Studies for Particle Driven Plasma Acceleration at PITZ

Experiments planned utilizing PITZ (Photo Injector Test facility at DESY, Zeuthen site)

Matthias Gross

Grömitz, 21. March 2013

Background

Background: Proton-driven PWFA experiment proposed at CERN:

- Use high energy proton beams to drive wake (plasma wave)
- Convert proton beam energy into e⁻ or e⁺ beam in a single stage

Caldwell et al., Nature Physics (2009); Lotov, PRST-AB (2010)

⇒ high gradient requires high density: $E_z \propto n^{1/2}$ ⇒ large wake requires resonance beam: $L_b \sim \lambda_p \propto n^{-1/2}$

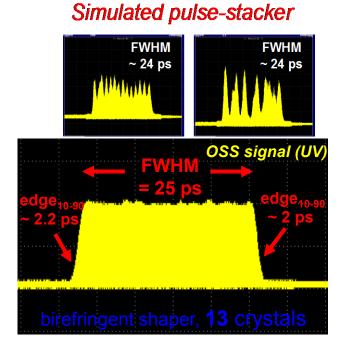
$$E_{z,\max} \approx 3 \text{ GV/m} \left(\frac{N_b}{10^{10}}\right) \left(\frac{100 \mu \text{m}}{\sigma_z}\right)^2 \ln(\sigma_z/\sigma_r)$$

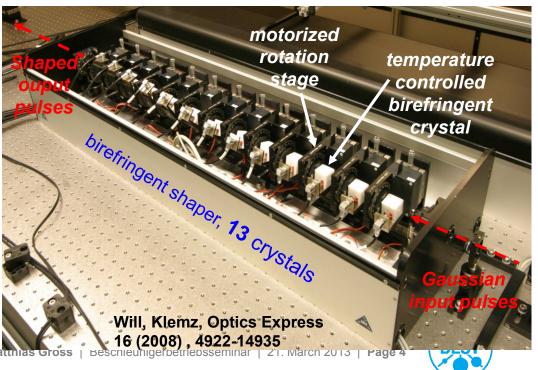
⇒ high accelerating gradient requires **short** bunches $\sigma_z \lesssim 100 \ \mu$ m ⇒ existing proton machines produce **long** bunches $\sigma_z \sim 10 \ cm$

• Use beam-plasma instability to modulated the beam at λ_p , driving large plasma waves for acceleration Kumar *et al.*, PRL (2010); Lotov, Phys. Plasmas (2011)

Does this work ? →Dephasing ? →Hose instability ?

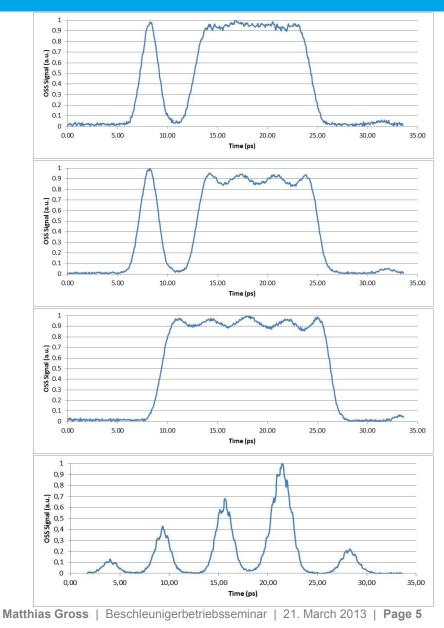
Why Experiments at PITZ?


Favorable circumstances


- Pure R&D facility (no users)
- Unique laser system (pulse shaper)
- Well developed diagnostics (high resolution electron spectrometer, etc.); soon: transverse deflecting cavity + dispersive section for longitudinal phase space measurements
- Possible contribution from PITZ:
 - Self modulation of electron beam
 - Later: High transformer ratio (needs bunch compressor)

