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Introduction

Within standard cosmology: WIMP relic density can be
computed from WIMP annihilation cross section!

Ωχh2 ≃ 2.09·108 GeV−1·xF

MPl

√
g∗(a+3b/xF )

xF = mχ/TF ; TF : freeze–out temperature
〈σ(χχ → SM)〉 ≃ a + 6b/xF
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Introduction

Within standard cosmology: WIMP relic density can be
computed from WIMP annihilation cross section!

Ωχh2 ≃ 2.09·108 GeV−1·xF

MPl

√
g∗(a+3b/xF )

xF = mχ/TF ; TF : freeze–out temperature
〈σ(χχ → SM)〉 ≃ a + 6b/xF

Universal cold DM density now quite well known (WMAP
9–year analysis) (arXiv:1212.5226)

ΩCDMh2 = 0.1153 ± 0.0019 (1.6% accuracy!)

Desirable to have prediction for σ(χχ → SM) to comparable
(or better) precision

=⇒ Need to include “large” radiative corrections! (> α/π)
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Caveats

1.6% error true for standard 6–parameter ΛCDM;
allowing more parameters (in particular, finite curvature)
increases the uncertainty
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Caveats

1.6% error true for standard 6–parameter ΛCDM;
allowing more parameters (in particular, finite curvature)
increases the uncertainty

Also need to know values of relevant parameters to
similar accuracy! Very challenging in SUSY scenarios.
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M inimal Supersymmetric extension of theStandard M odel

WIMP candidate: Lightest neutralino χ̃0
1.

ν̃ excluded by direct searches.

Neutralinos are mixtures of B̃, W̃3, h̃0
1, h̃0

2.
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M inimal Supersymmetric extension of theStandard M odel

WIMP candidate: Lightest neutralino χ̃0
1.

ν̃ excluded by direct searches.

Neutralinos are mixtures of B̃, W̃3, h̃0
1, h̃0

2.

In order to compute loop corrections: need renormalization
scheme!
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Improved on–shell renormalization of χ̃ sector

Chatterjee, MD, Kulkarni, Xu, arXiv:1107.5218 [hep-ph]

χ̃0
i , i ∈ {1, 2, 3, 4}, have charged SU(2) partners: charginos

χ̃±
a , a ∈ {1, 2}
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Improved on–shell renormalization of χ̃ sector

Chatterjee, MD, Kulkarni, Xu, arXiv:1107.5218 [hep-ph]

χ̃0
i , i ∈ {1, 2, 3, 4}, have charged SU(2) partners: charginos

χ̃±
a , a ∈ {1, 2}

Mixing of current eigenstates described by mass matrices:

Mc
=

0

@

M2

√
2MW sin β

√
2MW cos β µ

1

A .

Mn
=

0

B

B

B

B

B

@

M1 0 −MZsW cβ MZsW sβ

0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ

MZsW sβ −MZcW sβ −µ 0

1

C

C

C

C

C

A

M1, M2: gaugino masses; µ: higgsino mass.
Other parameters (MW , MZ , tan β) are renormalized
independently!
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On–shell scheme

Input “tree–level” masses are exact, physical masses.
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On–shell scheme

Input “tree–level” masses are exact, physical masses.

Here: have to chose 3 input states, or masses, to define
counterterms δM1, δM2, δµ; the other 3 χ̃ masses do get
(finite) loop corrections. (Fritzsche& Hollik 2002)
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counterterms δM1, δM2, δµ; the other 3 χ̃ masses do get
(finite) loop corrections. (Fritzsche& Hollik 2002)

In general, there are

(
6

3

)
= 20 different choices of input

states!
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On–shell scheme

Input “tree–level” masses are exact, physical masses.

Here: have to chose 3 input states, or masses, to define
counterterms δM1, δM2, δµ; the other 3 χ̃ masses do get
(finite) loop corrections. (Fritzsche& Hollik 2002)

In general, there are

(
6

3

)
= 20 different choices of input

states!

Selection criterion: Perturbative expansion should converge
quickly, i.e. corrections to the remaining masses should be
small!
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Reasons for perturbative instability

∃ parameter ∈ {M1, M2, µ} that does not affect input
masses significantly. E.g. no input state has sizable B̃
component =⇒ finite part of δM1 can be very large.
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Reasons for perturbative instability

∃ parameter ∈ {M1, M2, µ} that does not affect input
masses significantly. E.g. no input state has sizable B̃
component =⇒ finite part of δM1 can be very large.

