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By comparing theoretical predictions
with the gamma-ray emission observed by the Fermi LAT
from the region around the Galactic Center,

is it possible to derive stringent constraints on parameters
of generic dark matter (DM) candidates?
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INDIRECT DETECTION

<+ {Annihilation of WIMPs in the galactic center witl produce gamma rays
and these can be measured

in space-based detectors

EGRET telescope, after 5 years of mapping
the gamma-ray sky, identified a gamma-ray
source at the galactic center that, apparently,
has no simple explanation with standard
processes. In particular,

the flux is about 108 cm=2 s!

The Compton Gamma Ray Observatory (CGRO) satellite

Starting in 2007, the GLAST satellite will be able to detect a flux
of gamma rays, as small as 10-'1 cm2 s'!, clarifying the situation

Old transparencies: Feb. 2006
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As in the case of direct detection, it is also crucial for indirect

detection to analyze the compatibility of th@al@s 3
dark matter candidate, with the sensitivity of detector
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Theoretical Predictions
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Since the diagrams are related, we can use the same arguments as for direct detection

Astrophysics: e.g.f@ NFW profile forpur galaxy, has for small distances from
the galactic center_p(r) ~ p,/r

E.g. for r= 0.01 pc, p(r) = p,x 106

For m ~ 100 GeV and Qpy h? ~ 1/Gann ~ 0.1 this implies the upper bound

¢ ~ 1092 cm=2s?! i.e. below EGRET sensitivity
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Baryons

X The previous situation occurs for simulations of halos without baryons. When

baryons are taken into account a larger p(r) is obtain, producing a larger ¢,
and therefore increasing the dark matter detectability

a NFW profile including baryons h@) ~ p, /1143, aroducing ¢.x 100
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GLAST

Even for CMSSM, points correspondmg to tan [3 5 will be reached by GLAST
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By comparing theoretical predictions
with the gamma-ray emission observed by the Fermi LAT
from the region around the Galactic Center,

is it possible to derive stringent constraints on parameters of

Qeneric dark matter (DM) candidates

YES in the likely case that the collapse of baryons to the Galactic Center
is accompanied by the contraction of the DM:

Gomez-Vargas, Morselli, Sanchez-Conde Fermi
Preliminary results: December 2012

The analysis is conservative since it simply requires that the expected DM signal
does not exceed the observed gamma-ray emission (due to DM + astrophysical
background)

The upper limits on the annihilation cross section of DM particles obtained
are two orders of magnitude stronger than withouth contraction
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DARK MATTER DENSITY PROFILES

High-resolution N-body simulations of the gravitational collapse of a collisionless
system of particles, suggest the existence of WDM density profile.

Using the parametrization: m-haloes to galaxy cluster

plr) = e = where the density p. and the radius I,

(%)7 {1 + (%) ] ) vary from halo to halo

# The NFW profile, with (o,B,y)=(1,3,1), is the most widely used

Ps

p(r) = (r/r) (1 + r/r)2  Cuspy profile in the inner region ( pp, —> 1/r)
g ? implying a singularity towards the center

¥ Another approximation is the so-called Einasto profile
which seems to provide a better fit than NFW to numerical results

5 N Simulations now resolve the cusp down to radius
pein(r) = ps €Xp {_E K;) = 1] } ; of ~ 100 pc, thus there is less of extrapolation to
’ the central region of ~ 1-10 pc, where most of
the annihilation signal is expected to come from



But these are DM-only simulations, and central regions of galaxies like the
Milky Way are dominated by baryons

They might modify e.g. the behaviour of NFW p — 1/r making it steeper

The baryons lose energy through radiative processes and fall into the central
regions of a forming galaxy. Thus the

resulting gravitational potential is deeper,

and the DM must move closer

to the center increasing its density

The effect seems to be confirmed
by high-resolution hydrodynamic
simulations that self-consistently
include complex baryonic physics
such as gas dissipation, star
formation and supernova feedback

Carlos Mufoz DM constraints from Fermi-LAT 11
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From observational
data of the Milky Way, '
the parameters of the
DM profiles have been

constrained
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Caution:

Astrophysicists identified another process,
which tends to decrease the DM
density and flatten the DM cusp

The mechanism relies on humerous episodes of baryon infall followed by a
strong burst of star formation, which expels the baryons producing at the
end a significant decline of the DM density.

