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The Higgs sector of the MSSM

The Higgs sector of the MSSM is a two Higgs doublet model, whose scalar

potential and Yukawa couplings are constrained by supersymmetry (SUSY).

The scalar potential of the MSSM is:
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where µ is a supersymmetric Higgsino mass parameter and m2
d, m

2
u, m

2
ud are

soft-SUSY-breaking masses.

Minimizing the Higgs potential, the neutral components of the Higgs fields

acquire vacuum expectation values (vevs), 〈H0
d〉 = vd/

√
2 and 〈H0

u〉 = vu/
√
2,

where v2 ≡ v2d + v2u = 4m2
W/g2 = (246 GeV)2. The ratio of the two vevs is

an important parameter of the model:

tanβ ≡ vu
vd

.



Tree-level neutral MSSM Higgs masses

The CP-even Higgs bosons h and H are eigenstates of the squared-mass matrix
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The eigenvalues of M2
0 are the squared-masses of the two CP-even Higgs

scalars

m2
H,h = 1

2

(
m2

A +m2
Z ±

√
(m2

A +m2
Z)

2 − 4m2
Zm

2
A cos2 2β

)
,

and α is the angle that diagonalizes the CP-even Higgs squared-mass matrix.

It follows that

mh ≤ mZ| cos 2β| ≤ mZ .

If this tree-level mass inequality were more generally satisfied, then the MSSM

would be ruled out today!



The radiatively-corrected mass of h0

The tree-level inequality, mh ≤ mZ, is significantly modified by quantum

corrections. The Higgs mass can be shifted due to an incomplete cancellation

from loops of particles and their superpartners [H.E. Haber and and

R. Hempfling (1991); Y. Okada, M. Yamaguchi and T. Yanagida (1991);

J.R. Ellis, G. Ridofi and F. Zwirner (1991)]:
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where Xt ≡ At − µ cot β governs stop mixing and M2
S is the average squared-

mass of the top-squarks t̃1 and t̃2 (which are the mass-eigenstate combinations

of the interaction eigenstates, t̃L and t̃R). Here, only the leading one-loop log

and leading squark mixing contributions are exhibited.



The state-of-the-art computation includes the full 1-loop result, all the

significant 2-loop contributions, some of the leading 3-loop terms, and

renormalization-group improvements.

-4 -2 0 2 4
110

115

120

125

130

135

Xt�Ms

m
h
HG
eV
L

mQ=mu=1 TeV, tanΒ=30



Implications of the observed Higgs state with mh ≃ 125 GeV
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Contour plot of mh in the MS vs. Xt plane, with tan β = 30 and MQ = MU = MS . The solid curve is mh = 125 GeV with

mt = 173.2 GeV. The band around the solid curve corresponds to mh = 125 ± 2 GeV. The dashed lines correspond to varying mt

from 172–174 GeV. Taken from P. Draper, P. Meade, M. Reece and D. Shih, Phys. Rev. D 85, 095007 (2012).
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Even without assumptions about the SUSY-breaking mechanism, the observed

Higgs mass tends to pushes some MSSM parameters into the multi-TeV regime.

This provides significant tension with naturalness constraints. The tension is

exacerbated in specific SUSY breaking models.
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But, is the MSSM Higgs mass prediction reliable? Could it potentially be

modified by new physics that lies significantly above the TeV scale?

The Higgs mass prediction relies on decoupling—very heavy states that do

not receive their masses from electroweak symmetry breaking should have a

negligible impact on the Higgs mass prediction.

In 2011, S. Heinemeyer, M.J. Herrero, S. Penaranda and A.M. Rodriguez-

Sanchez [JHEP 1105, 063 (2011)] analyzed corrections to the MSSM Higgs

mass in the seesaw-extended MSSM. Some have interpreted their results as

suggesting that contributions from the right-handed neutrino sector could alter

the Higgs mass prediction by a few GeV. If true, one might accommodate the

observed Higgs mass more comfortably within some SUSY-breaking scenarios.

Patrick Draper and I argue in arXiv:1304.6103 [hep-ph] that this interpretation

is not correct. Decoupling of heavy-scale physics does hold as expected, and

the impact of the right-handed neutrino sector of the seesaw-extended MSSM

is utterly negligible and thus can be safely ignored in the Higgs mass prediction.



The MSSM Higgs mass at one-loop

Although rarely displayed, the complete 1-loop expressions for the pole masses of the CP-even

neutral MSSM Higgs bosons are given by:
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where sβ−α ≡ sin(β − α), cβ−α ≡ cos(β − α), etc., and the Higgs mixing angle α is

determined implicitly via its tree-level relation,

m2
A

m2
Z

= −
cβ+αsβ+α

cβ−αsβ−α

.

For consistency of the one-loop approximation, the arguments of the self-energies are evaluated

by their tree-level values.



