Unfolding in ATLAS ttbar+jets.

Karl-Johan Grahn (DESY Hamburg)

16.2.2013

Introduction

- Measure jet multiplicity in semi-leptonic ttbar events (e+jets and mu+jets) with a number of jet pT thresholds: 25, 40, 60, and 80 GeV.
- > Measured up to 8 jets (inclusive).
- Motivation: Constrain radiation, test pQCD, understand background for many searches.
- >Reco-level plots were compared with data in <u>ATLAS-CONF-2011-142</u> (2011, 0.70 fb⁻¹).
- Present measurement fully unfolded to particle level in fiducial region using full 2011 data set (4.7 fb⁻¹). CONF note from last November: <u>ATLAS-CONF-2012-155</u>
- > Paper on the way.

16.2.2013 Karl-Johan Grahn

Reco-level event selection

- >Standard top-group semi-leptonic selections, with some exceptions (marked in red below):
 - Electron (20 and 22 GeV) or muon (18 GeV) trigger.
 - Electron $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$
 - Muon $|\eta|$ < 2.5
 - Exactly one lepton with $p_T > 25$ GeV. No other lepton with $p_T > 15$ GeV.
 - ≥ 3 jets with p_T > 25 (40, 60, 80) GeV (EM+JES calibration) and |JVF| > 0.75
 - *E*_T^{miss} > 30 GeV
 - m_T(W) > 35 GeV in both channels
 - \geq 1 *b*-tagged jets (MV1@60%) with $p_{T} > 25$ GeV

Particle-level selection

- > Particle level selection, used for unfolding. Closely matched to recolevel acceptance:
 - Electron (dressed with photons in $\Delta R < 0.1$) $|\eta| < 2.47$, excluding $1.37 < |\eta| < 1.52$
 - Muon $|\eta|$ < 2.5
 - Exactly one lepton with $p_T > 25$ GeV. No other lepton with $p_T > 15$ GeV.
 - \geq 3 jets with $p_{T,truth} > 25 \text{ GeV}$
 - E_T^{miss} > 25 GeV
 - m_T(W) > 35 GeV in both channels
 - ≥ 1 jet with a p_T > 5 GeV *b*-hadron within ΔR < 0.3
 - Electrons, muons, neutrinos matched to *W*s.

Unfolding procedure

$$f_{\mathrm{part}}$$
 reco f_{part} f_{reco} f_{part} f_{accpt} f_{accpt} f_{accpt} f_{bgnd} f_{part} f_{part} f_{accpt} $f_{\mathrm{a$

Events failing jet multiplicity requirement at reco level, but requirement at particle level, passing at particle level.

