Status of mixed sneutrino dark matter

Béranger Dumont LPSC Grenoble

work in collaboration with Geneviève Bélanger, Sylvain Fichet, Sabine Kraml, and Thomas Schwetz

based on JCAP09(2012)013 (arXiv:1206.1521) updated with latest experimental results

> HAP DM workshop 20 February 2013

Introduction

Two electrically neutral WIMPs in the MSSM:

 neutralino
 sneutrino
 keyword
 number of results on INSPIRE-HEP
 neutralino dark matter
 328
 sneutrino dark matter
 62

Why?

- sneutrino cannot be the LSP in the CMSSM → neutralino historically seen as the "natural" supersymmetric DM candidate
- difficult to evade direct detection limits in the most simple case...

Sneutrino dark matter excluded?

- LH MSSM sneutrino dark matter is excluded
- other options?
 - RH sneutrino (SM singlet)

 non-thermal DM [Asaka et al. '05,
 Gopalakrishna et al. '06, ...]
 extended gauge group [Lee et al. '07,
 Basso, O'Leary, Porod & Staub '11, ...]
 - mixed LH/RH sneutrino as thermal dark matter: the case we consider (and many others: [Arkani-Hamed *et al.* '00, Thomas, Tucker-Smith & Weiner '07, ...])

HAP DM 2013Béranger Dumont20 February 2013

Sneutrino dark matter excluded?

- LH MSSM sneutrino dark matter is excluded
 - other options?
 RH sneutrino (SM singlet)

 non-thermal DM [Asaka et al. '05,
 - Gopalakrishna *et al.* '06, ...] - extended gauge group [Lee *et al.* '07, Basso, O'Leary, Porod & Staub '11, ...]
 - mixed LH/RH sneutrino as thermal dark matter: the case we consider (and many others: [Arkani-Hamed *et al.* '00, Thomas, Tucker-Smith & Weiner '07, ...])

HAP DM 2013Béranger Dumont20 February 2013

Sneutrino dark matter in the minimal SUSY B-L model

From Basso, O'Leary, Porod & Staub [JHEP09(2012)054 (1207.0507)]: • extended gauge group: $U(1)_Y \otimes SU(2)_L \otimes SU(3)_C \otimes U(1)_{B-L}$

- leads to CP-even and CP-odd RH neutrinos as possible dark matter candidate – both are viable
- CP-even case:

HAP DM 2013

Béranger Dumont

20 February 2013

MSSM with mixed sneutrinos

Framework: MSSM (with Dirac neutrinos)

 $\Delta \mathcal{L}_{\text{soft}} = m_{\tilde{N}_i}^2 |\tilde{N}_i|^2 + A_{\tilde{\nu}_i} \tilde{L}_i \tilde{N}_i H_u + \text{h.c.} \qquad \text{no lepton-number violating} \\ m_{\tilde{\nu}}^2 = \begin{pmatrix} m_{\tilde{L}}^2 + \frac{1}{2} m_Z^2 \cos 2\beta & \frac{1}{\sqrt{2}} A_{\tilde{\nu}} v \sin \beta \\ \frac{1}{\sqrt{2}} A_{\tilde{\nu}} v \sin \beta \end{pmatrix} \quad \text{with} \quad A_{\tilde{\nu}} \sim \mathcal{O}(100 \text{ GeV}) \end{cases}$

$$m_{\tilde{\nu}}^2 = \begin{pmatrix} L + 2 & Z & \gamma & \sqrt{2} & \nu & \gamma \\ \frac{1}{\sqrt{2}} A_{\tilde{\nu}} v \sin \beta & M_{\tilde{N}}^2 & m_{\tilde{N}}^2 \end{pmatrix} \text{ instead of } A_{\tilde{\nu}} \propto y_{\nu} \approx 0$$

 $\Rightarrow (\tilde{\nu}_1, \tilde{\nu}_2, \sin \theta_{\tilde{\nu}})$

 $\tilde{\nu}_1 \rightarrow \text{ LSP}$ and (complex scalar) dark matter candidate

 $A_{\tilde{\nu}} \sim \mathcal{O}(100 \text{ GeV})$ is theoretically motivated [Borzumati & Nomura '00, Arkani-Hamed, Hall, Murayama, Smith & Weiner '00]

HAP DM 2013Béranger Dumont20 February 2013

Light and heavy sneutrino dark matter

HAP DM 2013

Béranger Dumont

Light and heavy sneutrino dark matter

Two very different cases: • light sneutrino $(m_{\tilde{\nu}_1} < m_Z/2)$ $\leftarrow \Gamma(L^0 \rightarrow \text{invisible})?$ • heavy sneutrino $(m_{\tilde{\nu}_1} > m_Z/2)$

hints of light dark matter?