Flexible Laser Pulse Formation at PITZ

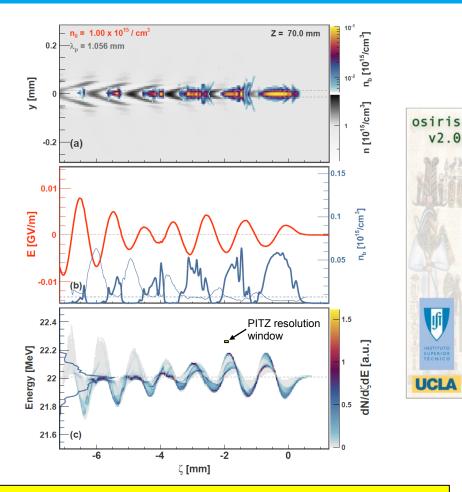
- Photoinjector laser
- Developed and built by Max-Born Institute Berlin
- Key element: the pulse shaper
 - Contains 13 birefringent crystals. Pulses are split according to polarization. Delay is given by crystal thickness; relative amplitude can be varied freely by adjusting relative angle between crystals


Experimentally Demonstrated Pulse Shapes

> Driver + witness bunch

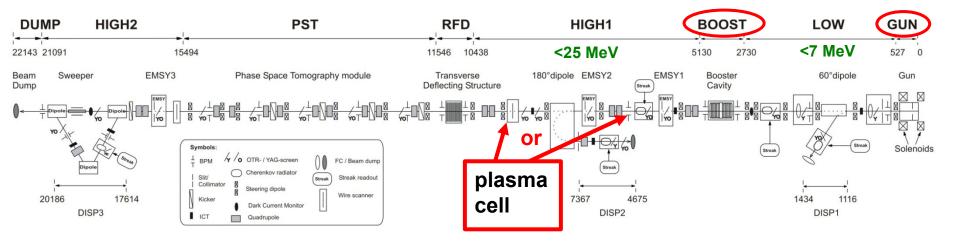
Modulated driver + witness bunch

Modulated driver


> Multi bunches

3D PIC (Particle in Cell) Simulation of PITZ Experiment

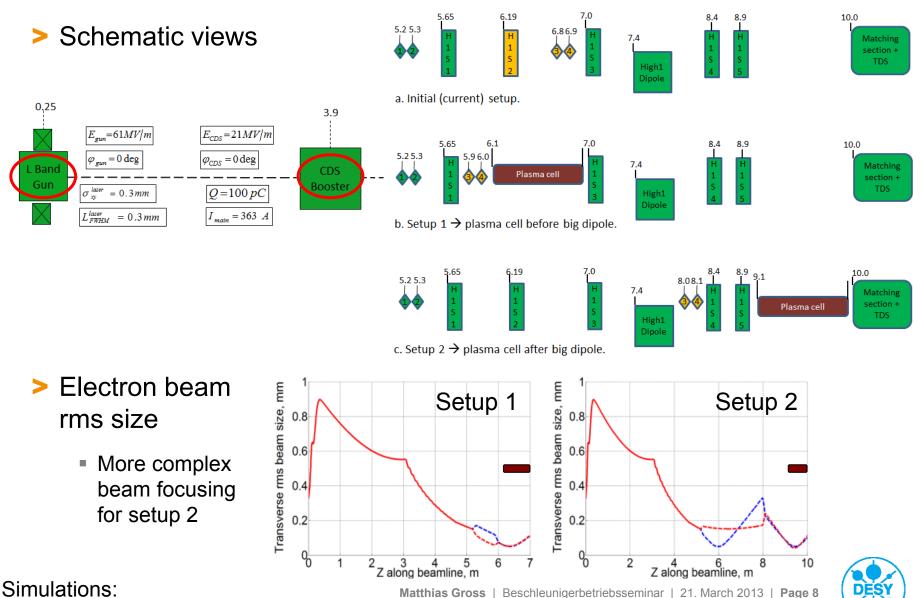
Beam parameters	Setup 1
Total charge, pC	100
Longitudinal beam position, m	6.44
Horizontal rms beam size, um	42.0
Vertical rms beam size, mm	42.0
Bunch length in FWHM, mm	5.93
Average kinetic energy, MeV	21.5
Peak slice current, A	5.3
Horizontal rms emittance, mm mrad	0.372
Vertical rms emittance, mm mrad	0.372
Peak beam density, 10^13 e / cm^3	1.9


Expected energy modulation \approx 400 keV. PITZ beam energy spread as low as \approx 60keV. Resolution of TDS/HEDA2: 10keV and 100µm (Malyutin et al. "Simulation of the Longitudinal Phase Space Measurements With the Transverse Deflecting Structure at PITZ", *Proc. of IPAC 2012, MOPPP034* \rightarrow Measurable