The Σ functions for the scalars (vectors) are the real parts of one loop self-

energies (proportional to gµν). Here, the on-shell scheme is used in defining

the renormalized physical boson masses.

In terms of the one-loop tadpoles, Au and Ad, of the hypercharge ±1 neutral

Higgs fields (which are determined by the requirement that they cancel the

corresponding tree-level tadpoles), we have defined,

Ah ≡ Au cosα−Ad sinα , AH ≡ Au sinα+Ad cosα .

These are related to the Goldstone self-energy,

√
2vΣGG(0) = AHcβ−α +Ahsβ−α ,

which follows from the requirement that the one-loop Goldstone boson mass

vanishes.

In order to make use of the above formulae, we must decide on a method for

fixing the tan β counterterm, denoted above by δ tanβ.



A consistent low energy definition of tanβ

Consider the seesaw-extended MSSM. How does the heavy right-handed

neutrino sector affect the predicted values of m2
h and m2

H? The answer

depends on the definition of tan β. If you define tanβ based on a physical

quantity that can be measured in the low-energy theory, then the effects of the

heavy right-handed neutrino sector are completely negligible.

Here is a simple example of a consistent low energy definition of tan β. We

call this scheme the Higgs mass (HM) scheme. In this scheme, we use mH as

an input parameter in place of tan β. In this case,

m2
h = m2

A+m2
Z−m2

H+Ah(m
2
h)+AH(m2

H)−ΣZZ(m
2
Z)−ΣAA(m

2
A)−ΣGG(0) ,

a result originally obtained by M. Berger in 1990. [Theoretical issues associated

with the definition of tanβ have also been considered by A. Freitas and

D. Stockinger (2002).]



In the HM scheme, the tanβ counterterm is obtained by settingm2
H = (m2

H)tree

in the one-loop expression for m2
H, which defines tan β in terms of the physical

parameters mZ, mH and mA,

(δ tanβ)HM =
1
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2
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)
.

A second possible scheme is to define tan β via the decay A0 → ττ . The tan β

counterterm would then depend on the measured partial width. Both these

schemes are complete on-shell schemes.

An alternative strategy: define tan β via the DR scheme. Not surprisingly,

the effects of the high-scale physics do not decouple. In this case, tan βDR is

not directly a physical parameter. One would then measure some low-energy

process that depends on tan βDR. Eliminating tanβDR in terms of the low

energy observable, all effects of high-scale physics must then decouple.



Can DR be modified to respect decoupling? The mDR scheme of Heinemeyer et al. attempts

to do this by removing by hand terms that are logarithmically sensitive to the high energy scale.

But, this procedure fails to remove constant terms induced by the high-scale physics that can

be of order a few GeV. Such terms are absent in the physical schemes described previously.

We have developed an alternative scheme that automatically removes both the large logarithms

and the constant terms induced by the high-scale physics. After renormalizing the vevs,

vu → Z−1/2
Hu

vu = vu(1 + 1
2δZHu) , vd → Z−1/2

Hd
vd = vd(1 + 1

2δZHd
) ,

the tan β counterterm, defined by tan β → tan β − δ tan β is given by:

δ tan β ≡ 1
2(δZHd

− δZHu) tan β .

We now introduce the decoupling scheme (DEC) to fix the wave function renormalization,

(
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∣
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∣

∣
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The large logarithms and the constant terms induced by the high-scale physics are manifestly

removed. Although tan βDEC is not directly a physical parameter, its definition is completely

insensitive to the high-scale physics.



The seesaw extended MSSM

Introduce a right-handed neutrino superfield N and a superpotential

W = µHdHu + yνLHuN − ylLHdR +
1

2
mMNN .

Add soft SUSY-breaking terms,

Vsoft = m
2
R̃Ñ

∗
Ñ + (yνAνH

0
U ν̃LÑ

∗
+ mMBνÑÑ + h.c.) .

As a result, one obtains the seesaw neutrino mass matrix,

Mν =

(

0 mD

mD mM

)

,

where mD ≡ yνvu. The CP-even/odd (+/−) sneutrino mass matrices are given by:
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(

m2
L̃
+ m2

D + 1
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Z cos 2β mD(Aν − µ cot β ± mM)
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)

,

where m2
L̃
is the usual soft-breaking mass for the left-handed sneutrinos present in the MSSM.



Decoupling of the right-handed neutrino sector in the

one-loop expression for mh

For simplicity, set µ = Aν = Bν = 0 and fix mL̃ = mR̃ ≡ mS. Then expand

to first order in m2/m2
M , where m ∈ {mZ,mS,mD}, and to leading order in

powers of mZ. At leading-log order, the lightest Higgs mass squared is shifted

relative to its tree level value in the HM and DEC schemes by an amount:

(
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Z
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mS
,

where cW ≡ cos θW = mW/mZ. The second term in both expressions above,

which is generated by the right-handed neutrino sector, yields a correction

∆mh ∼ m2
ν/mh (where mν ∼ m2

D/mM) and is thus utterly negligible.



