Enhanced 1–Loop Corrections to WIMP Annihilation

Manuel Drees

Bonn University & Bethe Center for Theoretical Physics

2 MSSM

2 MSSM

a) Improved on-shell renormalization

2 MSSM

a) Improved on-shell renormalization

b) One-loop corrections via effective couplings

2 MSSM

- a) Improved on-shell renormalization
- b) One-loop corrections via effective couplings

3 One–loop Sommerfeld–enhanced corrections

2 MSSM

- a) Improved on-shell renormalization
- b) One-loop corrections via effective couplings

3 One–loop Sommerfeld–enhanced corrections

Within standard cosmology: WIMP relic density can be computed from WIMP annihilation cross section!

$$\Omega_{\chi} h^2 \simeq \frac{2.09 \cdot 10^8 \text{ GeV}^{-1} \cdot x_F}{M_{\text{Pl}} \sqrt{g_*} (a + 3b/x_F)}$$

 $x_F = m_{\chi}/T_F$; T_F : freeze-out temperature $\langle \sigma(\chi\chi \to SM) \rangle \simeq a + 6b/x_F$

Within standard cosmology: WIMP relic density can be computed from WIMP annihilation cross section!

$$\Omega_{\chi}h^2 \simeq \frac{2.09 \cdot 10^8 \text{ GeV}^{-1} \cdot x_F}{M_{\text{Pl}}\sqrt{g_*}(a+3b/x_F)}$$

 $x_F = m_{\chi}/T_F$; T_F : freeze-out temperature $\langle \sigma(\chi\chi \to SM) \rangle \simeq a + 6b/x_F$

Universal cold DM density now quite well known (WMAP 9–year analysis) (arXiv:1212.5226) $\Omega_{\rm CDM}h^2 = 0.1153 \pm 0.0019 \quad (1.6\% \text{ accuracy!})$

Within standard cosmology: WIMP relic density can be computed from WIMP annihilation cross section!

$$\Omega_{\chi}h^2 \simeq \frac{2.09 \cdot 10^8 \text{ GeV}^{-1} \cdot x_F}{M_{\text{Pl}}\sqrt{g_*}(a+3b/x_F)}$$

 $x_F = m_{\chi}/T_F$; T_F : freeze-out temperature $\langle \sigma(\chi\chi \to SM) \rangle \simeq a + 6b/x_F$

Universal cold DM density now quite well known (WMAP 9–year analysis) (arXiv:1212.5226) $\Omega_{\rm CDM}h^2 = 0.1153 \pm 0.0019 \quad (1.6\% \text{ accuracy!})$

Desirable to have prediction for $\sigma(\chi\chi \rightarrow SM)$ to comparable (or better) precision

Within standard cosmology: WIMP relic density can be computed from WIMP annihilation cross section!

$$\Omega_{\chi}h^2 \simeq \frac{2.09 \cdot 10^8 \text{ GeV}^{-1} \cdot x_F}{M_{\text{Pl}}\sqrt{g_*}(a+3b/x_F)}$$

 $x_F = m_{\chi}/T_F$; T_F : freeze-out temperature $\langle \sigma(\chi\chi \to SM) \rangle \simeq a + 6b/x_F$

Universal cold DM density now quite well known (WMAP 9–year analysis) (arXiv:1212.5226) $\Omega_{\rm CDM}h^2 = 0.1153 \pm 0.0019 \quad (1.6\% \text{ accuracy!})$

Desirable to have prediction for $\sigma(\chi\chi \rightarrow SM)$ to comparable (or better) precision

 \implies Need to include "large" radiative corrections! (> α/π)

Caveats

 1.6% error true for standard 6–parameter ΛCDM; allowing more parameters (in particular, finite curvature) increases the uncertainty

Caveats

- 1.6% error true for standard 6–parameter ΛCDM; allowing more parameters (in particular, finite curvature) increases the uncertainty
- Also need to know values of relevant parameters to similar accuracy! Very challenging in SUSY scenarios.

Minimal Supersymmetric extension of the Standard Model

WIMP candidate: Lightest neutralino $\tilde{\chi}_1^0$. $\tilde{\nu}$ excluded by direct searches.

Neutralinos are mixtures of \tilde{B} , \tilde{W}_3 , \tilde{h}_1^0 , \tilde{h}_2^0 .

Minimal Supersymmetric extension of the Standard Model

WIMP candidate: Lightest neutralino $\tilde{\chi}_1^0$. $\tilde{\nu}$ excluded by direct searches.

