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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is

a
1

2

V

Re(   )
Im(   )

Higgs mode
Nambu–

Goldstone
mode

j/jc      1

0 100 200 300 400
0

5

10

15

20

Time (ms)

 L
at

tic
e 

de
pt

h 
(E

r)

Lattice loading Modulation Hold time Ramp to 
atomic
 limit

Temperature
measurement

V0

Ttot = 200 ms

A = 0.03V0

Tmod = 20W
W

b

3

j/jc * 1

j/jc , 1

Ψ
Ψ

Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is

a
1

2

V

Re(   )
Im(   )

Higgs mode
Nambu–

Goldstone
mode

j/jc      1

0 100 200 300 400
0

5

10

15

20

Time (ms)

 L
at

tic
e 

de
pt

h 
(E

r)

Lattice loading Modulation Hold time Ramp to 
atomic
 limit

Temperature
measurement

V0

Ttot = 200 ms

A = 0.03V0

Tmod = 20W
W

b

3

j/jc * 1

j/jc , 1

Ψ
Ψ

Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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finite-temperature kernel, N(⌧,!) = e�!⌧ + e�!(1/T�⌧):

�(⌧) =

Z +1

0
N(⌧,!)S(!) . (4)

We employ the same protocol of collecting and analyzing
data as in Ref. [13]. More specifically, in the MC simu-
lation we collect statistics for the correlation function at
Matsubara frequencies !n = 2⇡Tn with integer n

�(i!n) = hK(⌧)K(0)ii!n + hKi (5)

which is related to �(⌧) by a Fourier transform. In the
path integral representation, �(i!n) has a direct unbi-
ased estimator, |

P
k e

i!n⌧k |2, where the sum runs over
all hopping transitions in a given configuration. Once
�(⌧) is recovered from �(i!n), the analytical continuation
methods described in Ref. [13] are applied to extract the
spectral function S(!). A discussion on the reproducibil-
ity of the analytically continued results for this type of
problems can also be found in Ref. [13].

We consider system sizes significantly larger than the
correlation length by a factor of at least four to ensure
that our results are e↵ectively in the thermodynamic
limit. Furthermore, for the SF and MI phases, we set
the temperature T = 1/� to be much smaller than the
characteristic Higgs energy, so that no details in the rel-
evant energy part of spectral function are missed.

We consider two paths in the SF phase to approach the
QCP: by increasing the interaction U ! Uc at unity fill-
ing factor n = 1 (trajectory i perpendicular to the phase
boundary in Fig 1), and by increasing µ ! µc while keep-
ing U = Uc constant (trajectory ii tangential to the phase
boundary in Fig 1). We start with trajectory i by consid-
ering three parameter sets for (|g|, L,�): (0.2424, 20, 10),
(0.0924, 40, 20, and (0.0462, 80, 40). The prime data are
shown in the inset of Fig. 3. After rescaling results ac-
cording to Eq. (1) we observe data collapse shown in the
main panel of Fig.3. This defines the universal spectral
function in the superfluid phase, �SF.

When approaching the QCP along trajectory ii,
with (|gµ|, L,�) = (0.40, 25, 15), (0.30, 30, 15), and
(0.20, 40, 20) we observe a similar data collapse and arrive
at the same universal function �SF, see Fig. 4. The fi-
nal match is possible only when the characteristic energy
scale �(gµ) = C�(g(gµ)) involves a factor of C = 1.2.