DESY

Simulations: Alberto Martinez de la Ossa

Insertion of Plasma Cell into PITZ Setup


> PITZ 2 setup to be used for first plasma experiments

- Plasma cell has to be between booster and TDS
- > Two possible positions, both with a length of about 1m
- > Beam dynamics simulations to determine which position is more favorable

Simulation: Scenarios for Plasma Cell Insertion

Martin Khojoyan

Simulation: Beam Properties

Comparison of setups

_		
Beam parameters	Before	After
	dipole	dipole
Total charge, pC	100	100
Longitudinal beam position, m	6.35	9.45
Horizontal rms beam size, um	49.8	59.4
Vertical rms beam size, mm	51.2	59.4
Rms bunch length, mm	1.71	1.71
Bunch length in FWHM, mm	5.92	5.92
Average kinetic energy, MeV	24.55	24.55
Rms energy spread, keV	27.5	27.8
Peak slice current, A	5.2	5.2
Horizontal rms emittance, mm mrad	0.37	0.38
Horizontal beam divergence, mrad	0.008	0.09
Vertical rms emittance, mm mrad	0.38	0.36
Vertical beam divergence, mrad	0.002	0.13
Longitudinal rms emittance, keV mm	42.4	42.4
Peak beam density, 10 ¹² e / cm ³	9.1	6.6

Setup 1: beam properties acceptable. Smaller beam size, less divergence, higher peak density – overall preferable

Simulations: Martin Khojoyan

Key Topic: Ionization of Plasma Channel

> Three approaches:

- 1. Plasma discharge
- 2. RF wave (helicon wave)
- 3. Laser ionization
 - Single photon ionization
 - Linear process
 - Need UV light (< 230nm), e.g. ArF laser
 - Normally partial ionization → percentage is function of local laser intensity (saturation curve)
 - Field ionization
 - Nonlinear process
 - Laser wavelength not important, e.g. Ti:Sapphire or CO₂ laser
 - Threshold process \rightarrow Complete ionization in well defined volume

Lithium Plasma Cell

> Principle:

- Evaporate Lithium in central pipe (700°C)
- Define beginning and end of Lithium zone with steep temperature gradient and Helium buffer gas
- Once pressure regions have stabilized:
 - Ionize Lithium gas with laser
 - Inject particle beam for PWA experiment

