HAP Dark Matter meeting, Münster, 20 Feb 2013

<u>The DS team:</u> Lars Bergström, Torsten Bringmann, Joakim Edsjö, Paolo Gondolo and Piero Ullio

Predicting dark matter relic densities, direct and indirect detection rates (not only) in supersymmetric models

Torsten Bringmann, University of Hamburg

Dark matter all around

Torsten Bringmann, University of Hamburg

Dark matter

- Existence by now essentially impossible to challenge!
 - \odot $\Omega_{\mathrm{CDM}} = 0.233 \pm 0.013$ (WMAP)
 - electrically neutral (dark!)
 - non-baryonic (BBN)
 - cold dissipationless and negligible
 free-streaming effects (structure formation)
 - collisionless (bullet cluster)

WIMPS are particularly good candidates:

- well-motivated from particle physics [SUSY, EDs, little Higgs, ...]
- thermal production "automatically" leads to the right relic abundance

Strategies for DM searches

at colliders

indirectly

Strategies for DM searches

disclaimer: impossible to cover everything in 40 minutes...!

Outline

- Introduction to and layout of DarkSUSY
- SUSY setup
- accelerator constraints
- Thermal decoupling: relic density and the smallest protohalos
- indirect detection
- direct detection
- Outlook: DS 6.0

General philosophy

- Library of subroutines and functions
- Standard' Fortran 77 works on many platforms
- Modular structure (given f77 constraints...)
- Flexible
- Fast & accurate
- Version control (subversion) for precise
 version tagging

Getting started

To compile and install DarkSUSY, just do

./configure [optional arguments] make

Works on most platforms and with most compilers (gfortran, ifort, ...)

Program layout

A manual (not fully up to date yet & does not cover everything)
 is distributed with DarkSUSY. Create with

make pdf-manual	(default version)
make pdf-manual-short	(shorter version, without subroutine headers)

Also see headers of various subroutines for instructions.

Happy running! :)

Typical program layout – see /test for examples:

call dsinit
[make general settings]
[determine your model parameters your way]
call dsgive_model [or equivalent]
call dssusy [or equivalent] - to set up DS for that model
[calculate what you want]

Avoid by any means to modify the DS code itself - make your own private versions of routines if possible!

Ask any of the authors if you need more help!
 (most relevant contact author given in routine headers)

SUSY setup

Model setup

We work in the framework of the minimal N = 1 supersymmetric extension of the standard model defined by, besides the particle content and gauge couplings required by supersymmetry, the superpotential

$$W = \epsilon_{ij} \left(-\hat{\mathbf{e}}_R^* \mathbf{Y}_E \hat{\mathbf{l}}_L^i \hat{H}_1^j - \hat{\mathbf{d}}_R^* \mathbf{Y}_D \hat{\mathbf{q}}_L^i \hat{H}_1^j + \hat{\mathbf{u}}_R^* \mathbf{Y}_U \hat{\mathbf{q}}_L^i \hat{H}_2^j - \frac{\mu}{\mu} \hat{H}_1^i \hat{H}_2^j \right)$$
(2)

and the soft supersymmetry-breaking potential

$$V_{\text{soft}} = \epsilon_{ij} \left(-\tilde{\mathbf{e}}_{R}^{*} \mathbf{A}_{E} \mathbf{Y}_{E} \tilde{\mathbf{I}}_{L}^{i} H_{1}^{j} - \tilde{\mathbf{d}}_{R}^{*} \mathbf{A}_{D} \mathbf{Y}_{D} \tilde{\mathbf{q}}_{L}^{i} H_{1}^{j} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{A}_{U} \mathbf{Y}_{U} \tilde{\mathbf{q}}_{L}^{i} H_{2}^{j} - \underline{B} \mu H_{1}^{i} H_{2}^{j} + \text{h.c.} \right) + H_{1}^{i*} m_{1}^{2} H_{1}^{i} + H_{2}^{i*} m_{2}^{2} H_{2}^{i} + \tilde{\mathbf{q}}_{L}^{i*} \mathbf{M}_{Q}^{2} \tilde{\mathbf{q}}_{L}^{i} + \tilde{\mathbf{I}}_{L}^{i*} \mathbf{M}_{L}^{2} \tilde{\mathbf{I}}_{L}^{i} + \tilde{\mathbf{u}}_{R}^{*} \mathbf{M}_{U}^{2} \tilde{\mathbf{u}}_{R} + \tilde{\mathbf{d}}_{R}^{*} \mathbf{M}_{D}^{2} \tilde{\mathbf{d}}_{R} + \tilde{\mathbf{e}}_{R}^{*} \mathbf{M}_{E}^{2} \tilde{\mathbf{e}}_{R} + \frac{1}{2} M_{1} \tilde{B} \tilde{B} + \frac{1}{2} M_{2} \left(\tilde{W}^{3} \tilde{W}^{3} + 2 \tilde{W}^{+} \tilde{W}^{-} \right) + \frac{1}{2} M_{3} \tilde{g} \tilde{g}.$$