The universal spectral function �SF has three distinct
features: a) A pronounced peak at !H/� ⇡ 3.3, which
is associated with the Higgs resonance. Since the peak’s
width �/� ⇡ 1 is comparable to its energy, the Higgs
mode is strongly damped. It can be identified as a
well-defined particle only in a moving reference frame;
b) A minimum and another broad maximum between
!/� 2 [5, 25] which may originate from multi-Higgs ex-
citations [13]; c) The onset of the quantum critical quasi-
plateau, in agreement with the scaling hypothesis (1),
starting at !/� ⇡ 25. These features are captured by an
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approximate analytic expression with normalized �2 ⇠ 1,

�SF(x) =
0.65x3

35 + x2/⌫


1 +

7 sin(0.55x)

1 + 0.02x3

�
(6)

We only claim that a plateau is consistent with our imag-
inary time data and emerges from the analytic continua-
tion procedure which penalizes gradients in the spectral
function; i.e., other analytic continuation methods may
produce a di↵erent (oscillating) behavior in the same fre-
quency range that is also consistent with the imaginary
time data.
We now switch to the MI phase, where we approach the

QCP along trajectory iii in Fig 1. The scaling hypothesis
for the spectral function has a similar structure to the one
in Eq. (1),

SMI(!) / �3�2/⌫�MI(
!

�
) . (7)

The low-energy behavior of �MI starts with the thresh-
old singularity at the particle-hole gap value, �MI(x) ⇡

4

of the susceptibility was predicted [12, 13, 17] to be

�00
� ⇠ (!/�)3 , ! ⌧ � ⌧ 1. (9)

The !3 rise is due to the decay of a Higgs mode into a
pair of Goldstone modes. On the other hand, Fig. 4 does
not display a clear !3 low frequency tail. An alterna-
tive method to look for this tail exists, without the need
to analytically continue the numerical data to real time.
Equation (9) transforms into the large imaginary time
asymptotics �s (⌧) ⇠ 1/⌧4.

For N = 3 we confirm the asymptotic behavior of 1/⌧4

within the numerical limitations. Interestingly, forN = 2
we do not find a conclusive asymptotic fall-o↵ as 1/⌧4,
Instead, the data fits better to an exponential decay, as
in the disordered phase (see Eq. (7)), although the power
law might have a small amplitude below our statistical
errors. In both cases, we can safely conclude that the
spectral weight of the Higgs peak dominates over the low
frequency !3 tail, enhancing its visibility. The large ⌧
analysis is discussed elsewhere [23].

Discussion and Summary– Our results are directly ap-
plicable to all experimental probes that couple to a func-
tion of the order parameter magnitude. For example, the
lattice potential amplitude in the trapped bosons sys-
tem [16, 18], or pump-probe spectroscopy in Charge Den-
sity Wave systems [6–8]. Such a probe can be expanded
near criticality in terms of the order parameter fields and
their derivatives,

⇥(x, ⌧) = ↵|~�|2 + �|@µ~�|2 + �(|~�|2)2 + . . . (10)

So long as ↵ 6= 0, the first term is more relevant than the
rest. Hence, the scalar susceptibility defined in Eq. (2)
dominates the experimental response at low frequencies
and wave vectors.

In summary, we have calculated the scalar susceptibil-
ity for relativistic O(2) and O(3) models in 2+1 dimen-

FIG. 4: Rescaled spectral function vs. !/� for N = 2, 3,
at µ = 0.5. At low values of !/�, these curves collapse to
the universal scaling function �00

�(!/�), in accordance with
Eq. 5.

sions near criticality. We have demonstrated that the
Higgs mode appears as a universal spectral feature sur-
viving all the way to the quantum critical point. Since
this is a strongly coupling fixed point, the existence of
a well defined mode that is not protected by symmetry
is an interesting, not obvious, result. We presented new
universal quantities to be compared with experimental
results.
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Quantum critical dynamics 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”

with shortest possible local equilibration time, ⌧eq

⌧eq = C ~
kBT

where C is a universal constant.

Response functions are characterized by poles in LHP
with ! ⇠ kBT/~.

These poles (quasi-normal modes) appear naturally in
the holographic theory.