- motivation for light sneutrino dark matter
- however very difficult to reconcile the results
 [Kopp, Schwetz & Zupan '11, Arina, Hamann & Wong '11, Arina '12, ...]

Béranger Dumont

Main annihilation channels

Béranger Dumont

20 February 2013

Direct detection cross sections

Z exchange

•
$$\sigma_{\tilde{\nu}_1 N}^{\text{SI, Z}} = \frac{G_F^2}{2\pi} \mu_{\chi}^2 \left((A - Z) - (1 - 4\sin^2 \theta_W) Z \right)^2 \sin^4 \theta_{\tilde{\nu}}$$

proton cross section much smaller than the neutron one: $f_p/f_n = (1 - 4 \sin^2 \theta_W)$

Higgs exchange
•
$$\sigma_{\tilde{\nu}_1N}^{\mathrm{SI},h} = \frac{\mu_{\chi}^2}{4\pi} \frac{g_{h\tilde{\nu}_1\tilde{\nu}_1}^2}{m_h^4 m_{\tilde{\nu}_1}^2} \left((A-Z) \sum_q g_{hqq} f_q^n m_n + Z \sum_q g_{hqq} f_q^p m_p \right)^2$$

quark coefficients
normalized cross section: $\sigma_{\tilde{\nu}_1N}^{\mathrm{SI}} = \frac{4\mu_{\chi}^2}{\pi} \frac{(Zf_p + (A-Z)f_n)^2}{A^2}$

HAP DM 2013Béranger Dumont20 February 2013

Bayesian inference & MCMC

given:

- parameters ϕ in a model M,
- nuisance parameters ψ ,

the posterior probability on ϕ given the experimental data is:

we sample the posterior probability distribution using Markov Chain Monte Carlo (MCMC)

MCMC scan Parameters

i	Parameter	Scan bounds]	
	ϕ_i	light sneutrinos	heavy sneutrinos]	
1	$m_{ ilde{ u}_{1 au}}$	$[1, M_Z/2]$	$[M_Z/2, 1000]$]]	
2	$m_{ ilde{ u}_{2 au}}$	$[m_{\tilde{\nu}_{1\tau}}+1, 3000]$	$[m_{\tilde{\nu}_{1\tau}}+1, 3000]$		
3	$\sin heta_{ ilde{ u}_{ au}}$	[0, 1]	[0,1]		also defines the
4	$m_{\tilde{ u}_{1e}} = m_{\tilde{ u}_{1\mu}}$	$[m_{\tilde{\nu}_{1\tau}}+1, M_Z/2]$	$[m_{\tilde{\nu}_{1\tau}}+1, \ 3000]$] >	charged slepton sector
5	$m_{\tilde{\nu}_{2e}} = m_{\tilde{\nu}_{2\mu}}$	$[m_{\tilde{\nu}_{1e}}+1, 3000]$	$[m_{\tilde{\nu}_{1e}} + 1, \ 3000]$		(assuming $m_{\widetilde{R}} = m_{\widetilde{L}}$)
6	$\sin\theta_{\tilde{\nu}_e} = \sin\theta_{\tilde{\nu}_\mu}$	[0, 1]	[0,1]		
7	aneta	[3, 65]]]	
8	μ	[-3000, 3000]			
9	$M_2 = 2M_1 = M_3/3$	[30, 1000]			
10	$m_{\widetilde{Q}_3} = m_{\widetilde{U}_3} = m_{\widetilde{D}_3}$	[100, 3000]			set to 2 TeV
11	A_t	[-8000, 8000]			
12	M_A	[30, 3000]]	

(all dimensionful parameters in GeV)