Cosmological simulations which implement this process
show this result

Whether the process happened in reality in the Milky Way is still unclear...

Carlos Mufioz DM constraints from Fermi-LAT 13
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GAMMA-RAY FLUX FROM DARK MATTER ANNIHILATION
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Figure 1: The J(AQ)AQ quantity integrated on a ring with inner radius of 0.5 degrees and external
radius of U degrees for the DM density profiles given in Table 1. Blue (solid}, red (long-dashed)
and green (short-dashed) lines correspond to NFW, NFW, and Einasto profiles, respectively. The
three density profiles are compatible with current observational data.
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GAMMA-RAY FLUX FROM Fermi LAT MEASUREMENTS

N Launched in June 2008

wﬁ'\‘

Credit: NASA/General Dynamics

The LAT covers an energy range from ~20 MeV to > 300 GeV
with a large effective area (~6500 cm?2) above 1 GeV
and a large field of view (2.4 sr)

Carlos Mufoz DM constraints from Fermi-LAT 15
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Optimization of the region of interest for dark matter searches
In order to find the ROI that maximizes the S/N, we follow the next steps:

1. Maps of the quantityﬁ(éQ) AQ fo}j the

(i.e., Einasto,NFW and NFWCc) are built, and used as the signal. L

2. The noise is assumed to be the square root of the

Fermi.

i.e., the most conflictive regions in the analysis.

o
1 [deg]

Figure 3: Maps of the observed flux by the Fermi-LAT in the energy range 1 — 100 GeV, in units
of photons cm™2 s=!, for the three DM profiles studied. From left to right: Einasto, NFW and

NFW..
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on flux map, as measured/by

3. A mask is introduced to cover the GC and the Galactic plane,

e DM density profiles considered
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Profile 6, || b | AQ J (AQ) AQ lux (1 — 100 GeV)
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Einasto 15.6 0.7 | 0.217 5.l 31.44+0.3
NFW 16.7 0.6 | 0.253 3.3 38.0 £0.3
NFW, 3.0 1.0 | 0.005 86.8 2:2:10.1
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Figure 3: Maps of the observed flux by the Fermi-LAT in the energy range 1 — 100 GeV, in units
of photons cm™2 s™!, for the three DM profiles studied. From left to right: Einasto, NFW and

NFW..

Clearly, the NFW_ ROI is the
smallest one. This is because in
the inner region of 5 deg, the
J(AQ) AQ for NFW _beeeines
constant, whereas for the other
two profiles this quantity becomes
flat at larger radius. Therefore, by
increasing the aperture above few
degrees does not increase the S/N
for the NFWc case
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Figure 1: The J(AQ)AQ quantity integrated on a ring with inner radius of 0.5 degrees and external
radius of ¥ degrees for the DM density profiles given in Table 1. Blue (solid}, red (long-dashed)
and green (short-dashed) lines correspond to NFW, NFW, and Einasto profiles, respectively. The
three density profiles are compatible with current observational data.
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Figure 3: Maps of the observed flux by the ¥ermi-LAT in the energy range 1 — 100 GeV, in units

of photons cm™2 s™!, for the three DM
NFW.,. 1

To set constraints we
request t M-
induced gamma ray

flux does not exceed the

observed flux upper limit

No subtraction of any
astrophysical
background is made

Carlos Mufioz
UAM & IFT

—— ° o o (o] Profle A" J(AQ)AQ Flux (1 — 100 GeV)
5 (X 10?2 GeV? cm > st Y [x10~7 em—2%s~!]
= Einasto 9.1 31.4+0.3
15 NFW 3.3 38.0+0.3
20 | NFW, 86.8 2201

5 |[d°eg] 355 345 340 15 10 5 H:eg] 355 3
‘ofiles studied. From left to right: Einasto, NFW and
107
8 N —
= 107°F = |
- = =
e
@, - s T
% 10 7L = — I
=1 S =S =— &
= F e From NFW ROI =
. ® From Einasto ROI
84 e From NFW, ROI
— Systematic
1078 : N
| 10 100

E, [GeV]

Figure 4: Energy spectrum extracted from Fermi-LAT data for the optimized regions that are shown
in Figure 3. Data are shown as points and the vertical error bars represent the statistical errors.
The latter are in many cases smaller than the point size. The boxes represent the systematic error
in the Fermi-LAT effective area.