Neutralinos are mixtures of \tilde{B} , \widetilde{W}_3 , \tilde{h}_1^0 , \tilde{h}_2^0 .

In order to compute loop corrections: need renormalization scheme!

Improved on–shell renormalization of $\tilde{\chi}$ sector

Chatterjee, MD, Kulkarni, Xu, arXiv:1107.5218 [hep-ph] $\tilde{\chi}_i^0, i \in \{1, 2, 3, 4\}$, have charged SU(2) partners: charginos $\tilde{\chi}_a^{\pm}, a \in \{1, 2\}$

Improved on–shell renormalization of $\tilde{\chi}$ sector

Chatterjee, MD, Kulkarni, Xu, arXiv:1107.5218 [hep-ph]

 $\tilde{\chi}_i^0, i \in \{1, 2, 3, 4\}$, have charged SU(2) partners: charginos $\tilde{\chi}_a^{\pm}, a \in \{1, 2\}$

Mixing of current eigenstates described by mass matrices:

$$M^{c} = \begin{pmatrix} M_{2} & \sqrt{2}M_{W}\sin\beta \\ \sqrt{2}M_{W}\cos\beta & \mu \end{pmatrix}.$$
$$M^{n} = \begin{pmatrix} M_{1} & 0 & -M_{Z}s_{W}c_{\beta} & M_{Z}s_{W}s_{\beta} \\ 0 & M_{2} & M_{Z}c_{W}c_{\beta} & -M_{Z}c_{W}s_{\beta} \\ -M_{Z}s_{W}c_{\beta} & M_{Z}c_{W}c_{\beta} & 0 & -\mu \\ M_{Z}s_{W}s_{\beta} & -M_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

 M_1 , M_2 : gaugino masses; μ : higgsino mass. Other parameters (M_W , M_Z , $\tan \beta$) are renormalized independently!

Input "tree-level" masses are *exact, physical* masses.

Input "tree-level" masses are *exact, physical* masses.

Here: have to chose 3 input states, or masses, to define counterterms δM_1 , δM_2 , $\delta \mu$; the other 3 $\tilde{\chi}$ masses do get (finite) loop corrections. (Fritzsche& Hollik 2002)

Input "tree-level" masses are exact, physical masses.

Here: have to chose 3 input states, or masses, to define counterterms δM_1 , δM_2 , $\delta \mu$; the other 3 $\tilde{\chi}$ masses do get (finite) loop corrections. (Fritzsche& Hollik 2002)

In general, there are $\begin{pmatrix} 6 \\ 3 \end{pmatrix}$

$$= 20$$
 different choices of input

states!

Input "tree-level" masses are *exact, physical* masses.

Here: have to chose 3 input states, or masses, to define counterterms δM_1 , δM_2 , $\delta \mu$; the other 3 $\tilde{\chi}$ masses do get (finite) loop corrections. (Fritzsche& Hollik 2002)

In general, there are
$$\begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20$$
 different choices of input

states!

Selection criterion: Perturbative expansion should converge quickly, i.e. corrections to the remaining masses should be small!

Reasons for perturbative instability

■ ∃ parameter $\in \{M_1, M_2, \mu\}$ that does not affect input masses significantly. E.g. no input state has sizable \tilde{B} component \implies finite part of δM_1 can be very large.

Reasons for perturbative instability

- \exists parameter $\in \{M_1, M_2, \mu\}$ that does not affect input masses significantly. E.g. no input state has sizable \tilde{B} component \Longrightarrow finite part of δM_1 can be very large.
- Finite parts can have poles in parameter space. E.g. if $\delta M_2, \, \delta \mu$ from $m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^{\pm}}: \, \delta \mu \propto 1/(M_2^2 \mu^2)!$

Solutions

• First condition \implies must have one \tilde{B} -like, one \tilde{W} -like, one \tilde{h} -like input state. Choice of indices of input states depends on ordering of parameters! (Note: anyway need

information on this ordering, since equations determining counterterms have multiple solutions.)

Solutions

• First condition \implies must have one \tilde{B} -like, one W-like, one \tilde{h} -like input state. Choice of indices of input states depends on ordering of parameters! (Note: anyway need information on this ordering, since equations determining counterterms have multiple solutions.)

 Second condition ⇒ best choice for input states: Wino–like chargino; higgsino– and bino–like neutralino! All other choices have significant regions with perturbative instability.

