#### Revisiting the $\Gamma(K \to e\nu) / \Gamma(K \to \mu\nu)$ ratio in supersymmetric unified models

Renato Fonseca

Centro de Física Teórica de Partículas Instituto Superior Técnico

#### PLANCK 2013 Bonn

Based on Eur. Phys. J. C72 (2012) 2228 (R.M.F, J.C.Romão and A.M.Teixeira)

## Outline

Lepton Flavor Violation and SUSY

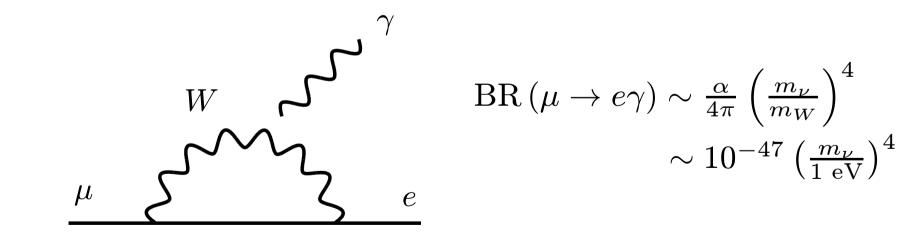
The  $R_K$  observable

**Results of our analysis** 



# Lepton Flavor Violation and SUSY

- In the Standard Model, there is essentially no violation of the flavor of charged leptons (cLFV)
- Non-perturbative processes violate lepton number, but at low energies/temperatures the effect is very small
- **Beyond the SM**: neutrino oscillations do violate lepton flavour. But even with small neutrino masses, cLFV is expected to be negligible



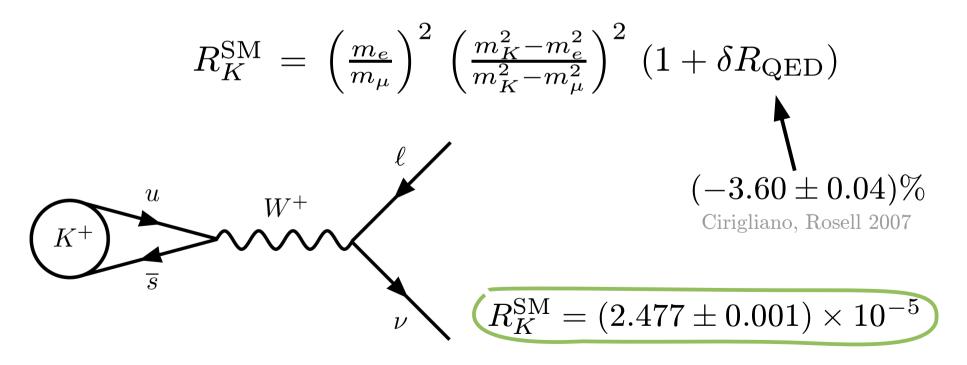
# Lepton Flavor Violation and SUSY

• **SUSY** extensions of the SM have new sources of quark and lepton flavor violation:

$$-\mathcal{L}_{\text{soft}} = \dots + \tilde{u}_{R}^{\dagger} h_{u} \tilde{Q} \cdot H_{u} + \tilde{d}_{R}^{\dagger} h_{d} \tilde{Q} \cdot H_{d} + \tilde{e}_{R}^{\dagger} h_{e} \tilde{L} \cdot H_{d} + \text{h.c.} \\ + \tilde{Q}^{\dagger} m_{\tilde{Q}}^{2} \tilde{Q} + \tilde{L}^{\dagger} m_{\tilde{L}}^{2} \tilde{L} + \tilde{u}_{R}^{\dagger} m_{\tilde{u}}^{2} \tilde{u}_{R} + \tilde{d}_{R}^{\dagger} m_{\tilde{d}}^{2} \tilde{d}_{R} + \tilde{e}_{R}^{\dagger} m_{\tilde{R}}^{2} \tilde{e}_{R}$$