$$(3)$$

Here *i* and *j* are SU(2) indices ($\epsilon_{12} = +1$), Y's, A's and M's are 3×3 matrices in generation space, and the other boldface letter are vectors in generation space.

= 3x3 complex matrices = complex parameters

Torsten Bringmann, University of Hamburg

Choosing parameters

- MSSM contains 24 free parameters
 (including complex phases, i.e. 105 new compared to SM)
- In DS all input params are currently real (MSSM-63),
 but many expressions are general enough to handle
 the full case (e.g. all vertices are already complex)
 Generalization planned for future versions

Choosing parameters

- MSSM contains 124 free parameters
 (including complex phases, i.e. 105 new compared to SM)
- In DS all input params are currently real (MSSM-63),
 but many expressions are general enough to handle
 the full case (e.g. all vertices are already complex)
 Generalization planned for future versions
- General philosophy: try to be as general as possible when including new physics
 - Most expressions and setups are more general than typical use would indicate!

(sometimes hard: code for rare decays e.g. relies on 3x3 sfermion mass matrices to be diagonal)

SUSY models

Typical (but not necessary) simplifying assumptions:

- take all parameters to be real ~~ effectively reduce CP violation
- vanishing non-diagonal terms ~~ avoid FCNC & other rare processes
- degeneracy of certain mass parameters
- GUT conditions ~> unification of coupling constants and scalar masses
 ...
- Parameters usually specified at electroweak ('pMSSM-X') or GUT scale (e.g. 'mSUGRA/cMSSM')

Phenomenology depends crucially on these parameters

→ Often relations between masses (e.g. between chargino and neutralino)

SUSY models in DS

Automatized setup routines available e.g. for

MSSM-7:	dsgive_model
MSSM-25:	dsgive_model25
cMSSM:	dsgive_model_isasugra

- Higgs sector with FeynHiggs
- SUSY Les Houches Accord 2 implemented (both read and write)
- mSUGRA interfaces: ISASUGRA and e.g.
 softsusy via SLHA2

Accelerator constraints

Direct accelerator searches Squarks

Sleptons from PDG Neutralinos Charginos Higgs bosons

Higher order corrections

- Solution Rare decays, $b \rightarrow s\gamma, ...$
- Anomalous magnetic moment of the muon
- Invisible width of Z boson

UH

etc) via SLHA

from literature or

other tools (Superiso,

Constraints

General checks

- This always points to the most recent version
 (though older versions of constraints are kept for backward compatibility)
- Unfortunately it takes some time for new constraints (or signals!) to make it into the code...
 - e.g. LHC searches often presented for very concrete models ~> hard to interpret in more general setups!

Thermal decoupling

The WIMP "miracle"

 The number density of Weakly Interacting Massive Particles in the early universe:

Torsten Bringmann, University of Hamburg

Relic density

- An accurate approach requires to:
 - properly take into account thermal average <...>
 - include full annihilation cross section (all final states, resonances, thresholds)
 - include co-annihilations between all neutralinos, charginos & sfermions
 ...

$$\langle \sigma_{\text{eff}} v \rangle = \frac{\int_{0}^{\infty} dp_{\text{eff}} p_{\text{eff}}^{2} W_{\text{eff}} K_{1} \left(\frac{\sqrt{s}}{T}\right)}{m_{1}^{4} T \left[\sum_{i} \frac{g_{i}}{g_{1}} \frac{m_{i}^{2}}{m_{1}^{2}} K_{2} \left(\frac{m_{i}}{T}\right)\right]^{2}}$$
$$W_{\text{eff}} = \sum_{ij} \frac{p_{ij}}{p_{11}} \frac{g_{i}g_{j}}{g_{1}^{2}} W_{ij} \quad ; \quad W_{ij} = 4E_{1}E_{2}\sigma_{ij}v_{ij}$$

Neutralino relic density

Neutralino is cosmologically interesting for large range of parameters!