we assume uniform (linear) priors on all the parameters

HAP DM 2013 Béranger Dumont

20 February 2013

MCMC scan Nuisance parameters

i	Nuisance parameter	Experimental result	Likelihood function]	
	ψ_i	Λ_i	\mathcal{L}_i		
1	m_u/m_d	0.553 ± 0.043	Gaussian	רו	
2	m_s/m_d	18.9 ± 0.8	Gaussian		quark content
3	$\sigma_{\pi N}$	$44 \pm 5 \text{ MeV}$	Gaussian		of the nucleon
4	σ_s	$21 \pm 7 \text{ MeV}$	Gaussian	J.	
5	$\rho_{\rm DM}$	$0.34\pm0.09~{\rm GeV/cm^3}$	Gaussian	<u>ן</u>	dark mattar
6	v_0	$236 \pm 8 \text{ km/s}$	Gaussian	}	
7	$v_{\rm esc}$	550 ± 35 km/s	Gaussian] J _	Παιυ
8	m_t	$173.3\pm1.1~{\rm GeV}$	Gaussian	רן	
9	$m_b(m_b)$	$4.19^{+0.18}_{-0.06} \text{ GeV}$	Two-sided Gaussian		JIVI
10	$\alpha_s(M_Z)$	0.1184 ± 0.0007	Gaussian	J	uncertainties

astrophysical parameters from [McCabe '10]

we assume uniform (linear) priors on all the nuisance parameters

HAP DM 2013Béranger Dumont20 February 2013

MCMC scan Dark matter constraints

relic density of sneutrinos

- calculated by micrOMEGAs (incl. Coannhilations) using the implementation of the model in [Belanger, Kakizaki, Park, Kraml & Pukhov '10]
- we take into account the WMAP7 results: $\Omega h^2 = 0.1123 \pm 0.0035$ (augmented by 10% theory uncertainty)

direct detection

- $\sigma_{_{SI}}$ calculated by <code>micrOMEGAs</code>
- computation of L _ DD taking into account variations of $\rho_{\rm DM},\,v_{_0}^{},\,v_{_{\rm esc}}^{}$
- we consider:
 - XENON10 2011 (low mass)
 - XENON100 2011 2012
 - CDMS 2011
 - CoGeNT 2011 (we ignore annual modulation)

HAP DM 2013Béranger Dumont20 February 2013

[Kopp, Schwetz & Zupan '11; Schwetz & Zupan '11]

MCMC scan Z, Higgs & SUSY constraints

Z invisible width

• LEP :
$$\Delta \Gamma_Z = \sum_{i=1}^{N_f} \Gamma_{\nu} \frac{\sin^4 \theta_{\tilde{\nu}_i}}{2} \left(1 - \left(\frac{2m_{\tilde{\nu}_i}}{M_Z}\right)^2 \right)^{3/2} < 2 \text{ MeV} (95\% \text{ CL})$$

$$\Rightarrow \sin \theta_{\tilde{\nu}} \lesssim 0.4 \text{ for } m_{\tilde{\nu}_1} < m_Z/2$$

Higgs and SUSY mass limits

- Higgs BRs from HDECAY
- Higg(e)s mass limits computed by HiggsBounds 3.6.1beta
- **NEW** $m_{h^0} = 125.5 \pm 2 \text{ GeV}$
- limits on chargino and slepton masses from LEP
- a posteriori (not included in MCMC): gluino mass limits

MCMC scan Low-energy observables

flavour physics

- $\mathcal{B}(b \to s\gamma) = (3.55 \pm 0.34) \times 10^{-4}$ (HFAG average)
- $\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.5 \times 10^{-9} (95\% \text{ CL})$ NEW $\mathcal{B}(B_s \to \mu^+ \mu^-) = 3.2^{+1.5}_{-1.2} \times 10^{-9} (\text{LHCb})$
- calculated by micrOMEGAs
- constraints SUSY at large tan β

muon anomalous magnetic moment

- $\Delta a_{\mu} = (26.1 \pm 8.0) \times 10^{-10}$ (Hagiwara *et al.* '11) (augmented by a theory uncertainty of 10×10^{-10})
- modified 1-loop calculation (due to muon sneutrino mixing)