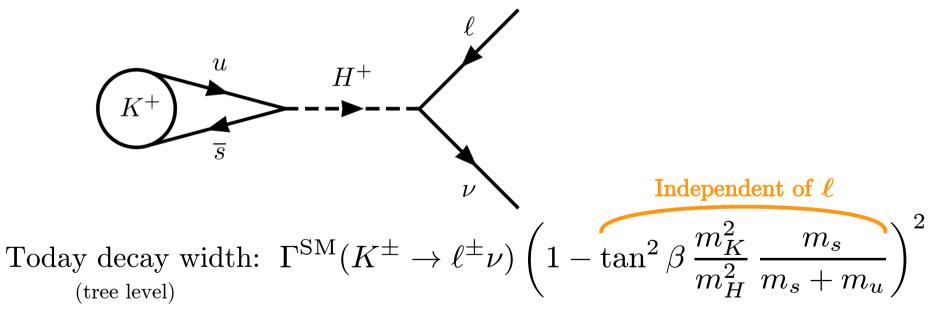
- Miss-alignment between the soft breaking SUSY masses/trilinear couplings and the Yukawa couplings can lead to large cLFV (and FCNC, CP violation)
- Stringent experimental bounds  $(\ell_i \to \ell_j \gamma, ...)$  imply that these new sources of cLFV must be small
- Pion and kaon leptonic decays are also good new Physics probes (in particular of  $m_{\tilde{B}}^2$ ) Masiero, Paradisi, Petronzio 2006

- $R_K = \Gamma \left( K \to e\nu \right) / \Gamma \left( K \to \mu\nu \right)$  is a ratio of decay widths
- **QCD uncertainties** cancel in  $R_K$  to a good approximation
- The analogous ratio  $R_{\pi}$  is known with a better experimental precision, but it is less sensitive to new Physics  $(m_K > m_{\pi})$



Goudzovski 2011 (NA62 Collab.)

- Experimental value:  $R_{K}^{\exp} = (2.488 \pm 0.010) \times 10^{-5}$
- Equivalently,  $R_K^{\text{exp}} = R_K^{\text{SM}} (1 + \Delta r)$  with  $\Delta r = (4 \pm 4) \times 10^{-3}$
- In 2HDM type-II the charged Higgs can also mediate the meson decay (destructive interference with the W diagram) Hou 1993



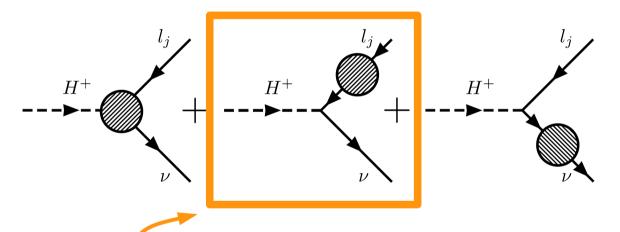
Consequence:  $R_K$  does not change

- At loop level things change considerably: the  $\nu\ell H$  vertex becomes LFV, inducing  $K \to e\nu_{\tau}$  Masiero, Paradisi, Petronzio 2006
- The change to  $R_K$  can be very large:  $\Delta r \gtrsim \mathcal{O}(1\%)$