(Analogs of Higgs quasi-normal mode.)
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Key idea: ) Implement r as an extra dimen-

sion, and map to a local theory in d + 2 spacetime

dimensions.
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Renormalization group: ) Follow coupling

constants of quantum many body theory as a func-

tion of length scale r
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This is the metric of anti-de Sitter space AdSd+2.
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AdS4 theory of quantum criticality
Most general e↵ective holographic theory for lin-
ear charge transport with 4 spatial derivatives:
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This action is characterized by 3 dimensionless pa-
rameters, which can be linked to data of the CFT
(OPE coe�cients): 2-point correlators of the con-
served current Jµ and the stress energy tensor Tµ⌫ ,
and a 3-point T , J , J correlator.

R. C. Myers, S. Sachdev, and A. Singh, Phys. Rev. D 83, 066017 (2011)

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Phys. Rev. B 87, 085138 (2013)
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AdS4 theory of quantum criticality

• Stability constraints on the e↵ective theory (|�| < 1/12)
allow only a limited !-dependence in the conductiv-

ity. This contrasts with the Boltzmann theory in which

�(!)/�1 becomes very large in the regime of its validity.
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AdS4 theory of quantum criticality

Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions
is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus
on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We
find clear evidence for deviations from !k scaling of the conductivity towards !k=T scaling at low
Matsubara frequencies !k. By careful analytic continuation using Padé approximants we show that this
behavior carries over to the real frequency axis where the conductivity scales with !=T at small
frequencies and low temperatures. We estimate the universal dc conductivity to be !! " 0:45#5$Q2=h,
distinct from previous estimates in the T " 0, !=T % 1 limit.
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The nontrivial properties of materials in the vicinity of
quantum phase transitions [1] (QPTs) are an object of
intense theoretical [1–3] and experimental studies. The
effect of quantum fluctuations driving the QPTs is espe-
cially pronounced in low-dimensional systems, such as
high-temperature superconductors and two-dimensional
(2D) electron gases, exhibiting the quantum Hall effect.
Particularly valuable are theoretical predictions of the
behavior of the dynamical response functions, such as the
optical conductivity and the dynamic structure factor, since
they allow for direct comparison of the theoretical results
with experimental data. It was pointed out by Damle and
Sachdev [2] that at the quantum-critical coupling the
scaled dynamic conductivity T#2&d$=z!#!; T$ at low fre-
quencies and temperatures is a function of the single
variable @!=kBT:

!#!=T; T ! 0$ " #kBT=@c$#d&2$=z!Q!#@!=kBT$: (1)

Here !Q " Q2=h is the conductivity ‘‘quantum’’ (Q " 2e
for the models we consider), !#x ' @!=kBT$ is a universal
dimensionless scaling function, c a nonuniversal constant,
and z the dynamical critical exponent. For d " 2 the ex-
ponent vanishes, leading to a purely universal conductivity
[4], depending only on frequency !, measured against a
characteristic time @" set by finite temperature T as
@!=kBT. Once @!=kBT % 1, for fixed T, the system no
longer ‘‘feels’’ the effect of finite temperature and it is
natural to expect that at such high ! a crossover to a
temperature-independent regime will take place [3], so
that !#!; T$ ( !#!$ with !#!$ decaying at high frequen-
cies as 1=!2 [2]. Deviations from scaling of ! with !
therefore signal that temperature effects have become im-
portant. Note that the predicted universal behavior occurs
for fixed !=T as T ! 0. The physical mechanisms of
transport are predicted [2] to be quite distinct in the differ-
ent regimes determined by the value of the scaling variable
x: hydrodynamic, collision dominated for x) 1, and col-
lisionless, phase coherent for x% 1 with ! " !#1$

largely independent of x in d " 2 and ! independent of
T [2,5].

Intriguingly, early numerical studies [6–9] of QPTs in
model systems have failed to observe scaling with
@!=kBT. The results of the experiments seeking to verify
the scaling hypothesis are ambiguous as well. Some of
them, performed at the 2D quantum Hall transitions [10]
and 3D metal-insulator transitions [11], appear to support
it. Others either note the absence of scaling [12] or suggest
a different scaling form [13]. While the discrepancy be-
tween theory and experiment may be attributed to the
unsuitable choice of the measurement regime [2], typically
leading to @!=kBT % 1, there is no good reason why the
predicted scaling would not be observable in numerical
simulations if careful extrapolations first to L! 1 and
then T ! 0 for fixed !=T are performed.