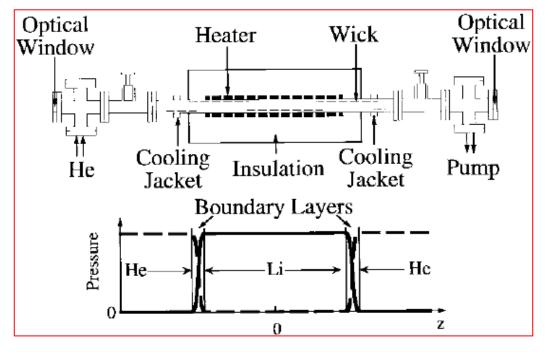
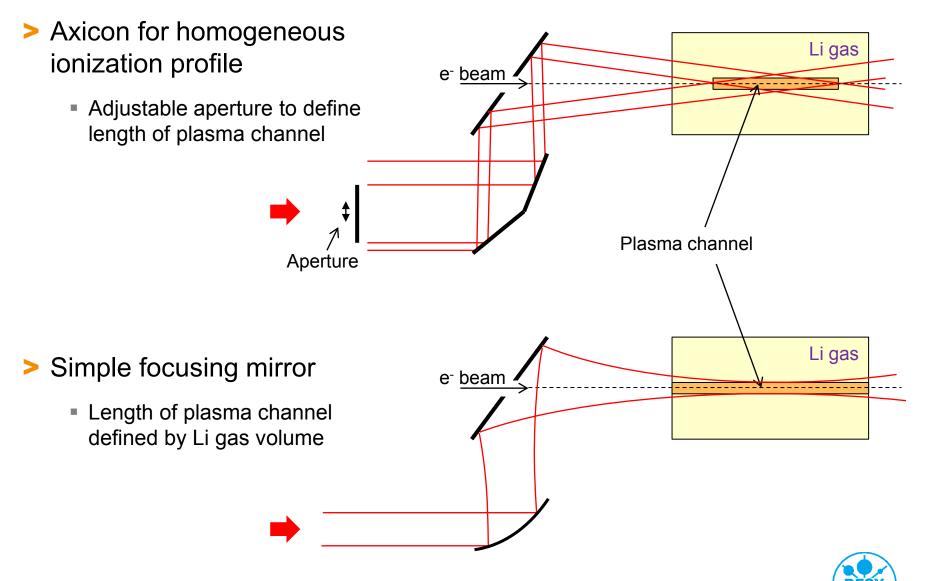
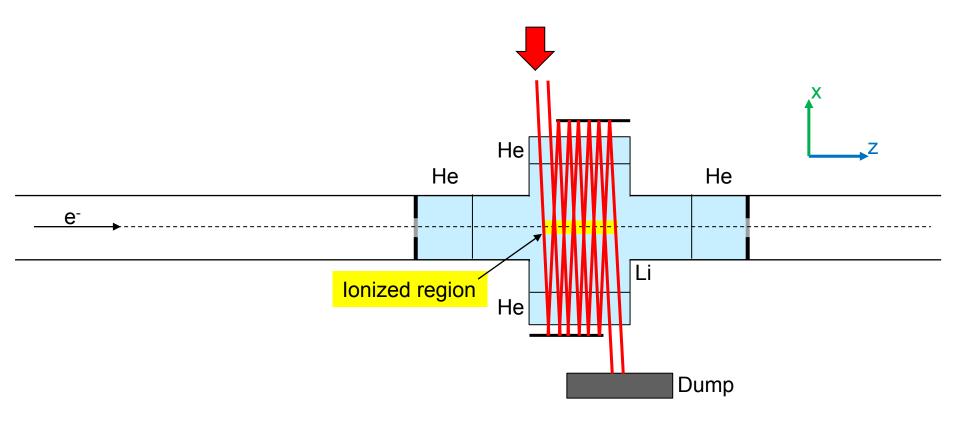
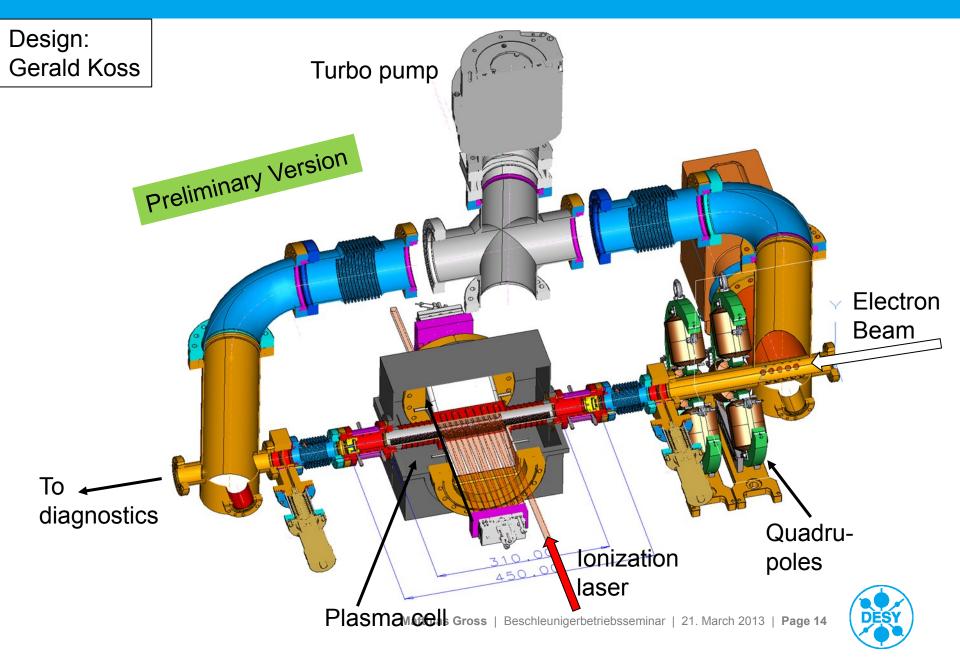



Figure from: P. Muggli et al. "Photo-Ionized Lithium Source for Plasma Accelerator Applications", *IEEE Trans. Plasma Science* **27** (1999), pp. 791-799