Picks up the tau Yukawa coupling  

$$\Delta r \propto \tan^{6} \beta, \frac{m_{\tau}^{2}}{m_{e}^{2}}, \left(m_{\widetilde{R}}^{2}\right)_{\tau e}^{2} \leftarrow \begin{array}{c} \text{Sensitive mainly to the} \\ \text{right sleptons mass matrix} \end{array}$$
Enhanced by the so-called HRS effect  
Hall, Rattazzi, Sarid 1993  
Calculation done in the MIA approximation: 1 LFV MI  $\rightarrow \Delta r > 0$   
 $1 \text{ MI}$  (no interference with the SM process)  
 $\Delta r \sim \frac{\mathbf{X}^{2} \left( \langle m_{\ell}^{2} \rangle - \langle m_{\chi^{0}}^{2} \rangle \right)^{2}}{4} + 2\mathbf{X} \left( m_{\tilde{L}}^{2} \right)_{e\tau} + \mathbf{X}^{2} \left( m_{\tilde{L}}^{2} \right)_{e\tau}^{2}$   
 $\mathbf{X} \equiv \frac{1}{192\pi^{2}} m_{K}^{2} g'^{2} \mu M_{1} \frac{\tan^{3} \beta}{m_{H^{\pm}}^{2}} \frac{m_{\tau}}{m_{e}} \frac{\langle m_{\tilde{L},\chi^{0}}^{2} \rangle^{3}}{\langle m_{\tilde{L},\chi^{0}}^{2} \rangle^{3}} = \frac{1}{2} \langle \langle m_{\ell}^{2} \rangle + \langle m_{\chi^{0}}^{2} \rangle \rangle$ 

- There are other analyses: Ellis, Lola, Raidal 2009 Girrbach, Nierste 2012
- For a more accurate calculation of  $R_K$  we have computed the **radiative** effects to the  $\nu \ell H$  vertex without the MIA  $\rightarrow$  lepton kinetic, mass and terms must be renormalized Bellazzini, Grossman, Nachshon, Paradisi 2011



HRS effect: can potentially lead to a large effect

$$\mathcal{L}_{0}^{H^{\pm}} = i \overline{\ell}_{L} \left( \mathbf{1} + \underline{\eta}_{L}^{\ell} \right) \partial \ell_{L} + i \overline{\ell}_{R} \left( \mathbf{1} + \underline{\eta}_{R}^{\ell} \right) \partial \ell_{R} + i \overline{\nu}_{L} \left( \mathbf{1} + \underline{\eta}_{L}^{\nu} \right) \partial \nu_{L} \\ - \left[ \overline{\ell}_{L} \left( M^{l0} + \eta_{M}^{\ell} \right) \ell_{R} + \text{h.c.} \right] + \left[ \overline{\nu}_{L} \left( 2^{3/4} G_{F}^{1/2} \tan \beta M^{l0} + \underline{\eta}_{L}^{H} \right) \ell_{R} H^{+} + \text{h.c.} \right]$$

**Rotate/renormalize** fields:

$$\begin{split} \ell_L^{\text{old}} &= K_L^{\ell} \left( \hat{Z}_L^{\ell} \right)^{-\frac{1}{2}} R_L^{\ell} \ell_L^{\text{new}} \qquad \hat{Z}_L^{\ell} = K_L^{\ell \dagger} \left( \mathbf{1} + \eta_L^{\ell} \right) K_L^{\ell} \\ \ell_R^{\text{old}} &= K_R^{\ell} \left( \hat{Z}_R^{\ell} \right)^{-\frac{1}{2}} R_R^{\ell} \ell_R^{\text{new}} \qquad \hat{Z}_R^{\ell} = K_R^{\ell \dagger} \left( \mathbf{1} + \eta_R^{\ell} \right) K_R^{\ell} \\ \nu_L^{\text{old}} &= K_L^{\nu} \left( \hat{Z}_L^{\nu} \right)^{-\frac{1}{2}} R_L^{\ell} \nu_L^{\text{new}} \qquad \hat{Z}_L^{\nu} = K_L^{\nu \dagger} \left( \mathbf{1} + \eta_L^{\nu} \right) K_L^{\nu} \end{split}$$