Torsten Bringmann, University of Hamburg

Dark SUSY - 23

RD for generic WIMPs

Call

dsrdens(wrate,npart,mgev,dof,nrs,rm,rw,nt,tm,oh2,tf,ierr,iwar)

where you have to supply

wrate - invariant effective annihilation rate (function)

npart - number of coannihilating particles

mgev - mass of these

dof - internal degrees of freedom of these

nrs - number of resonances

rm - mass of resonances

rw - width of resonances

nt - number of thresholds

tm - equivalent mass of thresholds

The routine then returns

oh2 - omega h^2

tf - freeze-out temperature

NB: all this is taken care of for neutralinos in dsrdomega!

배 Torsten Bringmann, University of Hamburg

Freeze-out ≠ decoupling !

WIMP interactions with heat bath of SM particles:

Freeze-out ≠ decoupling !

WIMP interactions with heat bath of SM particles:

- no "typical" $M_{\rm cut} \sim 10^{-6} M_{\odot}$, but highly model-dependent (Could be as large as scale of dwarf galaxies! \rightsquigarrow see: van den Aarssen, TB & Pfrommer, PRL '12)
- another window into particle-physics nature of dark matter!?

Kinetic decoupling

Fully included for neutralino...

Torsten Bringmann, University of Hamburg

UH

Dark SUSY - 26

Indirect detection

Indirect DM searches

- OM has to be (quasi-)stable against decay...
- ♀ … but can usually pair-annihilate into SM particles
- Try to spot those in cosmic rays of various kinds
- The challenge: i) absolute rates

 regions of high DM density
 discrimination against other sources
 low background; clear signatures

Torsten Bringmann, University of Hamburg

Indirect DM searches

<u>Gamma rays:</u>

- Rather high rates
- No attenuation when propagating through halo
- No assumptions about diffuse halo necessary
- Point directly to the sources: clear spatial signatures
- Clear spectral signatures to look for <->p>maybe most important!

Gamma-ray flux

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\psi) = \int_{\Delta\psi} \frac{d\Omega}{\Delta\psi} \int_{\text{l.o.s}} d\ell(\psi) \rho^2(\mathbf{r}) \ \frac{\langle\sigma v\rangle_{\text{ann}}}{8\pi m_{\chi}^2} \sum_f B_f \frac{dN_{\gamma}^f}{dE_{\gamma}}$$

Gamma-ray flux

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\psi) = \int_{\Delta\psi} \frac{d\Omega}{\Delta\psi} \int_{\text{l.o.s}} d\ell(\psi)\rho^{2}(\mathbf{r}) \frac{\langle\sigma v\rangle_{\text{ann}}}{8\pi m_{\chi}^{2}} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}}$$
astrophysics
point-like sources:
$$p^{2}\Delta\psi)^{-1} \int d^{3}r \rho^{2}(\mathbf{r})$$
astrophysics
cangular res. of detector
: distance to source

Ϋ́

angular information

+ rather uncertain normalization

Torsten Bringmann, University of Hamburg

Gamma-ray flux

UH

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

Halo profiles

Any spherically symmetric profile possible. Presets:

[call with dsmhset('name')]

- NFW, Einasto
- Burkert, isothermal sphere
- Moore, adiabatically contracted profiles

Consistent velocity distribution is set up automatically

[important for direct detection + neutrino rates!]

Generation 'Boost factor' of annihilation rate due to substructures

[In principle $\sim \log(M_{cut})$, not yet implemented]
Annihilation spectra

Annihilation spectra

Secondary photons

many photons but

UH

- featureless & model-independent
- difficult to distinguish from astro BG

good <u>constraining</u> potential

Torsten Bringmann, University of Hamburg

Annihilation spectra

Secondary photons

- many photons but
- featureless & model-independent
- difficult to distinguish from astro BG

🔶 good <u>constraining</u> potential

Torsten Bringmann, University of Hamburg

Primary photons

- direct annihilation to photons
- Solution for the second sector of the se

discovery potential

IB and **SUSY**

Solution Neutralino annihilation helicity suppressed: $\langle \sigma v \rangle \propto \frac{m_{\ell}^2}{m_{\chi}^2}$