LIMITS ON THE DARK MATTER ANNIHILATION CROSS SECTION

Conservative approach:

Require that the integrated gamma-ray flux of the expected DM signal
for each energy bin does not exceed the observed flux upper limit

No subtraction of any astrophysical background is made

We use LAT data measured between August 4, 2008, and June 15, 2012

Carlos Mufoz DM constraints from Fermi-LAT 19
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value of oV in the Galactic
halo, where the DM velocity
is much smaller, and can
escape this constraint.
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In this sense, the results derived for pure annihilation
channels can be interpreted as limiting cases which
give an idea of what can happen in realistic scenarios

Work in progress:
Analysis of the SUSY parameter space by:

Gomez-Vargas, Morselli, Sanchez-Conde
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CONCLUSIONS

Fermi LAT data imply that large regions of parameters of DM candidates

are not compatible with compressed DM density profiles
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Galactic
Halo

. Globular clusters
GNP

. ’OO ..
Sun ' Galaxy . Central
o T Center _Bulge

'o
GS.P » ..

The stars in the inner ~ 3kpc are organized in a bulge and the bar

In the Galactic Center there is a supermassive black hole ~2.6 x 106 M,
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TABLE L:

constraints for the Milky Way Galaxy

Virial mass, 10" Mg
Virial radius, kpc
Halo concentration C

Disk mass, 10'° Mg
Disk scale length, kpc
Bulge mass, 10° Mg
Black Hole mass, 10°Me
M (< 100kpc), 10 Mg
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TABLE I: Model and constraints for the Milky Way Galaxy i S
— Constr. sl 5
Virial mass, 10" Mg 1.07 = i .
Virial radius, kpc 264 —~ - BOR
Halo concentration C 11 10.3-21.5 T
(150) 5150 I :
Disk mass, 10'° Mg ST - g0
Disk scale length, kpc 3.2 2.5-3.5
Bulge mass, 10° Mg 8.0 - G
Black Hole mass, 10° Mg 2.6 n 2.6 :{ A
M (< 100kpc), 10 Mg 6.25 T:5 =25 s0 -/
Siotal, |2 < 1.1 kpe 65 71+6 I Syn~8.5 kpC v
at Ro, Mgpc™* / | | | ]
Baryon 8t Re,Mope™ 47 48 + 8 %o s w0 15 =
Veire at 3 kpe, km/s 203 | R00+5 ik
Ps
Pr(r) = 2 :
(r/re) (1 +r/ro)
2
g
p.=0.15 GeV/cm3 r, = 23.8 kpc
r = 8.5 kpc — py(8.5) = p, = 0.23 GeV/cm3

Voo (8-5)baryons ~ 180 KM/S ; Vg (8.5)ygqa ~ 220 KMY§ oss bt ooty gy

Radius(kpe)



The effect of baryons in the distribution of dark matter

Ps This result is obtained from
(r/r) (1 + r/r.)? dark-matter-only simulations

pn(r) =

When normal gas (“baryons”) loses its energy through radiative processes,
it falls to the central region of forming galaxy. As the result of this
redistribution of mass, the gravitational potential in the center changes
substantially. The dark matter must react to this deeper potential by moving
closer to the center and increasing its density.

Assuming that the compression occurs adiabatically, one obtains:

>t > M) =M (r))re | Me=Mpy +
Mass profile of the galactic halo before the /' S

compression (obtained through N-body simulations)

Mi= Mpy (Qpm + Qp) / Qpy The to be determined dark matter
component of the halo today
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