The renormalized 
$$\nu \ell H$$
 vertex:  $\mathcal{L}^{H^{\pm}} \equiv \overline{\nu}_L \, Z^H \, \ell_R \, H^+ + \text{h.c.}$   
 $Z^H = 2^{3/4} G_F^{1/2} \tan \beta \, R_L^{\ell^{\dagger}} \left( \hat{Z}_L^{\nu} \right)^{-\frac{1}{2}} K_L^{\nu^{\dagger}} K_L^{\ell} \left( \hat{Z}_L^{\ell} \right)^{\frac{1}{2}} R_L^{\ell} M^l$   
 $+ R_L^{\ell^{\dagger}} \left( \hat{Z}_L^{\nu} \right)^{-\frac{1}{2}} K_L^{\nu^{\dagger}} \left( -2^{3/4} G_F^{1/2} \, \tan \beta \, \eta_M^{\ell} + \eta^H \right) K_R^{\ell} \left( \hat{Z}_R^{\ell} \right)^{-\frac{1}{2}} K_R^{\ell}$   
 $\downarrow \quad \dots \text{up to 1 loop...} \downarrow$   
 $Z^H = 2^{3/4} G_F^{1/2} \, \tan \beta \left[ \left( \mathbf{1} + \frac{\eta_L^{\ell}}{2} - \frac{\eta_L^{\nu}}{2} \right) \, M^l - \eta_M^{\ell} \right] + \eta^H$ 

- We did not try to explain the origin of  $\delta_{\tau e}^{RR}$  we just assumed that it is big and computed the value of  $\Delta r$  for different cases using **SPheno**:
  - Modified cMSSM (with seesaw I / II)
  - NUHM
  - Unconstrained MSSM
- We also looked at one **L-R seesaw model**

• cMSSM with seesaw is known to induce cLFV, but not through the right sleptons mass matrix Borzumati, Masiero 1986

Why put  $\delta_{\tau e}^{RR} \neq 0$  "by hand"?

• Non-exhaustive analysis of the parameter space of the L-R model showed that  $\delta_{\tau e}^{RR} \sim 0.01$  at most (assuming no fine-tunning)