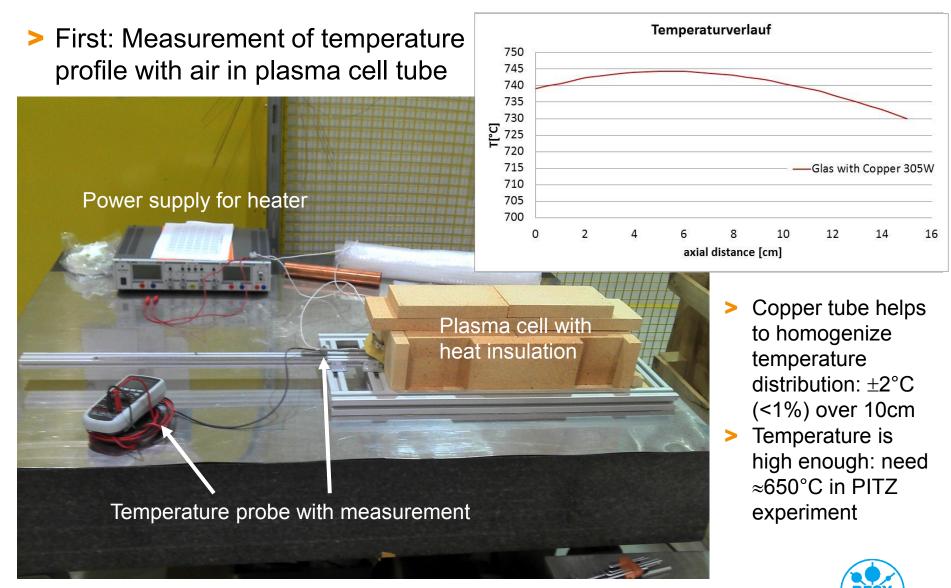


Optics for Laser Plasma Generation – Axial Coupling


Plasma Ionization – Side Coupling

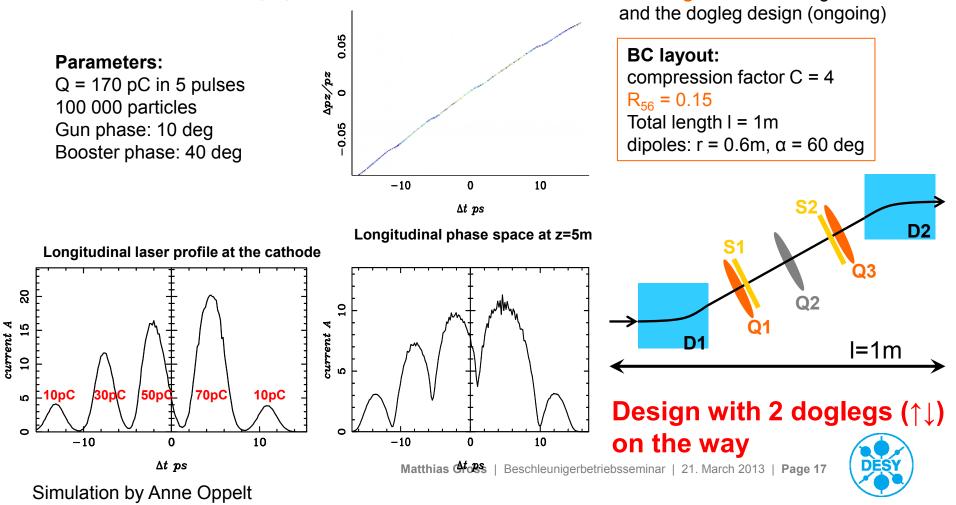
- Independent optimization of electron and laser paths possible
- > Setup:

Plasma Cell Assembly: Sketch


Heat Pipe Oven Prototype

- Inner glass tube; outer copper tube with spiral groove to hold heating wire (Thermocoax TET; 1.5mm diameter; 5.5Ω/m)
- Length of heating region: 30cm

Experiments have started with Plasma Cell Prototype


Multi Bunches: High Transformer Ratio

> Plasma Acceleration: e.g. 5 bunchlets within bunch \rightarrow transformer ratio >2

use **Elegant** for matching

Setup: - use PITZ2 beamline with gun, booster, and matching quads up to z=7m - install a short bunch compressor (dogleg)

ASTRA simulations through gun and booster up to z=5m

Very Preliminary Results: Needs Optimization

Outlook

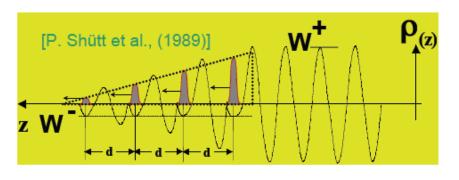
- > 2013: First experiments with plasma cell in laboratory
- > 2014: Characterization of energy modulation of electron beam in plasma
- Then: Insertion of bunch compressor experiments with high transformer ratio etc.
- > Cooperation with SLAC, CERN etc.