The difference in the two results can be accounted for by the different definitions

of tan β. Indeed,

tan βHM = tan βDEC + δ tanβHM − δ tanβDEC ,

implies that

(
∆m2

h

)

DEC

−
(
∆m2

h

)

HM

≃ −2m2
Z cos2 β sin 4β

[
δ tanβHM − δ tan βDEC

]
.

If we evaluate δ tan β in the two schemes employing the same approximations

used to obtain ∆m2
h above, we obtain:

δ tanβHM − δ tan βDEC

tanβ
≃ c2β

(
g2

96π2c2W
log

mS

mZ
− g2m4

Dm
2
S

32π2c2Wm2
Mm4

Zs
4
β

log
mM

mS

)
.

Substituting this expression above then reproduces the difference in the two

expressions for ∆m2
h previously obtained.



We can compare the mass shift in the DEC scheme to that of the DR scheme

for defining the tanβ counterterm,

(
∆m2

h

)

DR

≃
(
∆m2

h

)

DEC

+
g2m2

D

8π2c2W

{
cos2 β cos 2β log

m2
M

Q2
+ 1

}
,

where Q is the arbitrary mass scale of DR scheme. Even if one sets Q = mM ,

which removes the large logs by hand, one is left with a term of O(m2
D) which

can be as large as a few GeV. This is a remnant of the right-handed neutrino

scale and must also be removed to restore the decoupling behavior.

Numerical instability

Even if the definition of tanβ respects decoupling, intermediate results will

exhibit sensitivity to the right-handed neutrino sector. This sensitivity is

removed only when all the relevant terms are combined to obtain the physical

Higgs masses. This typically requires a cancellation of terms with an accuracy

of 20 significant figures or more. Achieving this cancellation numerically is

challenging, in contrast to the semi-analytical analysis exhibited previously.



Effective field theory estimates of the Higgs mass shift

Suppose that we integrate out the right-handed neutrino and sneutrino at the

right-handed neutrino mass threshold. Above this scale, the running of the

Higgs quartic coupling is supersymmetric, but the TeV-scale soft mass splits

the scalar and fermion states, leading to a logarithmic correction to the quartic

coupling from the right-handed sneutrino bubble diagram:

∆m2
h ∼ m4

D

v2
log

m2
Ñ

m2
N

∼ m4
Dm

2
S

v2m2
M

.

This term is mM-suppressed and has no log enhancement. In addition to direct

contributions to the Higgs quartic coupling, we also generate an approximately

supersymmetric higher-dimensional coupling,

∆W ∼ y2ν
mM

LHLH .



This coupling affects the running of the quartic coupling when supersymmetry

is broken via the diagrams exhibited below:

νL

νL

Hu

Hu

Hu

Hu

ν̃L

Hu

Hu

Hu

Hu

From the vertices, we obtain a factor m4
D/v

4m2
M , and at one-loop leading

logarithmic order, we obtain a factor m2
S log(m2

M/m2
S) from the sum of the

loop integrals (running from mM to mS.) Thus the Higgs mass shift is

∆m2
h ∼ m4

Dm
2
S

v2m2
M

log
m2

M

m2
S

,

reproducing the leading term generated by the right-handed neutrino sector.



Large SUSY-breaking in the right-handed neutrino sector?

One might be tempted to consider the possibility of choosing large values for

the SUSY-breaking parameters m2
R̃
and Bν. An effective field theory estimate

shows that

∆m2
h ∼ m4

D

v2
log

(
m2

M +m2
R̃

m2
M

)
,

and

∆m2
h ∼ m4

D

v2
log

(
m2

M −B2
ν

m2
M

)
,

respectively, which would yield a Higgs mass shift of order∆mh ∼ m4
D/(v

2mh).

However, naturalness constraints suggest that mR̃ should not be larger than

other soft-SUSY-breaking parameters, and Bν cannot be larger than about

103mν̃L in order to avoid generating too large a one-loop mass for neutrinos

via ν̃L–ν̃R mixing [Y. Grossman and H.E. Haber (1997)].



Conclusions

• It is possible to accommodate mh ∼ 125 GeV within the MSSM. However,

this value strongly suggests that the relevant SUSY-breaking parameters

must be at least of O(1 TeV) or higher, which provides tension with

expectations of naturalness. This tension is often exacerbated in specific

SUSY-breaking models.

• The MSSM predictions for the masses of the neutral CP-even Higgs bosons

are robust. Potential contributions to these masses due to additional physics

at a very high mass scale are strongly suppressed (decoupling!).

• In practice, one must employ a sensible definition of tanβ that respects

decoupling. As an example, the contribution in the seesaw-extended MSSM

from the heavy right-handed neutrino sector to the one-loop MSSM Higgs

mass (when expressed in terms of mA, tanβ and other parameters of the

low-energy MSSM spectrum) is utterly negligible.