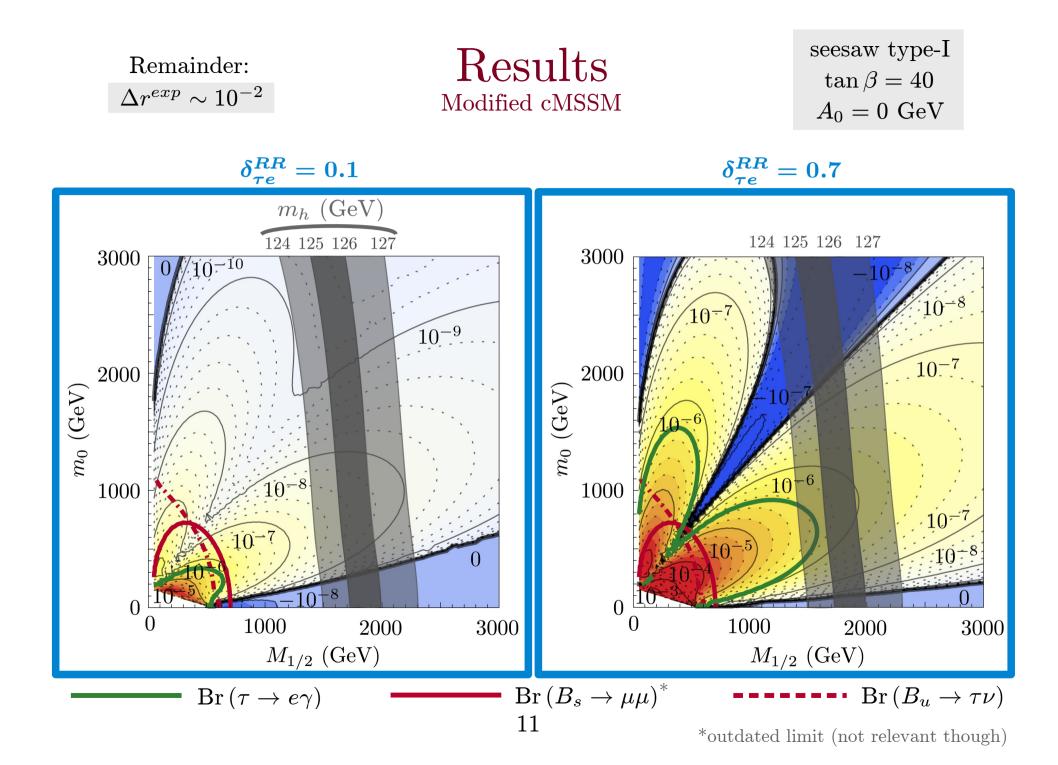
#### Esteves *et al.* 2010

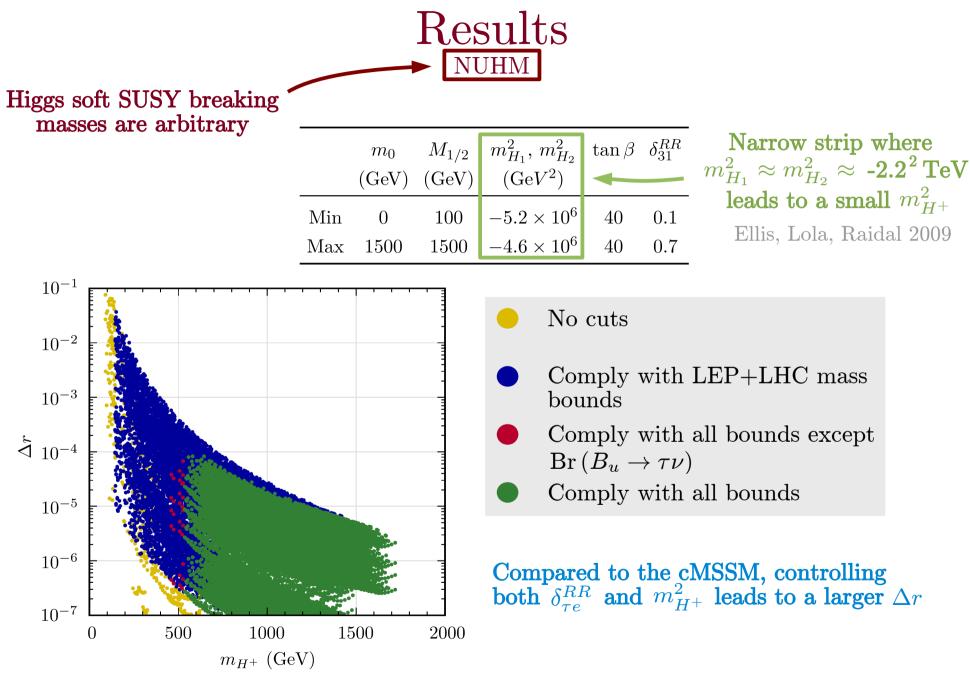
$$\delta^{RR}_{\tau e} = \frac{(m^2_{\tilde{R}})_{\tau e}}{m^2_{\tilde{R}}}$$