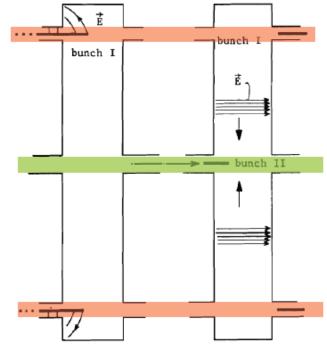
Summary

- PWA Experiments are planned at PITZ
 - Now: Characterization of electron beam self modulation
 - Later: High transformer ratio
- > Utilization of good diagnostics and unique laser system
- Simulations show promising results
 - Electron sub bunching and energy modulation with current setup
 - Energy gain with bunch compressor
- First experiments with plasma cell prototype

Transformer Ratio (TR)

- TR defined as $\mathcal{R} \equiv \frac{\hat{W}(\zeta)}{\breve{W}(\zeta)}$ deccelerating field behind bunch within bunch
- Figure of merit for beam driven-acceleration
 - High-TR desired for multistage acceleration,
 - At low energies high TR increase interaction length.
- For a bunch with symmetric current profiles $\mathcal{R} \leq 2$ (fundamental beam loading "theorem")



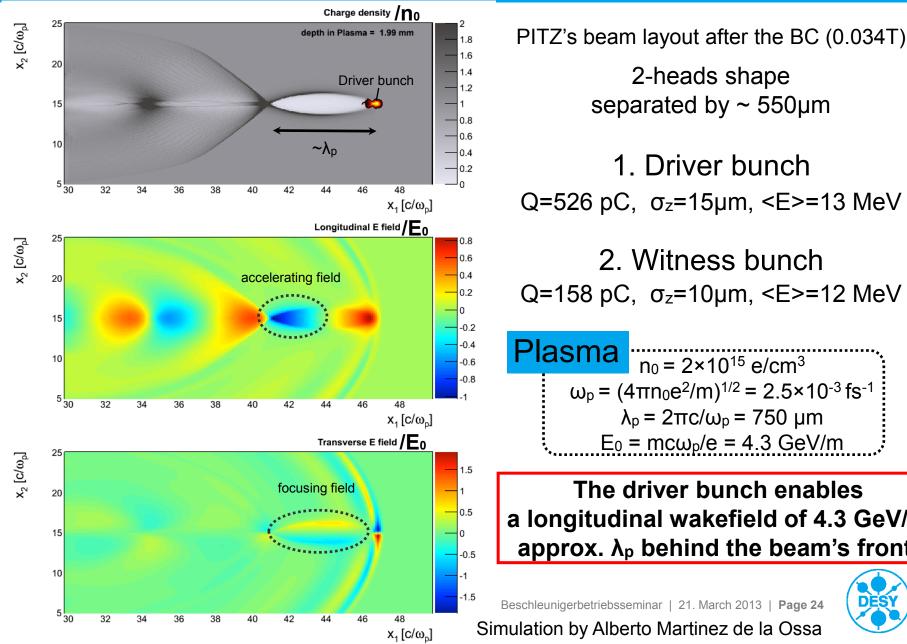

02-AUG-2011

How to Increase the Transformer Ratio

TR enhancement

- Non-collinear configurations:
 - Two-beam accelerator,
 - Two-beam in same structure (e.g. DESY hallow beam config.)
- Use of different species:
 - Wakeatron [A. Ruggiero, 1985]: drive bunch is a proton beam (adapted to plasma wakefield acceleration recently!)

[G. A. Voss, Th. Weiland (1982)]

