

Phenomenology of a simple quiver

Planck 2013, Bonn, Germany

Andreas Goudelis LAPTh – Annecy

Works in progress in collaboration with Aoife Bharucha (Uni-Hamburg/DESY), Moritz McGarrie (DESY)

Outline

- SUSY models and a Higgs at ~126 GeV
- Some theoretical developments
- A SMxEW quiver model...
- ...and its phenomenology
- Summary and perspectives

SUSY models and a Higgs at 126 GeV

- The LHC has observed a new particle with a mass of ~126 GeV which can, for the moment, be described by a Higgs boson (i.e. a scalar that could at least partly trigger EWSB).
- No signs of superpartners yet.

Current status of MSSMs

Arbey, Battaglia, Djouadi, Mahmoudi, arXiv:1207.1348

Minimal quiver model

A. Bharucha, A.G., M. McGarrie, to appear

Theoretical developments

- In recent years, a new framework was introduced to study GMSB : GGM.
 - → In the limit where the gauge couplings vanish, the MSSM is decoupled from the SUSY sector.

This made it possible to define somewhat the equivalent of mSUGRA for GMSB, based on a handful of parameters

$$\Lambda_G,\ \Lambda_S,\ M_{mess},\ N,\ \mathrm{sign}(\mu)$$
 $\tan(\beta)$ on taste)

- Moreover, for quite some time, people have considered SUSY from extra dimensions.
- And the two can be combined! (cf Moritz McGarrie's talk on Thursday!)
- In many X-D/strongly coupled/metastable SUSY-breaking scenarios, a quiver-like structure appears: messengers not directly charged under the MSSM.
 - → Interpolation between mGMSB and X-D mediation!

A minimal quiver

- Start form the usual mGMSB setup.

A minimal quiver

- Start form the usual mGMSB setup.
- Interject between $SU(2)\times U(1)$ and the messenger sector another $SU(2)\times U(1)$ gauge group and only charge the messengers under site B and SU(3).
- Introduce a pair of bifundamentals L, Lt to break $(SU(2)\times U(1))^2$ down to the diagonal.
 - → But turns out some components of L, Lt remain massless!

- Start form the usual mGMSB setup.
- Interject between $SU(2)\times U(1)$ and the messenger sector another $SU(2)\times U(1)$ gauge group and only charge the messengers under site B and SU(3).
- Introduce a pair of bifundamentals L, Lt to break $(SU(2)xU(1))^2$ down to the diagonal.
- Finally, introduce a B-adjoint A and a singlet K to give masses to all L, Lt components.

- The bifundamental-type diagonal breaking makes it so that only respective gauge bosons/gauginos mix (B_A - B_B , W_{A1} - W_{B1} etc).
- The bifundamental-type breaking ensures that MSSM SF's transform under the diagonal subgroup the same way as under the site A group.

The superpotential we consider reads:

$$W_{\text{SSM}} = Y_u \,\hat{u} \,\hat{q} \,\hat{H}_u \, - Y_d \,\hat{d} \,\hat{q} \,\hat{H}_d \, - Y_e \,\hat{e} \,\hat{l} \,\hat{H}_d \, + \mu \,\hat{H}_u \,\hat{H}_d$$

$$W_{\text{Quiver}} = \frac{Y_K}{2} \hat{K} (\hat{L} \hat{L} - V_L^2) + Y_A \hat{L} \hat{A} \hat{L}$$

+ we have assumed some O'Raifeartaigh-like SUSY breaking.

Some consequences

The quiver structure has a series of distinct consequences:

- At the messenger scale, GMSB soft masses are generated for the site B gauginos, the gluinos, and the linking field scalars.
- The MSSM gaugino soft masses are not exactly GMSB type. They depend on the GMSB scheme *and* A/B mixing.
- The MSSM **scalar soft masses** are generated at two-loops, but they are suppressed by the linking scale. This opens up a possibility for **light sfermions**!

McGarrie, arXiv:1009.0012

McGarrie, arXiv:1101.5158

Auzzi, Giveon, Gudnason arXiv:1110.1453

- L/R stop mixing can be substantially larger than in usual mGMSB.
- The MSSM **D-terms** get modified as a consequence of integrating out the heavy goldstones \rightarrow new contributions that can **raise the Higgs mass**! These terms can be **non-decoupled** and can contribute significantly to m_h .

e.g. Huo, Lee, Thalapillil, Wagner arXiv:1212.0560

Implementing a quiver

The implementation of the model was done by means of the SARAH package (*cheers to the chairman for tolerating us!*) and by intervening in the generated SPheno code by hand.

