //ﬁxﬂ\\l/ﬂ

H™ & 7H
Y

Coupling matrix
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CP asymmetry

We consider the CP asymmetries in the decays of the three scalars.

CP asymmetries

F(AT — £0) — T(A — £°6°)

=2
ca Ta+Tat _
6R:F(R—>€£);F(R—>€£) R=5. T
R
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CP asymmetry

We consider the CP asymmetries in the decays of the three scalars.

CP asymmetries

F(AT — £0) — T(A — £°6°)

=2
ca Ta+Tat _
6R:F(R—>€£);F(R—>€£) R=5. T
R

For instance, in A — /€¢¢ decay, the asymmetry comes from

%
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CP asymmetry

The asymmetry vanishes if Mz ,Mz,, Mz > Ma or if
ML_17 ML—Z, ML‘3 < Ma.
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CP asymmetry

The asymmetry vanishes if Mz ,Mz,, Mz > Ma or if
ML_17 MEz’ ML‘3 < Ma.

CP asymmetries

With the assumption Mz < Ma s, 7 < Mﬁ-l3 (so that Lo and L3
decouple from the dynamics) one gets

1 Im[fll fofT 11]
AT 4 T(f) ZT

3 Im[fll fofT 11] i

€s = — & 2
167T ffT 11 MS

1 Im[fll fofT 11] Mi

T "1 () S\wm2
167T ffT 11 MT
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters

In particular

M3\ *
Im[fll(fofT)ll]—( 2A) (—mmaAm3, iy clssty sin 2p
1%

2 2 2 2 2 22 2 .
+mym3Am3; iy Ci35t3 5in 2(0 — p) + memsAms,cisst,siszsin20)
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters

In particular

M3\ *
Im[fll(fofT)ll]—( 2A) (—mimaAm3, ¢ty clssty sin 2p
1%

2 2 2 2 2 22 2 .
+mym3Amg; ¢35 Ci3573 5in 2(0 — p) + MemsAms,ci357,573 5in 20)

@ m;: eigenvalues of m, (physical neutrino masses)

= _ /2 2 2
m = my + m5 + m3
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters

In particular

M3\ *
Im[fll(fofT)ll]—( 2A) (=mmaAm3, ¢y clssty sin 2p
1%

2 2 2 2 2 2.2 2
+mym3Am3; ¢35 Ci35t3 sin 2(0 — p) + memsAms,ci35t,5135in 20)

@ m;: eigenvalues of m, (physical neutrino masses)

= _ /o2 2 2
m = my + m5 + m3

2 _ 2 2
oAmU_m,-—mj
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters

In particular

2M3\*
Im[fy(FT )] = ( 2A) (—mimaAm3, ci,clsst, sin 2p
%

2 2 2 2 2 2 2 2
+mymzAm; i, ci35t3 sin 2(0 — p) + memsAms,cisst,sissin20)

@ m;: eigenvalues of m, (physical neutrino masses)

= __ 2 2 2
m = +/my -+, + g

2 2 2

9 Am,-j =m; — m;

9 cjj = coslj;, s;j =sinbj;
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CP asymmetry

The CP asymmetry depends only on the scalar masses, the coupling p,
and neutrino parameters

In particular

M3\ *
Im[fll(fofT)ll]—( 2A) (—mimaAm3, ¢ty clssty sin 2p
1%

2 2 2 2 2 22 2 .
+mym3Amg; ¢35 Ci35t3 5in 2(0 — p) + MemsAms,ci357,5535in 20)

@ m;: eigenvalues of m, (physical neutrino masses)

= __ 2 2 2
m = +/my -+, + g

2 2 2

9 Am,-j =m; — m;

9 cj = cosbj;, sj =sinbj

@ p and o are Majorana phases.
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Boltzmann equations

Boltzmann equations

@ 3 equations for the scalar densities with the general form

T

dY,
H :_Da als
sHz—- (Ds+S5), =z
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Boltzmann equations

@ 3 equations for the scalar densities with the general form

T

dY,
H :_Da als
sHz—- (D;+S2), =z

D, o< I',: decays and inverse decays of particle a
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Boltzmann equations

@ 3 equations for the scalar densities with the general form

T

dY,
H :_Da als
sHz—- (Ds+S5), =z

D, o I',: decays and inverse decays of particle a
S,: scatterings consuming a (typically electroweak annihilations)

@ We also need the asymmetries in Standard Model leptons Ay, in
heavy leptons Az , in Higgs doublets Ay and in triplets Aa