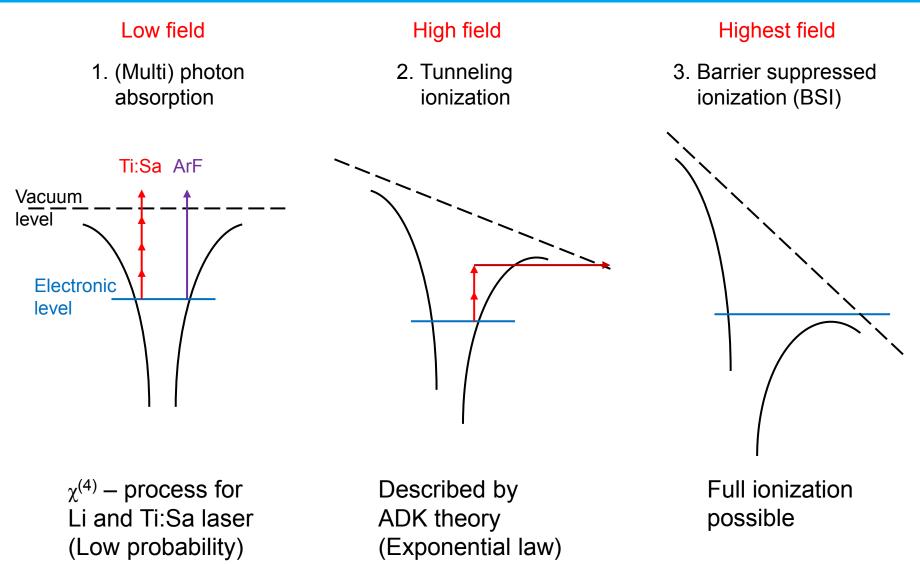

•Bunch train:

- -OK in the GHz regime
- Difficult when dealing with THz structures
- Tailored bunch current profile:

-Asymmetric bunch

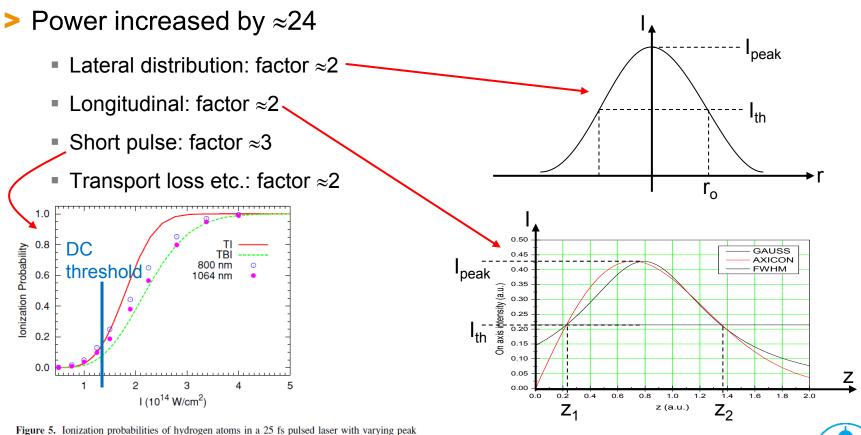
Simulation of Beam-driven Plasma Wakefields

2-heads shape separated by ~ 550µm 1. Driver bunch Q=526 pC, σ_z =15µm, <E>=13 MeV 2. Witness bunch Q=158 pC, σ_z =10µm, <E>=12 MeV


 $n_0 = 2 \times 10^{15} \text{ e/cm}^3$ $\omega_p = (4\pi n_0 e^2/m)^{1/2} = 2.5 \times 10^{-3} \text{ fs}^{-1}$ $\lambda_p = 2\pi c/\omega_p = 750 \ \mu m$ $E_0 = mc\omega_p/e = 4.3 \text{ GeV/m}$

The driver bunch enables a longitudinal wakefield of 4.3 GeV/m approx. λ_p behind the beam's front.

Simulation by Alberto Martinez de la Ossa


Ionization Processes

Estimation of Ti:Sa Laser Peak Power

- Laser power needed for ideal case (uniform power density over lateral and longitudinal channel dimensions and DC case): P_{id}=I_{th}πr₀²
 - Channel radius: r₀; BSI Ionization threshold I_{th} (3.4*10¹² W/cm² for Li)

intensities.

from: Tong et al., J. Phys. B 38 (2005) p. 2593

Matthias Gross | Beschleunigerbetriebsseminar | 21. March 2013 | Page 26

Ionization Energies: Single Photon and Field Ionization

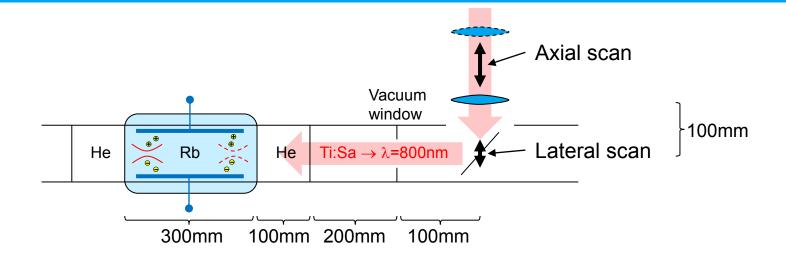
From Z. Najmudin's talk at PDPWA workshop (Munich, Dec 1st 2011)