Regions of instability

1–loop corrections via effective $\tilde{\chi}$ couplings

Chatterjee, MD, Kulkarni, arXiv:1209.2328 [hep-ph]

Observation: matter (s)fermion correction to $\tilde{\chi}$ two-point fcts., plus appropriate counterterms, form finite, gauge invariant subset of corrections! Guasch, Hollik & Sola 2002

Is the *only* diagram (apart from CTs) involving $f' \neq f!$

Properties

• Corrections from "gauge" interactions enhanced by multiplicity factor $N_F N_C$!

Properties

- Corrections from "gauge" interactions enhanced by multiplicity factor $N_F N_C$!
- Correction from heavy sfermion \tilde{f}' is *enhanced* logarithmically: no decoupling!

Consider spectrum $m_{\tilde{q}} \gg m_{\tilde{\ell}} \simeq m_{\tilde{\chi}}$. Effective $\tilde{\chi}\ell\tilde{\ell}$ coupling after integrating out heavy squarks: $\tilde{g}(m_{\tilde{\chi}}) = \tilde{g}(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}}\log\frac{m_{\tilde{q}}}{m_{\tilde{\chi}}}$

Consider spectrum $m_{\tilde{q}} \gg m_{\tilde{\ell}} \simeq m_{\tilde{\chi}}$. Effective $\tilde{\chi}\ell\tilde{\ell}$ coupling after integrating out heavy squarks:

$$\widetilde{g}(m_{\widetilde{\chi}}) = \widetilde{g}(m_{\widetilde{q}}) - \beta_{\ell,\widetilde{\ell}} \log \frac{m_{\widetilde{q}}}{m_{\widetilde{\chi}}} \\
= g(m_{\widetilde{q}}) - \beta_{\ell,\widetilde{\ell}} \log \frac{m_{\widetilde{q}}}{m_{\widetilde{\chi}}}$$

Consider spectrum $m_{\tilde{q}} \gg m_{\tilde{\ell}} \simeq m_{\tilde{\chi}}$. Effective $\tilde{\chi}\ell\tilde{\ell}$ coupling after integrating out heavy squarks:

$$\begin{split} \tilde{g}(m_{\tilde{\chi}}) &= \tilde{g}(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(M_Z) + \beta_{l,q} \log \frac{m_{\tilde{\chi}}}{M_Z} + \beta_{\ell,q,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{M_{\tilde{\chi}}} - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \end{split}$$

Consider spectrum $m_{\tilde{q}} \gg m_{\tilde{\ell}} \simeq m_{\tilde{\chi}}$. Effective $\tilde{\chi}\ell\tilde{\ell}$ coupling after integrating out heavy squarks:

$$\begin{split} \tilde{g}(m_{\tilde{\chi}}) &= \tilde{g}(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(M_Z) + \beta_{l,q} \log \frac{m_{\tilde{\chi}}}{M_Z} + \beta_{\ell,q,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{M_{\tilde{\chi}}} - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(M_Z) + \beta_{\ell,q} \log \frac{m_{\tilde{\chi}}}{M_Z} + \beta_q \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \end{split}$$

Consider spectrum $m_{\tilde{q}} \gg m_{\tilde{\ell}} \simeq m_{\tilde{\chi}}$. Effective $\tilde{\chi}\ell\tilde{\ell}$ coupling after integrating out heavy squarks:

$$\begin{split} \tilde{g}(m_{\tilde{\chi}}) &= \tilde{g}(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(m_{\tilde{q}}) - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(M_Z) + \beta_{l,q} \log \frac{m_{\tilde{\chi}}}{M_Z} + \beta_{\ell,q,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{M_{\tilde{\chi}}} - \beta_{\ell,\tilde{\ell}} \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \\ &= g(M_Z) + \beta_{\ell,q} \log \frac{m_{\tilde{\chi}}}{M_Z} + \beta_q \log \frac{m_{\tilde{q}}}{m_{\tilde{\chi}}} \end{split}$$

In effective theory approach: can also have non–decoupling corrections to off–diagonal entries of $\tilde{\chi}$ mass matrices, i.e. to gaugino–higgsino mixing!