Staub arXiv:1207.0906 / Staub, Ohl, Porod, Speckner arXiv:1109.5147

- → RGE running performed at 2 loops both below and above the threshold scales.
- → Finite shifts implemented carefully with the help of SARAH and by customizing the resulting Spheno code.
- → Full boundary conditions implemented.
- → Possibility (that we exploit!) to impose most state of the art phenomenological constraints from colliders, flavour physics and so on.
- → Extra D-terms calculated and added by hand.
 - → The framework is now there and can be extended quite easily!

Results: the Higgs mass

 \rightarrow A Higgs mass of ~126 GeV can be easily accommodated in the model, even for small values of tan β !

→ But where does this increase come from?

 $(m_t = 173.2 \text{ GeV})$

Results: Anatomy of m_h and the NLSP

tanβ vs M_s for 123 < m_h < 129 GeV

(stau, sneutrino, neutralino)

→ Despite stops lying in the TeV range, multiple non-colored sparticles can lie below 500 GeV.

→ Interesting phenomenology for LHC14?

Results: Higgs signal strengths (CMS)

Previous analyses had expressed concerns about the presence of the non-decoupled D-terms enhancing d-type higgs couplings. A few remarks are in order:

- \rightarrow h \rightarrow bb was (and is) very uncertain. Same for h \rightarrow TT , which didn't even exist at the time.
- → The D-term contribution was taken to be too large (note that usually these terms were studied quasi-independently of the full model!).

Results: Higgs signal strengths (CMS)

Previous analyses had expressed concerns about the presence of the non-decoupled D-terms enhancing d-type higgs couplings. A few remarks are in order:

- \rightarrow h \rightarrow bb was (and is) very uncertain. Same for h \rightarrow TT , which didn't even exist at the time.
- → The D-term contribution was taken to be too large (note that usually these terms were studied quasi-independently of the full model!).

Summary and perspectives

- From a top-down point of view, quiver gauge theories are a well-motivated class of models to communicate SUSY breaking to the visible sector.
- From a bottom-up point of view, one has a GMSB-type mechanism (DM candidate, no FCNCs......) that can easily give a ~125 GeV Higgs with correct properties.
- With the minimal $(SU(2)xU(1))^2$ setup, it seems difficult to avoid heavy stops to get the higgs mass right. But :
- → not as heavy as in mGMSB
- → non-colored sparticles can be light by construction!
 - We now possess a machinery to properly analyse quiver models.

Many open questions:

- What about DM? What if we quiver SU(3)?
- Kinetic mixing should be there. What would be its impact?
- How low can we take the linking scale? New signatures for LHC14? \rightarrow A technically challenging implementation!
- How are things modified with a strongly coupled sector?

Thank you!

More Higgs signal strengths (CMS)

Interestingly, $h \rightarrow WW$ might turn out to be a crucial test for this model.

→ A possibility that has gone unnoticed!

Quiver breaking

The assignment of vev's goes as

$$\langle L \rangle = \left\langle \tilde{L} \right\rangle = v \mathbb{I}_{2 \times 2}$$

with the low-energy gauge couplings and massive gauge bosons being

$$\frac{1}{g_i^2} = \frac{1}{g_{Ai}^2} + \frac{1}{g_{Bi}^2} , \ g_i^2 = \frac{g_{Ai}^2 g_{Bi}^2}{g_{Ai}^2 + g_{Bi}^2} , \quad g_3 = g_3$$

$$m_{v,i}^2 = 4(g_{A,i}^2 + g_{B,i}^2)v^2$$

whereas the A,B site mixing can be parametrized by two angles

$$\cos \theta_1 = \frac{g_1}{g_{A1}}, \quad \cos \theta_2 = \frac{g_2}{g_{A2}}, \quad \sin \theta_1 = \frac{g_1}{g_{B1}}, \quad \sin \theta_2 = \frac{g_2}{g_{B2}}$$

Non-decoupled D-terms

When heavy dof's are integrated out, we get additional pieces in the low-energy lagrangian. Among others:

$$\delta \mathcal{L} = -g_1^2 \Delta_1 (H_u^{\dagger} H_u - H_d^{\dagger} H_d)^2 - g_2^2 \Delta_2 \sum_a (H_u^{\dagger} \sigma^a H_u + H_d^{\dagger} \sigma^a H_d)^2$$

Where

$$\Delta_1 = \left(\frac{g_{A1}^2}{g_{B1}^2}\right) \frac{2m_L^2}{m_{v1}^2 + 2m_L^2} \quad , \quad \Delta_2 = \left(\frac{g_{A2}^2}{g_{B2}^2}\right) \frac{2m_L^2}{m_{v2}^2 + 2m_L^2}$$

This results in a modification of the higgs tree-level mass as:

$$m_h^2 \simeq m_z^2 \cos 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v_{ew}^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

$$m_z^2 \to m_z^2 + \left(\frac{g_1^2 \Delta_1 + g_2^2 \Delta_2}{2}\right) v_{ew}^2$$