- Energy required to completely ionize a 1m long, 1mm² plasma channel (Single Photon)
- BSI Intensity: Threshold intensity for complete ionization (Field Ionization)

					Energy required	BSI Intensity
Medium	ϵ_{ion} (eV)	Ζ	λ _{ion} (μm)	harmonic <i>n</i> 800	(mJ)	(Wcm⁻²)
Н	13.6	1	0.0912	8.8	17.11	1.37E+14
Li	5.39	1	0.2300	3.5	6.78	3.38E+12
Li+	75.6	2	0.0164	48.8	95.13	3.27E+16
Cs	3.89	1	0.3187	2.5	4.90	9.16E+11
Cs+	23.15	2	0.0536	14.9	29.13	2.87E+14
Ar	15.8	1	0.0785	10.2	19.88	2.49E+14
Ar+	27.6	2	0.0449	17.8	34.73	5.80E+14
N	14.5	1	0.0855	9.4	18.25	1.77E+14
N+	29.6	2	0.0419	19.1	37.25	7.68E+14

Additional use of Ti:Sa laser

Problem

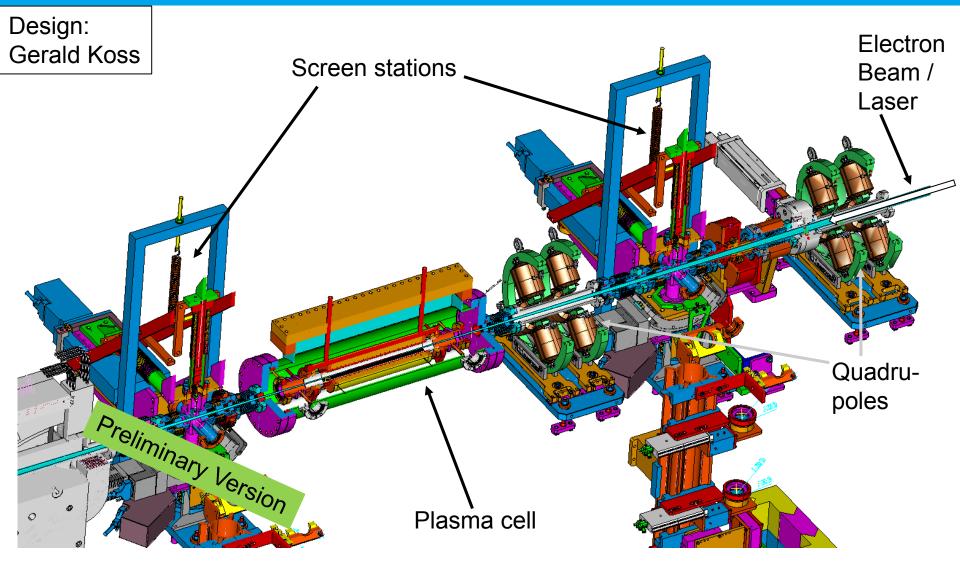

- Measurement of density fluctuation in a plasma for PWA at PITZ
- Facts
 - Alkali metal vapor (e.g. Rb) with density of about 10¹⁵ cm⁻³
 - Basic Idea from Markus Drescher: Focus laser within gas to ionize small volume, then collect ions

> Idea

- Use Ti:Sa laser for this measurement and ionization for PWA: gas density = plasma density
- Focus laser coaxially into gas volume so that field ionization threshold is exceeded only in small volume around beam waist – scan this focus around plasma cell
- Pick up ions with big electrodes, e.g. plates or wires: the electrodes do not need high resolution since that is done by the laser focus – no need for local detector

Setup Details / Back of the envelope Calculation

Assume: Gaussian beam


- D_{max} = (300+100+200+100+100)mm = 800mm
- r = 5mm (half diameter of vacuum window worst case: put at D_{max})
- $\rightarrow \theta_{max}$ = 6 mrad
- Lateral resolution: $2w_{0,max} = 2\lambda/\pi\theta \approx 80\mu m$
- Calculation of axial resolution also leads to value <100µm

High resolution measurement possible, could be evaluated at PITZ

W₀

 D_{\max}

Plasma Cell Assembly: Sketch