IB and **SUSY**

 $\begin{array}{ll} & \displaystyle \bigcirc & \mathsf{Neutralino annihilation } + \mathsf{elicity} \text{ suppressed: } \langle \sigma v \rangle \propto & \displaystyle \swarrow & \displaystyle \alpha_{\mathrm{em}} \\ & \displaystyle \Rightarrow \langle \sigma v \rangle_{\mathrm{3-body}} \gg \langle \sigma v \rangle_{\mathrm{2-body}} & possible! \end{array}$

IB and **SUSY**

- Seutralino annihilation helicity suppressed: $\langle \sigma v \rangle \propto \frac{m^2}{m^2}$ ⇒ $\langle \sigma v \rangle_{3-\text{body}} \gg \langle \sigma v \rangle_{2-\text{body}}$ possible!
- Full implementation in DarkSUSY,
 scan cMSSM and MSSM-7: TB, Edsjö & Bergström, JHEP '08

UΗ

mSUGRA spectra

bulk region ($m_{\chi} = 141$ GeV)

(benchmarks taken from TB, Edsjö & Bergström, JHEP '08 and Battaglia et al., EPJC '03)

UH

TB & Weniger, PDU '12

Intensely discussed: >100 citations since March '12!

Weniger, JCAP '12

Tempel, Hektor & Raidal, JCAP '12 Su & Finkbeiner, 1206.1616 •••

- focus on statistical analysis + line interpretation
- ★ first independent confirmation
- \rightarrow include spatial templates in analysis: >5 σ global significance!

TB & Weniger, PDU '12

Intensely discussed: >100 citations since March '12!

Weniger, JCAP '12 Tempel, Hektor & Raidal, JCAP '12 Su & Finkbeiner, 1206.1616 •••

- focus on statistical analysis + line interpretation
- first independent confirmation
- include spatial templates in analysis: >5 σ global significance!

Good to be true'...

potential Signal rate 'too large' ?
Signal off-set from the GC?

Same signal in Earth limb!?

Opening angle θ [°]

UH

Intensely discussed: >100 citations since March '12!

Weniger, JCAP '12 Tempel, Hektor & Raidal, JCAP '12 Su & Finkbeiner, 1206.1616 •••

- focus on statistical analysis + line interpretation
- first independent confirmation
- include spatial templates in analysis: >5σ global significance!
- Good to be true'...

Torsten Bringmann, University of Hamburg

DM model implications

Need rather large annihilation rate

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

Asano, TB, Sigl & Vollmann, 1211.6739

DM model implications

Need rather large annihilation rate

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

DM model implications

Need rather large annihilation rate

UH

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

Lines vs VIB

[cMSSM + MSSM-7; keep only models with correct mass and line-like spectra]

Torsten Bringmann, University of Hamburg

Dark SUSY - 37

Indirect DM searches

Neutrinos:

UH

- Unperturbed propagation like for photons
- But signal significance (for the same target) usually considerably worse
- New feature: signals from the center of sun or earth!

Neutrino signals

Neutrino signals

v's from Sun/Earth

- Rate of neutrino-induced muons in neutrino telescopes
- Neutrino scattering and absorption in Sun included
- Full numerical capture calculation with any velocity distribution
- Neutrino oscillations, all flavors and hadronic showers
- Simple dark disk models, effects of Jupiter included
- In the pipeline: fully implement solar system diffusion

(though free-space approximation works quite well)

Indirect DM searches

Charged cosmic rays:

- GCRs are confined by galactic magnetic fields
- After propagation, no directional information is left
- Also the spectral information tends to get washed out
- Equal amounts of matter and antimatter
 - → focus on antimatter (low backgrounds!)

Propagation

- Little known about Galactic magnetic field distribution
- Random distribution of field inhomogeneities ~propagation well described by diffusion equation

$$\frac{\partial \psi}{\partial t} - \nabla \cdot (\mathbf{D}\nabla - v_c)\psi + \frac{\partial}{\partial p}\mathbf{b}_{\text{loss}}\psi - \frac{\partial}{\partial p}\mathbf{K}\frac{\partial}{\partial p}\psi = q_{\text{source}}$$

Propagation

- Little known about Galactic magnetic field distribution
- Random distribution of field inhomogeneities ~propagation well described by diffusion equation

Analytical vs. numerical

How to solve the diffusion equation?