MCMC scan Summary of constraints

i	Observable	Experimental result	Likelihood function
	μ_i	D_i	\mathcal{L}_i
1	Ωh^2	0.1123 ± 0.0035	Gaussian
		(augmented by 10% theory uncertainty)	
2	σ_N	$(m_{\rm DM}, \sigma_N)$ constraints from	$\mathcal{L}_2 = e^{-\chi^2_{ m DD}/2}$
		XENON10, XENON100,	
		CDMS and CoGeNT	
3	$\Delta\Gamma_Z$	$< 2 { m MeV} (95\% { m CL})$	$\mathcal{L}_3 = \mathbf{F}(\mu_3, 2 \text{ MeV})$
4	Higgs mass	from HiggsBounds 3.6.1beta	$\mathcal{L}_4 = 1$ if allowed
	limits		$\mathcal{L}_4 = 10^{-9}$ if not
5	h^0 mass	$125.5 \pm 2 { m GeV}$	Gaussian
6	$m_{\tilde{\chi}_1^+}$	$> 100 { m ~GeV}$	$\mathcal{L}_6 = 1$ if allowed
	~1		$\mathcal{L}_6 = 10^{-9}$ if not
7	$m_{\tilde{e}_R} = m_{\tilde{\mu}_R}$	$> 100 { m ~GeV}$	$\mathcal{L}_7 = 1$ if allowed
			$\mathcal{L}_7 = 10^{-9}$ if not
8	$m_{ ilde{ au}_1}$	$> 85 { m GeV}$	$\mathcal{L}_8 = 1$ if allowed
			$\mathcal{L}_8 = 10^{-9}$ if not
9	$m_{ ilde{g}}$	$> 750, 1000 { m GeV}$	not included
		or none	(a posteriori cut)
10	$\mathcal{B}(b o s \gamma)$	$(3.55 \pm 0.34) \times 10^{-4}$	Gaussian
11	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	$3.2^{+1.5}_{-1.2} \times 10^{-9}$	Two-sided Gaussian
12	Δa_{μ}	$(26.1 \pm 12.8) \times 10^{-10}$	Gaussian

F: smoothed step function (emulates the 95% CL bounds)

Light sneutrino results

- sneutrino: good DM candidate below 7 GeV
- lower bound on mixing angle \Rightarrow lower bound on $\sigma_{_{SI}}$
- bounds on gluinos exclude the very low mass region

Light sneutrino results

- sneutrino: good DM candidate below 7 GeV
- lower bound on mixing angle \Rightarrow lower bound on $\sigma_{_{SI}}$
- bounds on gluinos exclude the very low mass region

the Higgs decays dominantly (> 99%) into sneutrinos

how much invisible is actually allowed?

HAP DM 2013 Béranger Dumont 20

20 February 2013

Status of invisible Higgs decays

Performing a fit to all available Higgs results from ATLAS, CMS and Tevatron:

Status of invisible Higgs decays

Performing a fit to all available Higgs results from ATLAS, CMS and Tevatron:

Heavy sneutrino results

coannihilation with slepton or neutralino

- we need a very low mixing angle to pass the XENON100 limit
- lower bound on $\sigma_{_{SI}}$ except for coannihilation and resonance cases: the main region could soon be excluded by direct detection
- upper limit on the LSP sneutrino mass
- similar results if the e, μ and τ sneutrinos are required to be close in mass ("democratic" case)

HAP DM 2013

Heavy sneutrino results indirect detection – Fermi-LAT limits on γ -rays

- usually two orders of magnitude below the limit
- special region with Breit-Wigner enhancement

 one order of magnitude improvement from Fermi-LAT would constrain the model

20 February 2013

LHC phenomenology

- having a sneutrino LSP significantly changes the expected SUSY signal:
 - lepton+MET from chargino decay: $\tilde{\chi}_1^{\pm} \rightarrow \ell^{\pm} \tilde{\nu}_1$
 - invisible neutralino 1 & 2 decays: $\tilde{\chi}_{1,2}^0 \rightarrow \tilde{\nu}_1^* \tilde{\nu}_1 \rightarrow$ up to 3 invisible sparticles in the decay chain!

the flavour of the light sneutrino(s) matters!

	heavy	heavy democratic	
$\mathcal{B}(\tilde{\chi}_1^0 \to \text{inv}) > 0.9$	96%	98%	
$\mathcal{B}(\tilde{\chi}_2^0 \to \text{inv}) > 0.9$	29%	42%	not up-to-date
$\mathcal{B}(\tilde{\chi}_1^{\pm} \to \ell^{\pm} \tilde{\nu}_{1\ell}) > 0.5$	9%	48%	numbers
$\mathcal{B}(\tilde{\chi}_1^{\pm} \to \tau^{\pm} \tilde{\nu}_{1\tau}) > 0.5$	46%	10%	

- previous studies: [Thomas, Tucker-Smith & Weiner '07, Belanger, Kraml & Lessa '11]
- work in progress...

Conclusion

- the discovery of a SM-like Higgs boson at the LHC rules out the possibility for light (< 10 GeV) mixed sneutrino dark matter in the MSSM
- heavy (≈ 60–500 GeV) mixed sneutrinos are viable dark matter candidates
- (in)direct detection could soon probe the main allowed region for sneutrino dark matter
- indirect detection: possible neutrino signal?
- interesting LHC phenomenology to be explored!

Annihilation into neutrino pairs

Béranger Dumont