A,
sHz 982 _ Dy, — W,
dz
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Boltzmann equations

Boltzmann equations

@ 3 equations for the scalar densities with the general form

T

dY,
H :_Da als
sHz—- (Ds+S5), =z

D, o I',: decays and inverse decays of particle a
S,: scatterings consuming a (typically electroweak annihilations)

@ We also need the asymmetries in Standard Model leptons Ay, in
heavy leptons Az , in Higgs doublets Ay and in triplets Aa

A,
sHz 982 _ oDy — W,
dz

b CP asymmetry in the decay of b into a + ...
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Boltzmann equations

Boltzmann equations

@ 3 equations for the scalar densities with the general form

Y,
stddz =—(D,+5S.), =z =

D, o I',: decays and inverse decays of particle a

S,: scatterings consuming a (typically electroweak annihilations)
@ We also need the asymmetries in Standard Model leptons Ay, in

heavy leptons Az , in Higgs doublets Ay and in triplets Aa

A,
std = ebe — W,
dz

€2 CP asymmetry in the decay of b into a + ...
W,: washout due to inverse decays and scatterings
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Boltzmann equations

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]

@ If charged lepton Yukawa interactions are in equilibrium
(T < 10¥GeV for 7, T < 10°GeV for p) lepton flavours are
distinguishable
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[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]
@ If charged lepton Yukawa interactions are in equilibrium
(T < 10¥GeV for 7, T < 10°GeV for p) lepton flavours are
distinguishable
= For T < 10°GeV, write 3 Boltzmann equations for Ay,, Ay, and
Ay
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Boltzmann equations

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]
@ If charged lepton Yukawa interactions are in equilibrium
(T <1012 GeV for 7, T < 10°GeV for p) lepton flavours are

distinguishable

= For T < 10°GeV, write 3 Boltzmann equations for Ay,, Ay, and
AV,

Cr *

@ In the opposite case, lepton flavors are undistinguishable
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Boltzmann equations

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]
@ If charged lepton Yukawa interactions are in equilibrium
(T < 10¥GeV for 7, T < 10°GeV for p) lepton flavours are
distinguishable
= For T < 10°GeV, write 3 Boltzmann equations for Ay,, Ay, and
Ay

Cr *

@ In the opposite case, lepton flavors are undistinguishable
= For T > 10'2GeV, there are quantum correlations between the
various flavours to take into account.
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Boltzmann equations

Flavour dependance

[R. Barbieri, P. Creminelli, A. Strumia, N. Tetradis, '99]
@ If charged lepton Yukawa interactions are in equilibrium
(T < 10¥GeV for 7, T < 10°GeV for p) lepton flavours are
distinguishable
= For T < 10°GeV, write 3 Boltzmann equations for Ay,, Ay, and
Ay

@ In the opposite case, lepton flavors are undistinguishable

= For T > 10'2GeV, there are quantum correlations between the
various flavours to take into account.

Density matrix

Ang, = np, —nge = (: 0L Lo ) = Angg = (: €L052)

. . An
We need to derive the Boltzmann equation for (Ay)as = —f
s
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Boltzmann equations

Closed time-path formalism

Formalism used to describe quantum out of equilibrium phenomena,
applied to leptogenesis [W. Buchmiiller & al., De Simone & al., Garbrecht & al.]
C = time-path that goes from 0 to oo and back

+

+
- L
>

2\
J

»
>
<«

@aﬁ = <Tc€a17,3) Green's function, time-ordered following the contour.

5 G+t _G+-
e-(¢ 8
For instance G(;;(X,y) = —i<€a(X)Za(y)>

Idea: Deduce the evolution equation of An,z = (: €1 ¢5 :) From the
equation of motion of Gg,
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Boltzmann equations

@ Schwinger-Dyson equation expresses G as a function of the free
Green's function G° and the 1Pl self-energy X

Ga B ég 8
ES o = —_—

70
Gap
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Boltzmann equations

@ Schwinger-Dyson equation expresses G as a function of the free
Green's function G° and the 1Pl self-energy X

Ga B ég 8
ES o = —_—

70
Gap

@ One obtains the evolution equation for the density matrix by
dAn, . Rl
noticing that d,; B~ —Tr((lgx + i @y)GB(j(X, Y))ly=x
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Boltzmann equations

@ Schwinger-Dyson equation expresses G as a function of the free
Green's function G° and the 1Pl self-energy X