Analytical vs. numerical

How to solve the diffusion equation?

Numerically

- 3D possible
- any magnetic field model
- realistic gas distribution, full energy losses
- computations time-consuming
- ("black box")

Strong, Moskalenko, ...

DRAGON Evoli, Gaggero, Grasso & Maccione

Analytical vs. numerical

How to solve the diffusion equation?

Numerically

- 3D possible
- any magnetic field model
- realistic gas distribution, full energy losses
- computations time-consuming
- ("black box")

Gemi-)analytically

- Physical insight from analytic solutions
- fast computations allow to sample full parameter space
- only 2D possible (axial symmetry)
- simplified gas distribution, energy losses, R = 20 kpcre-acceleration

Strong, Moskalenko, ...

DRAGON Evoli, Gaggero, Grasso & Maccione

DS Routines

Analytical expressions to calculate fluxes of

Interfaces to

- Galprop [for experts only]
- ♀ USINE [available once USINE is public]
- DRAGON [in preparation]

SUSY DM and PAMELA

 Neutralino annihilation helicity suppressed:

$$\langle \sigma v
angle \propto rac{m_\ell^2}{m_\chi^2}$$

SUSY DM and PAMELA

Neutralino annihilation
 helicity suppressed:

 $\langle \sigma v \rangle \propto \frac{m^2}{m_{\chi}^2} \frac{\alpha_{\rm em}}{\pi}$

Surprisingly hard spectra possible if $\chi \chi \to e^+ e^- \gamma$ dominates! first attempt to connect

PAMELA excess to DM

but: enormous boost factors needed w.r.t. thermal cross section...

Direct detection

General principles

<u>Goal</u>:

measure recoil energy of nucleus

A) try to identify single events in 'background-free' environment

or

B) search for annual modulation of the signal

Even rates

Recoil rate:

$$\frac{dR}{dQ} = \frac{\sigma_0 \rho_0}{2m_\chi m_r^2} F^2(Q) \int_{v_{\min}}^{\infty} \frac{f(v)}{v} dv$$

 $Q = \frac{|\mathbf{q}|^2}{2m_N} = \frac{m_r^2 v^2}{m_N} (1 - \cos \theta_{CM})$ $v_{\min} = \sqrt{\frac{Qm_N}{2m_r^2}}$ $m_r = \frac{m_\chi m_N}{m_\chi + m_N}$ F(Q) - form factor $\sigma_0 - \text{elastic scattering cross section}$

- local dark matter density (~ 0.3 GeV/cm^3)

- velocity distribution

 ρ_0

f(v)

main particle physics uncertainty (+quark content of nucleon!)

main astrophysical uncertainty

Direct detection in DS

- Routines to calculate
 - spin-dependent scattering rates
 (couples to total spin of nucleus)
 - spin-independent scattering rates
 (coherent \rightsquigarrow signal enhancement roughly $\propto A^2$)
 - differential as function of time
 can be used to calculate e.g. modulation signal
- Solution Sol
- Halo model and velocity profile can be chosen arbitrarily
- Various choices of form factors implemented

Direct vs. indirect searches

- Direct and indirect searches probe SUSY parameter space from an 'orthogonal' direction Bergström, TB & Edsjö, PRD '11
 - eremains true after most recent LHC bounds Bechtle et al., JHEP '12

Reference + outlook

References

Long paper (describing DS 4.1)
JCAP 06 004 (2004)
[astro-ph/0406204]

ournal of Cosmology and Astroparticle Physics

DarkSUSY: computing supersymmetric dark-matter properties numerically

P Gondolo¹, J Edsjö², P Ullio³, L Bergström², M Schelke² and E A Baltz⁴

 ...but please remember to also cite relevant
 contributed code and implemented results from the literature when you use DarkSUSY!

DarkSUSY 6.0

Major update by the end of this year:

- restructuring of code (even more modular!)
- New refined halo annihilation and neutrino routines
- Better solar models
- Interface to USINE, DRAGON;
 improved CR propagation
- DLHA=Dark matter Les Houches Accord ?
- Going away from hard cuts to likelihoods when possible (already implemented for IceCube!)

Download DS @ http://www.darksusy.org

and get started...!

Thanks for your attention!