Finite parts can have poles in parameter space. E.g. if
δM2, δµ from mχ̃±

1

,mχ̃±

1

: δµ ∝ 1/(M2
2 − µ2)!
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Solutions

First condition =⇒ must have one B̃−like, one W̃−like,
one h̃−like input state. Choice of indices of input states
depends on ordering of parameters! (Note: anyway need

information on this ordering, since equations determining counterterms have multiple

solutions.)
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Solutions

First condition =⇒ must have one B̃−like, one W̃−like,
one h̃−like input state. Choice of indices of input states
depends on ordering of parameters! (Note: anyway need

information on this ordering, since equations determining counterterms have multiple

solutions.)

Second condition =⇒ best choice for input states:
Wino–like chargino; higgsino– and bino–like neutralino!
All other choices have significant regions with
perturbative instability.
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Regions of instability
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1–loop corrections via effectiveχ̃ couplings

Chatterjee, MD, Kulkarni, arXiv:1209.2328 [hep-ph]

Observation: matter (s)fermion correction to χ̃ two–point
fcts., plus appropriate counterterms, form finite, gauge
invariant subset of corrections! Guasch, Hollik & Sola 2002

f f ′

f̃

χ̃0
j

f̃ ′

χ̃0
i

Is the only diagram (apart from CTs) involving f ′ 6= f !

Enhanced 1-Loop Corrections – p. 11/33



Properties

Corrections from “gauge” interactions enhanced by
multiplicity factor NF NC !

Enhanced 1-Loop Corrections – p. 12/33



Properties

Corrections from “gauge” interactions enhanced by
multiplicity factor NF NC !

Correction from heavy sfermion f̃ ′ is enhanced
logarithmically: no decoupling!
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Pure gaugino sector

Consider spectrum mq̃ ≫ mℓ̃ ≃ mχ̃. Effective χ̃ℓℓ̃ coupling
after integrating out heavy squarks:
g̃(mχ̃) = g̃(mq̃) − βℓ,ℓ̃ log mq̃

mχ̃
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MZ
+ βq log mq̃

mχ̃

Enhanced 1-Loop Corrections – p. 13/33



Pure gaugino sector

Consider spectrum mq̃ ≫ mℓ̃ ≃ mχ̃. Effective χ̃ℓℓ̃ coupling
after integrating out heavy squarks:
g̃(mχ̃) = g̃(mq̃) − βℓ,ℓ̃ log mq̃

mχ̃

= g(mq̃) − βℓ,ℓ̃ log mq̃

mχ̃

= g(MZ) + βl,q log mχ̃

MZ
+ βℓ,q,ℓ̃ log mq̃

Mχ̃
− βℓ,ℓ̃ log mq̃

mχ̃

= g(MZ) + βℓ,q log mχ̃

MZ
+ βq log mq̃

mχ̃

In effective theory approach: can also have non–decoupling
corrections to off–diagonal entries of χ̃ mass matrices, i.e.
to gaugino–higgsino mixing!
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Order of corrections

χ̃ ≃ higgsino χ̃ ≃ gaugino

coupling tree one–loop tree one–loop

χ̃ℓLℓ̃L, χ̃ℓRℓ̃R O(ǫg) O(ǫg3, ǫgλ2) O(g) O(g3, ǫ2gλ2)

χ̃ℓLℓ̃R, χ̃ℓRℓ̃L O(λℓ) O(λ3
ℓ , λℓλ

2
b , O(ǫλℓ) O(ǫλℓg

2, ǫλℓλ
2)

ǫ2λℓg
2, ǫ2λℓλ

2
t )

g: generic electroweak gauge coupling;

λℓ: Yukawa coupling of lepton ℓ;

λ: generic superpotential coupling;
ǫ: one factor of (small) gaugino–higgsino mixing.

All corrections are non–decoupling!
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Relative size of corrections to couplings
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Note: Non–logarithmic non–decoupling corrections can be
sizable, too!
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Correction for (mostly) B̃−like LSP
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Obtained with modified micrOMEGAs.
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Correction for B̃− or h̃−like LSP
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Obtained with modified micrOMEGAs.
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Bug in micrOMEGAs

Co–annihilation τ̃1 + χ̃0
1 → A + τ can diverge if mA >

∼ 2mχ̃0

1
!