Order of corrections

	$ ilde{\chi} \simeq higgsino$		$ ilde{\chi} \simeq {\sf gaugino}$	
coupling	tree	one–loop	tree	one–loop
$\tilde{\chi}\ell_L\tilde{\ell}_L, \ \tilde{\chi}\ell_R\tilde{\ell}_R$	$\mathcal{O}(\epsilon g)$	${\cal O}(\epsilon g^3,\;\epsilon g\lambda^2)$	$\mathcal{O}(g)$	${\cal O}(g^3,\;\epsilon^2g\lambda^2)$
$ ilde{\chi}\ell_L ilde{\ell}_R,\ ilde{\chi}\ell_R ilde{\ell}_L$	$\mathcal{O}(\lambda_\ell)$	${\cal O}(\lambda_\ell^3,\;\lambda_\ell\lambda_b^2,$	$\mathcal{O}(\epsilon\lambda_\ell)$	${\cal O}(\epsilon\lambda_\ell g^2,\;\epsilon\lambda_\ell\lambda^2)$
		$\epsilon^2 \lambda_\ell g^2, \ \epsilon^2 \lambda_\ell \lambda_t^2)$		

g: generic electroweak gauge coupling;

- λ_{ℓ} : Yukawa coupling of lepton ℓ ;
- λ : generic superpotential coupling;
- ϵ : one factor of (small) gaugino-higgsino mixing.

All corrections are non-decoupling!

Relative size of corrections to couplings

 $M_2 = 3M_2 = 0.3$ TeV, $\mu = 0.6$ TeV, $\tan \beta = 10$, common \hat{f} masses

Note: Non–logarithmic non–decoupling corrections can be sizable, too!

Correction for (mostly) \tilde{B} **-like LSP**

 $m_{\tilde{q}} = 1.5, M_3 = 1.2, M_2 = 0.4, m_{\tilde{l}_L} = 0.55, m_{\tilde{l}_R} = 0.5,$ $\mu = 0.6, m_A = 0.5, A_3 = 1.0, \tan(\beta)(M_Z) = 10$ (All dim.-ful parameters in TeV)

Obtained with modified micrOMEGAs.

Correction for \tilde{B} **– or** \tilde{h} **–like LSP**

 $m_{\tilde{q}} = 1.5, M_3 = 1.2, M_1 = 0.4, M_2 = 0.6, m_{\tilde{l}_L} = 0.55, m_{\tilde{l}_R} = 0.5,$ $\mu = 0.6, m_A = 0.5, A_3 = 1.0, \tan(\beta)(M_Z) = 10$ (All dim.-ful parameters in TeV)

Obtained with modified micrOMEGAs.

Bug in micrOMEGAs

Co–annihilation $\tilde{\tau}_1 + \tilde{\chi}_1^0 \to A + \tau$ can diverge if $m_A \gtrsim 2m_{\tilde{\chi}_1^0}!$ Reason: Can be due to *on–shell* $\tilde{\tau}_1 \to \tau + \tilde{\chi}_1^0$ decay, followed by $\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to A!$

Bug in micrOMEGAs

Co–annihilation $\tilde{\tau}_1 + \tilde{\chi}_1^0 \to A + \tau$ can diverge if $m_A \gtrsim 2m_{\tilde{\chi}_1^0}!$ Reason: Can be due to *on–shell* $\tilde{\tau}_1 \to \tau + \tilde{\chi}_1^0$ decay, followed by $\tilde{\chi}_1^0 + \tilde{\chi}_1^0 \to A!$

However, $\tilde{\tau}_1 \leftrightarrow \tau + \tilde{\chi}_1^0$ is part of the (fast) processes maintaining relative equilibrium between $\tilde{\chi}_1^0$ and $\tilde{\tau}_1 \Longrightarrow$ this kinematic configuration should *not* be included in the explicit co–annihilation cross section!

Sommerfeld enhanced 1–loop corrections

MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial state:

Sommerfeld enhanced 1–loop corrections

MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial state:

Are interested in case where 1–loop correction is sizable, but still a correction: $\alpha m_{\chi} > \mu$. (α : relevant coupling; μ : mass of exchanged boson.)

Sommerfeld enhanced 1–loop corrections

MD, J.M. Kim, Nagao, arXiv:0911.3795 [hep-ph]

Are due to exchange of a relatively light boson in the initial state:

Are interested in case where 1–loop correction is sizable, but still a correction: $\alpha m_{\chi} > \mu$. (α : relevant coupling; μ : mass of exchanged boson.)

Note: $\mu < \alpha m_{\chi}$ may be technically unnatural: expect loop corrections $\delta \mu^2 = O(\alpha m_{\chi}^2 / \pi)!$

Corrections are calculated in non-relativistic kinematics, with several approximations; these are necessary to give a finite result!