Gap ég B ég P éa B
ES o = —_— —+ =

@ One obtains the evolution equation for the density matrix by
dAn, . Rl
noticing that d,; B~ —Tr((lgx + i @y)GB(j(X, Y))ly=x

d(Ar)as
dz

Anag dAnag
dt  drt

d
and by replacing +3HAnyg = sHz
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Boltzmann equations

@ Schwinger-Dyson equation expresses G as a function of the free
Green's function G° and the 1Pl self-energy X

Gap Gog @fw

ES o = —_—

@ One obtains the evolution equation for the density matrix by
dAn, . Rl
noticing that d,; b= —Tr((lgx +1dy)Gaa (%, ¥))ly=x
Angg . dAn.gs d(A¢)ap
dt dt dz

@ In the end, taking the classical limit, one obtains a Boltzmann
equation for the density matrix of lepton asymmetry (A;)ap

+3HAnyg = sHz

d
and by replacing

d(Ar)ag

H.
sHz Iz

= GSBDA + egBDs + G(IBDT — Wags

Benoit Schmauch



Boltzmann equations

10-2

10-3

10-4

o
3

1073

10-6

10-7

1078 = 7
10-2 10-1 I 10 102

My /T

Figure: Evolution of the abundances for Ma = Ms = My = 10" GeV,
m = 1073 eV and u/Ma =0.2
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Boltzmann equations

Final baryon asymmetry |

@ Before the action of sphalerons

YB_[_ = Aﬁ_1 — TI"(A@)
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@ |n the end, we obtain the BAU
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Ny
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Boltzmann equations

Final baryon asymmetry

@ Before the action of sphalerons
YB_[_ = Aﬁ_1 — TI"(A@)
@ |n the end, we obtain the BAU

"B _704xCx Vs,
Ny

@ To be viable, the model must allow

D8 _6x10°10
Ny
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Results

Baryon asymmetry npg/n,

1014

!
1
|
]
i
I
!

10
10!

m in eV

Figure: Final baryon asymmetry as a function of m; and Ma = Ms = My for
1/Ma = 0.2. The red line indicates the observed BAU ~ 6 x 107



Results

Baryon asymmetry npg/n,

Im gl in eV

Figure: Final baryon asymmetry as a function of |(my )ee| and Ma = Ms = My
for u/Ma = 0.2
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Results

baryon asymmetry npg/n,

1072

Figure: Final baryon asymmetry as a function of m; and sin® 63 for
Ma = Ms = Mt = 10" GeV, u/MA = 0.2.
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@ This scenario can account for a successful baryogenesis
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Conclusion

@ This scenario can account for a successful baryogenesis

@ The result is closely related to neutrino parameters thanks to the

relation

2
13%

(My)ap = fop
/\//i
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Conclusion

Conclusion

@ This scenario can account for a successful baryogenesis

@ The result is closely related to neutrino parameters thanks to the
relation
v

:—fa
M2 P

(ml/)aﬁ

@ This scenario happens at a huge energy scale since Ma > 1012 GeV
— it cannot be tested directly
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Conclusion

Conclusion

@ This scenario can account for a successful baryogenesis

@ The result is closely related to neutrino parameters thanks to the

relation )
3%

(mV)aB =7 fa
MAx

@ This scenario happens at a huge energy scale since Ma > 1012 GeV
— it cannot be tested directly
@ But this scenario could be ruled out
-for some values of |(m, )ee]
-if neutrinos are quasi-degenerate with m; = 0.1 eV
-if the hierarchy is inverted
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Conclusion

The underlying SO(10) model

50(10) SuU(5)
=
16, 101° @ 5!° o 17°

Lagrangian

1 1 1
£ = 5£;10;10;54 + 41104 10,4 54 + 5/\/l§4542
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Conclusion

Baryon asymmetry ng/n,

103

M, in GeV

m 3 in eV

Figure: Final baryon asymmetry as a function of ms (inverted hierarchy) and
MA = Ms = MT for /.L/MA =0.2.
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Conclusion

Baryon asymmetry ng/n,
0.4

0.3

0.1

0.1 0.2 0.3 0.4

Figure: Final baryon asymmetry as a function of A\, = y/Tr(fft) and
An = p1/Ma for mi = 1072 eV (normal hierarchy).
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Conclusion

Baryon asymmetry npg/n,

Figure: Final baryon asymmetry as a function of A\, = y/Tr(fft) and
A = p/Ma for ms = 1073 eV (inverted hierarchy).
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