Reason: Can be due to on–shell τ̃1 → τ + χ̃0
1 decay,

followed by χ̃0
1 + χ̃0

1 → A!
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Bug in micrOMEGAs

Co–annihilation τ̃1 + χ̃0
1 → A + τ can diverge if mA >

∼ 2mχ̃0

1
!

Reason: Can be due to on–shell τ̃1 → τ + χ̃0
1 decay,

followed by χ̃0
1 + χ̃0

1 → A!

However, τ̃1 ↔ τ + χ̃0
1 is part of the (fast) processes

maintaining relative equilibrium between χ̃0
1 and τ̃1 =⇒ this

kinematic configuration should not be included in the
explicit co–annihilation cross section!
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Sommerfeld enhanced 1–loop corrections
MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial
state:
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Sommerfeld enhanced 1–loop corrections
MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial
state:

Are interested in case where 1–loop correction is sizable,
but still a correction: αmχ > µ. (α : relevant coupling; µ:
mass of exchanged boson.)
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Sommerfeld enhanced 1–loop corrections
MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial
state:

Are interested in case where 1–loop correction is sizable,
but still a correction: αmχ > µ. (α : relevant coupling; µ:
mass of exchanged boson.)

Note: µ < αmχ may be technically unnatural: expect loop
corrections δµ2 = O(αm2

χ/π)!
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Calculation of 1–loop Correction

Corrections are calculated in non–relativistic kinematics,
with several approximations; these are necessary to give a
finite result!

Assume reduced tree–level annihilation amplitude is
constant: can be pulled out of loop integral
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Calculation of 1–loop Correction

Corrections are calculated in non–relativistic kinematics,
with several approximations; these are necessary to give a
finite result!

Assume reduced tree–level annihilation amplitude is
constant: can be pulled out of loop integral

Use contour integration for q0 integral; only keep residue
that vanishes in velocity v → 0 limit.
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Calculation of 1–loop Correction

Corrections are calculated in non–relativistic kinematics,
with several approximations; these are necessary to give a
finite result!

Assume reduced tree–level annihilation amplitude is
constant: can be pulled out of loop integral

Use contour integration for q0 integral; only keep residue
that vanishes in velocity v → 0 limit.

S−wave: Ignore ~q− dependence in numerator;
P−wave: keep exactly one factor of ~q
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Calculation of 1–loop Correction

Corrections are calculated in non–relativistic kinematics,
with several approximations; these are necessary to give a
finite result!

Assume reduced tree–level annihilation amplitude is
constant: can be pulled out of loop integral

Use contour integration for q0 integral; only keep residue
that vanishes in velocity v → 0 limit.

S−wave: Ignore ~q− dependence in numerator;
P−wave: keep exactly one factor of ~q

Ignore energy dependence of ϕ propagator
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Check against exact calculation

0.0001 0.001 0.01 0.1 1
µ/mχ

1

10

(8
π2 m

χ2 /κ
2 ) δ

σ/
σ 0

approx.
vertex corr.
real emission
-(wv. fct. ren.)
exact

v = 0.1

For scalar WIMP χ coupling to (light) boson ϕ with (dimensionful)
coupling κ
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Result

Correction factorizes!

σ1−loop
ℓ (χχ → any) = σtree

ℓ (χχ → any)·

(
1 +

g2

2π2vχ
Iℓ(µ/|p̃χ|)

)
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Result

Correction factorizes!

σ1−loop
ℓ (χχ → any) = σtree

ℓ (χχ → any)·

(
1 +

g2

2π2vχ
Iℓ(µ/|p̃χ|)

)

Loop function:

IS = IP =
π2

2
for µ ≪ |~pχ|

Iℓ =
2π

(2ℓ + 1)
√

(µ/|~pχ|) + 1
for µ ≫ |~pχ|
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Result

Correction factorizes!