Assume reduced tree–level annihilation amplitude is constant: can be pulled out of loop integral

Corrections are calculated in non–relativistic kinematics, with several approximations; these are necessary to give a finite result!

- Assume reduced tree–level annihilation amplitude is constant: can be pulled out of loop integral
- Use contour integration for q_0 integral; only keep residue that vanishes in velocity $v \rightarrow 0$ limit.

Corrections are calculated in non–relativistic kinematics, with several approximations; these are necessary to give a finite result!

- Assume reduced tree–level annihilation amplitude is constant: can be pulled out of loop integral
- Use contour integration for q_0 integral; only keep residue that vanishes in velocity $v \rightarrow 0$ limit.
- S-wave: Ignore \vec{q} dependence in numerator; P-wave: keep exactly one factor of \vec{q}

Corrections are calculated in non–relativistic kinematics, with several approximations; these are necessary to give a finite result!

- Assume reduced tree–level annihilation amplitude is constant: can be pulled out of loop integral
- Use contour integration for q_0 integral; only keep residue that vanishes in velocity $v \rightarrow 0$ limit.
- S-wave: Ignore \vec{q} dependence in numerator; P-wave: keep exactly one factor of \vec{q}
- **I**gnore energy dependence of φ propagator

Check against exact calculation

For scalar WIMP χ coupling to (light) boson φ with (dimensionful) _coupling κ

Result

Correction factorizes!

$$\sigma_{\ell}^{1-\text{loop}}(\chi\chi \to \text{any}) = \sigma_{\ell}^{\text{tree}}(\chi\chi \to \text{any}) \cdot \left(1 + \frac{g^2}{2\pi^2 v_{\chi}} I_{\ell}(\mu/|\tilde{p}_{\chi}|)\right)$$

Result

Correction factorizes!

$$\sigma_{\ell}^{1-\text{loop}}(\chi\chi \to \text{any}) = \sigma_{\ell}^{\text{tree}}(\chi\chi \to \text{any}) \cdot \left(1 + \frac{g^2}{2\pi^2 v_{\chi}} I_{\ell}(\mu/|\tilde{p}_{\chi}|)\right)$$

Loop function:

$$I_{S} = I_{P} = \frac{\pi^{2}}{2} \quad \text{for } \mu \ll |\vec{p}_{\chi}|$$
$$I_{\ell} = \frac{2\pi}{(2\ell+1)\sqrt{(\mu/|\vec{p}_{\chi}|)+1}} \quad \text{for } \mu \gg |\vec{p}_{\chi}|$$

Result

Correction factorizes!

$$\sigma_{\ell}^{1-\text{loop}}(\chi\chi \to \text{any}) = \sigma_{\ell}^{\text{tree}}(\chi\chi \to \text{any}) \cdot \left(1 + \frac{g^2}{2\pi^2 v_{\chi}} I_{\ell}(\mu/|\tilde{p}_{\chi}|)\right)$$

Loop function:

$$I_S = I_P = \frac{\pi^2}{2} \quad \text{for } \mu \ll |\vec{p}_{\chi}|$$

$$I_{\ell} = \frac{2\pi}{(2\ell+1)\sqrt{(\mu/|\vec{p}_{\chi}|)+1}} \quad \text{for } \mu \gg |\vec{p}_{\chi}|$$

Correction depends only on partial wave, not on final state!

Loop functions

Correction to annihilation integral

Corrections for "well-tempered neutralino" in MSSM

MD, J. Gu, 2013

Complications:

• Masses in intermediate state differ (slightly) from those in the final state; can be bigger or smaller. Described by $\kappa = \frac{m_3m_4}{m_1m_2}\frac{m_1+m_2}{m_3+m_4} - \frac{2m_3m_4}{m_3+m_4}\frac{1}{p^2}(m_3 + m_4 - m_1 - m_2)$

MD, J. Gu, 2013

Complications:

- Masses in intermediate state differ (slightly) from those in the final state; can be bigger or smaller. Described by $\kappa = \frac{m_3m_4}{m_1m_2}\frac{m_1+m_2}{m_3+m_4} - \frac{2m_3m_4}{m_3+m_4}\frac{1}{p^2}(m_3 + m_4 - m_1 - m_2)$
- Correction now only factorizes on amplitude level:

 $\delta A_{\ell}^{\chi_1\chi_2}|_{1-\text{loop}} = \frac{g_{\phi\chi_1\chi_3}g_{\phi\chi_2\chi_4}}{8\pi^2} \frac{c_N^{\ell}}{c_D|\vec{p}|} \sqrt{\frac{m_1m_2}{m_3m_4}} I_{\ell}(r,\kappa) A_{0,\ell}^{\chi_3\chi_4},$

MD, J. Gu, 2013

Complications:

- Masses in intermediate state differ (slightly) from those in the final state; can be bigger or smaller. Described by $\kappa = \frac{m_3m_4}{m_1m_2}\frac{m_1+m_2}{m_3+m_4} - \frac{2m_3m_4}{m_3+m_4}\frac{1}{p^2}(m_3 + m_4 - m_1 - m_2)$
- Correction now only factorizes on amplitude level: $\delta A_{\ell}^{\chi_1\chi_2}|_{1-\text{loop}} = \frac{g_{\phi\chi_1\chi_3}g_{\phi\chi_2\chi_4}}{8\pi^2} \frac{c_N^{\ell}}{c_D|\vec{p}|} \sqrt{\frac{m_1m_2}{m_3m_4}} I_{\ell}(r,\kappa) A_{0,\ell}^{\chi_3\chi_4},$
- In general, have to sum over several intermediate states $\chi_3\chi_4!$

MD, J. Gu, 2013

Complications:

- Masses in intermediate state differ (slightly) from those in the final state; can be bigger or smaller. Described by $\kappa = \frac{m_3m_4}{m_1m_2}\frac{m_1+m_2}{m_3+m_4} - \frac{2m_3m_4}{m_3+m_4}\frac{1}{p^2}(m_3 + m_4 - m_1 - m_2)$
- Correction now only factorizes on amplitude level: $\delta A_{\ell}^{\chi_1\chi_2}|_{1-\text{loop}} = \frac{g_{\phi\chi_1\chi_3}g_{\phi\chi_2\chi_4}}{8\pi^2} \frac{c_N^{\ell}}{c_D|\vec{p}|} \sqrt{\frac{m_1m_2}{m_3m_4}} I_{\ell}(r,\kappa) A_{0,\ell}^{\chi_3\chi_4},$
- In general, have to sum over several intermediate states $\chi_3\chi_4!$
- Need to worry about signs (or phases)!

Loop functions: heavier intermediate state

Correction suppressed, except near threshold for on-shell production of intermediate state

Loop functions: lighter intermediate state

Correction always suppressed.

Application to MSSM

Need (co–)annihilation *amplitudes* \implies **use DarkSUSY**

Application to MSSM

Need (co–)annihilation *amplitudes* \implies use DarkSUSY Unfortunately, original (summer 2012) version of DarkSUSY violated unitarity badly:

Problem due to use of finite widths for t-, u-channel propagators.

Results for wino–like LSP

Size of effect increases with LSP mass

Results for higgsino–like LSP

Strong cancellations, e.g. between two neutral higgsinos in loop!

Difference between higgsinos and winos

Wino–like states form (approximate) SU(2) triplet of Majorana fermions: no cancellations. Higgsino–like states form (approximate) SU(2) doublet of Dirac fermions: strong cancellations.

• Found new on-shell renormalization of $\tilde{\chi}$ sector that is perturbatively stable everywhere in parameter space.

- Found new on-shell renormalization of $\tilde{\chi}$ sector that is perturbatively stable everywhere in parameter space.
- Applied formalism of effective couplings to describe non-decoupling corrections to neutralino annihilation; typically few percent effect for TeV-ish squarks

- Found new on-shell renormalization of $\tilde{\chi}$ sector that is perturbatively stable everywhere in parameter space.
- Applied formalism of effective couplings to describe non-decoupling corrections to neutralino annihilation; typically few percent effect for TeV-ish squarks
- Developed model-independent method to compute one-loop Sommerfeld enhanced corrections; small for $\tilde{\chi}_1^0$ annihilation in MSSM

- Found new on-shell renormalization of $\tilde{\chi}$ sector that is perturbatively stable everywhere in parameter space.
- Applied formalism of effective couplings to describe non-decoupling corrections to neutralino annihilation; typically few percent effect for TeV-ish squarks
- Developed model-independent method to compute one-loop Sommerfeld enhanced corrections; small for $\tilde{\chi}_1^0$ annihilation in MSSM
- Extended this method to include co-annihilation: large effects for wino-like neutralino, small for higgsino-like neutralino.