Porod 2003

Porod. Staub 2012

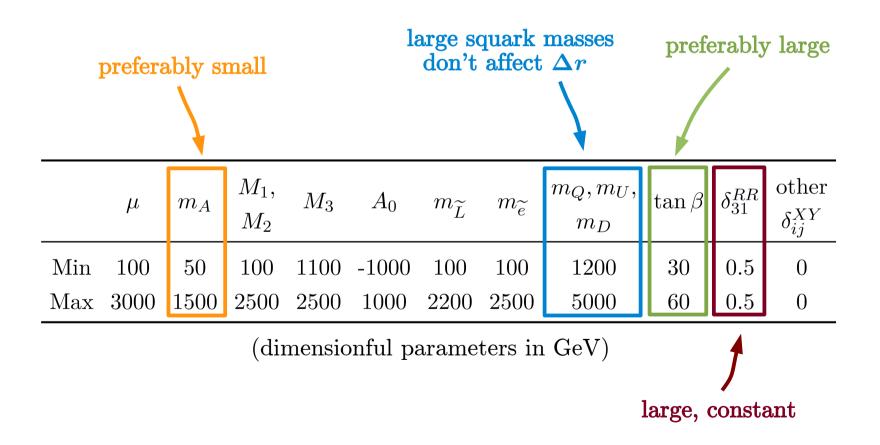
Results Our analysis



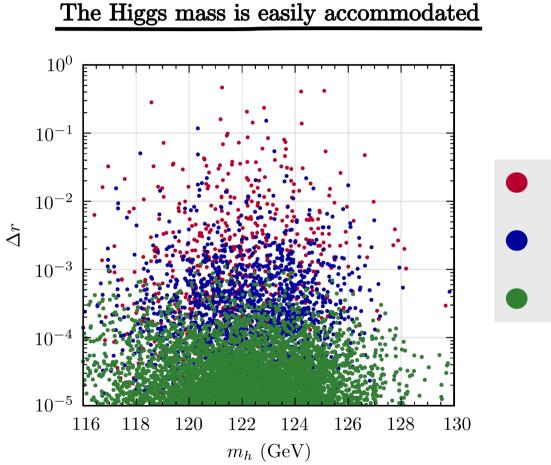




More freedom than in the NUHM, which should lead to a larger  $\Delta r$ 



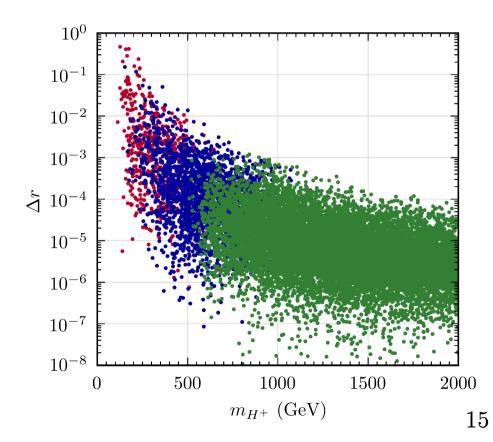
# $\underset{\rm Unconstrained \ MSSM}{\rm Results}$



- Comply with LEP+LHC mass bounds
- Comply with all bounds except Br  $(B_u \to \tau \nu)$
- Comply with all bounds

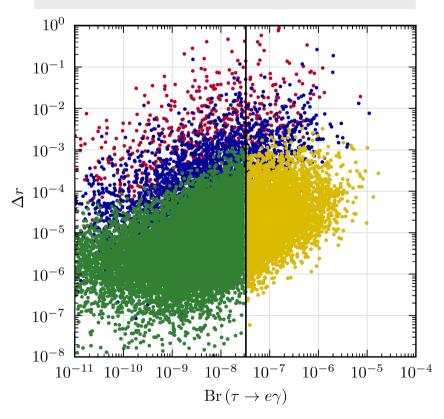
# Results Unconstrained MSSM

- Comply with LEP+LHC mass bounds
- Comply with all bounds except  $Br(B_u \to \tau \nu)$
- Comply with all bounds



- Comply with all bounds except  $\operatorname{Br}(\tau \to e\gamma)$
- Comply with LEP+LHC mass bounds
- Comply with all bounds except  $\operatorname{Br}(B_u \to \tau \nu), \operatorname{Br}(\tau \to e\gamma)$

• Comply with all bounds



# Conclusions

- We have computed supersymmetric contributions to  $R_K = \Gamma (K \to e\nu) / \Gamma (K \to \mu\nu)$  by including the one-loop corrections to the  $\nu \ell H^+$  vertex
- The modified cMSSM with  $\delta_{\tau e}^{RR} \neq 0$  at the GUT scale leads to a small effect on  $R_K$
- A LR model we tested also did not produce a sizable effect
- In the NUHM, the charged Higgs mass can be controlled, leading to a larger  $\Delta r$
- Finally, we tested the unconstrained MSSM;  $\Delta r \, \text{can}$  be as large as  $\sim 10^{-3}$ , which is still smaller than the current experimental sensitivity  $\sim 10^{-2}$
- Br  $(B_u \to \tau \nu)$  and Br  $(\tau \to e\gamma)$  preclude larger SUSY contributions to  $R_K$

#### Thank you for your time