σ1−loop
ℓ (χχ → any) = σtree

ℓ (χχ → any)·

(
1 +

g2

2π2vχ
Iℓ(µ/|p̃χ|)

)

Loop function:

IS = IP =
π2

2
for µ ≪ |~pχ|

Iℓ =
2π

(2ℓ + 1)
√

(µ/|~pχ|) + 1
for µ ≫ |~pχ|

Correction depends only on partial wave, not on final
state!
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Loop functions
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Correction to annihilation integral
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µ/mχ
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Corrections for “well–tempered neutralino” in MSSM
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Incorporating Co–Annihilation
MD, J. Gu, 2013

Complications:

Masses in intermediate state differ (slightly) from those
in the final state; can be bigger or smaller. Described by
κ = m3m4

m1m2

m1+m2

m3+m4
− 2m3m4

m3+m4

1

p2 (m3 + m4 − m1 − m2)
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Incorporating Co–Annihilation
MD, J. Gu, 2013

Complications:

Masses in intermediate state differ (slightly) from those
in the final state; can be bigger or smaller. Described by
κ = m3m4

m1m2

m1+m2

m3+m4
− 2m3m4

m3+m4

1

p2 (m3 + m4 − m1 − m2)

Correction now only factorizes on amplitude level:

δAχ1χ2

ℓ |1-loop =
gφχ1χ3

gφχ2χ4

8π2

cℓ
N

cD|~p|

√
m1m2

m3m4
Iℓ(r, κ)Aχ3χ4

0,ℓ ,
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Incorporating Co–Annihilation
MD, J. Gu, 2013

Complications:

Masses in intermediate state differ (slightly) from those
in the final state; can be bigger or smaller. Described by
κ = m3m4

m1m2

m1+m2

m3+m4
− 2m3m4

m3+m4

1

p2 (m3 + m4 − m1 − m2)

Correction now only factorizes on amplitude level:

δAχ1χ2

ℓ |1-loop =
gφχ1χ3

gφχ2χ4

8π2

cℓ
N

cD|~p|

√
m1m2

m3m4
Iℓ(r, κ)Aχ3χ4

0,ℓ ,

In general, have to sum over several intermediate
states χ3χ4!
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Incorporating Co–Annihilation
MD, J. Gu, 2013

Complications:

Masses in intermediate state differ (slightly) from those
in the final state; can be bigger or smaller. Described by
κ = m3m4

m1m2

m1+m2

m3+m4
− 2m3m4

m3+m4

1

p2 (m3 + m4 − m1 − m2)

Correction now only factorizes on amplitude level:

δAχ1χ2

ℓ |1-loop =
gφχ1χ3

gφχ2χ4

8π2

cℓ
N

cD|~p|

√
m1m2

m3m4
Iℓ(r, κ)Aχ3χ4

0,ℓ ,

In general, have to sum over several intermediate
states χ3χ4!

Need to worry about signs (or phases)!
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Loop functions: heavier intermediate state
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Correction suppressed, except near threshold for on-shell
production of intermediate state
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Loop functions: lighter intermediate state

Correction always suppressed.
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Application to MSSM

Need (co–)annihilation amplitudes =⇒ use DarkSUSY
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Application to MSSM

Need (co–)annihilation amplitudes =⇒ use DarkSUSY
Unfortunately, original (summer 2012) version of DarkSUSY
violated unitarity badly:

vχ = 0.001

Wino–like LSP

Problem due to use of finite widths for t−, u−channel
propagators.
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Results for wino–like LSP

Size of effect increases with LSP mass
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Results for higgsino–like LSP

Strong cancellations, e.g. between two neutral higgsinos in loop!
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Difference between higgsinos and winos

Wino–like states form (approximate) SU(2) triplet of
Majorana fermions: no cancellations.
Higgsino–like states form (approximate) SU(2) doublet of
Dirac fermions: strong cancellations.
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Summary

Found new on–shell renormalization of χ̃ sector that is
perturbatively stable everywhere in parameter space.
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Developed model–independent method to compute
one–loop Sommerfeld enhanced corrections; small for
χ̃0
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Summary

Found new on–shell renormalization of χ̃ sector that is
perturbatively stable everywhere in parameter space.

Applied formalism of effective couplings to describe
non–decoupling corrections to neutralino annihilation;
typically few percent effect for TeV–ish squarks

Developed model–independent method to compute
one–loop Sommerfeld enhanced corrections; small for
χ̃0

1 annihilation in MSSM

Extended this method to include co–annihilation: large
effects for wino–like neutralino, small for higgsino–like
neutralino.
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