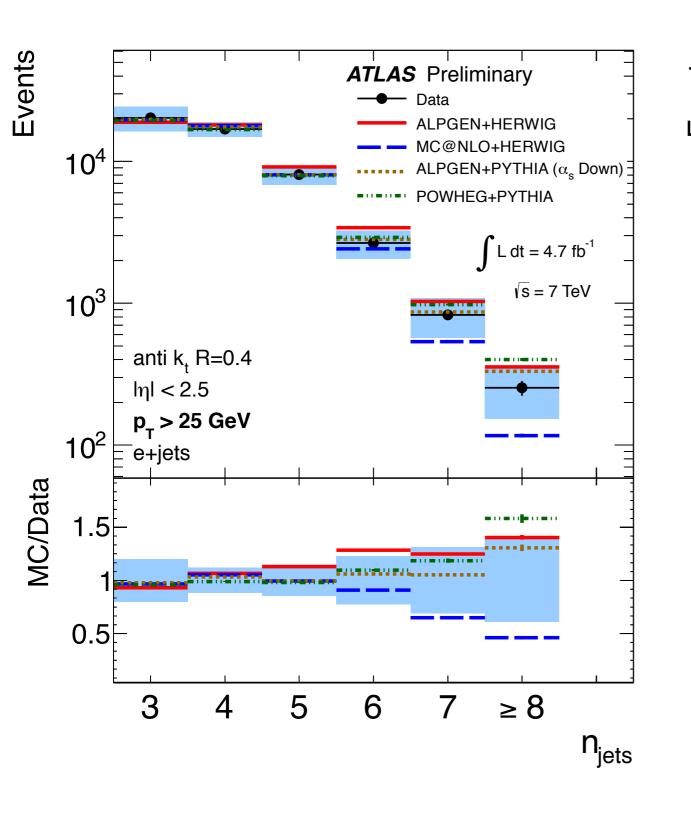
Function of njets_part

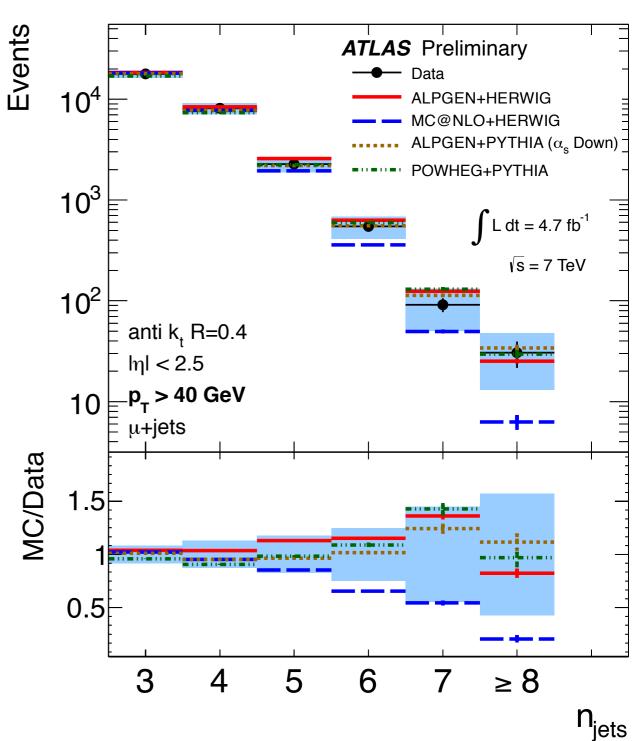
Events failing jet multiplicity but passing at reco level. Function of njets reco

>Uncertainties propagated through unfolding using pseudo-experiments:

- Statistical uncertainty on unfolding factors
- Background estimation
- Reconstruction efficiencies
- Generator bias
- ISR/FSR from ALPGEN+PYTHIA alpha_s variations.

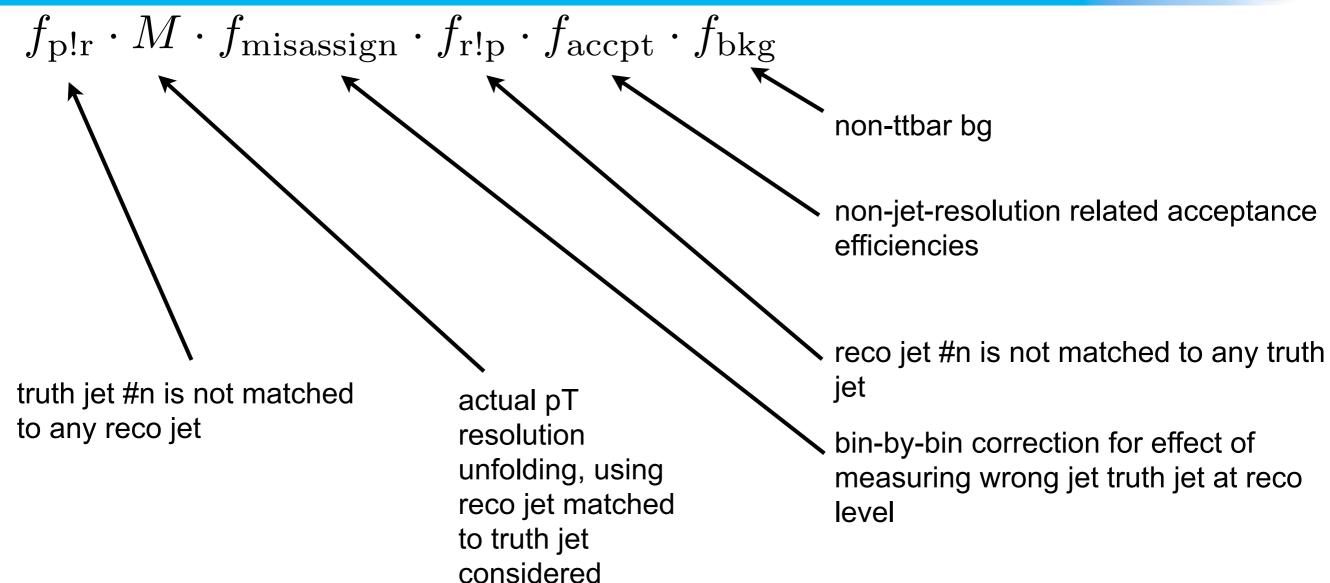
Derivation of correction factors




>f_bgnd

- QCD data-driven
- W+jets semi-data-driven
- Z+jets, single top, di-bosons from Monte Carlo
- >f_accpt
 - from Monte Carlo
 - Various selection efficiencies measured in data (b-tagging, lepton id, trigger...). MC rescaled to match data.
 - 1.8-1.9 for electron channel and 1.4-1.5 for muon channel.
- >f_rnp : from Monte Carlo
- >M: From Monte Carlo.
- >f_pnr
 - from Monte Carlo
 - extrapolating from probability of measuring 3 jets at reco level, given 4 particle jets.

Unfolded distributions, example



Unfolding ansatz for pT of jet #n

>Under study.

BACKUP