Our primary goal is to resolve this controversy by per-
forming precise numerical simulations of the frequency-
dependent conductivity at finite temperatures in the vicin-
ity of the 2D QPT, exploiting recent algorithmic advances
to access larger system sizes and a wider temperature
range. After the extrapolation of the results to the thermo-
dynamic and T " 0 limits and careful analytic continu-
ation, we are able to demonstrate how the predicted
universal behavior of the conductivity may indeed be
revealed.

We consider the 2D Bose-Hubbard (BH) model with the
Hamiltonian H BH "H 0 *H 1, where the first term
describes the noninteracting soft core bosons hopping via
the nearest-neighbor links of a 2D square lattice, and the
second one includes the Hubbard-like on-site interactions:

H 0 " &t
X

r;#
#byr br*# * byr*#br$ &$

X
r
nr; (2)

H 1 "
U
2

X
r
nr#nr & 1$: (3)

Here # " x; y, nr " byr br is the particle number operator
on site r, and byr ; br are the boson creation and annihilation
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The SSE data also display a high narrow peak at very low
frequencies, whose position and shape are unstable with
respect to the choice of the initial image and MaxEnt
parameters. This is clearly an artifact of the method; how-
ever, its presence is indicative of the tendency to accumu-
late the weight at very low frequencies, in qualitative
agreement with H V result. The subsequent falloff in the
conductivity at high frequencies is physically consistent,
but its functional form depends on the Padé approximant
used. For !=!c * 1=2, we expect the analytic continu-
ation of the data for H V to become sensitive to the order of
the approximant used and we therefore indicate the results
in this regime by dotted lines only. We note that results at
all temperatures yield the same dc conductivity !? !
0:45"5#!Q, theoretically predicted [4] to be universal.
Because of the very different scaling procedure this result
differs from previous numerical result !? ! 0:285"20#!Q
on the same model [6] in the T ! 0 limit. It also differs
significantly from a theoretical estimate [2], !$ !
1:037!Q, valid to leading order in " ! 3% d. Remark-
ably, our result for the dc conductivity is very close to the
one obtained in Ref. [8] for the phase transition in the
disordered Bose-Hubbard model. Experimental results in-
dicate a value close to unity [26]; however, it was previ-
ously observed [7] that long-range Coulomb interactions,
impossible to include in the present study, tend to increase
! considerably. The same data are shown versus !=T in
Fig. 4(b). Notably, when using this parametrization !c
cancels out and all our data follow the same functional
form. The scaling with !=T at low frequencies is now
immediately apparent, with a surprisingly wide low !=T
peak. The width of this peak is consistent with the data in
Fig. 3(d). Furthermore, on the same !=T scale the con-
tinuous time SSE data for H BH and the results for H V
qualitatively agree.

In summary, we have demonstrated that by doing a very
careful data analysis it is possible to observe the theoreti-
cally predicted universal !=T scaling at the 2D superfluid-

insulator transition. We have also estimated the universal
dc conductivity at this transition and found that it differs
significantly from existing numerical and theoretical
estimates.
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FIG. 4. The real part of the conductivity !0 at the critical
coupling in units of !Q. The data marked L#, plotted vs
!=!c, were obtained using H V , combined with the analytic
continuation of $"!=!c# as explained in the text. Results for
!=!c * 1=2 are denoted by dotted lines. The data marked SSE,
plotted vs !=10, were obtained by direct SSE simulations of
H BH with L ! 20, % ! 10 and subsequent maximum entropy
analysis (a). Results as a function of !=T (b).
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!!i!k"=!2"!Q" #
h$kxi$!xx!i!k"

!k
% #!i!k"

!k
: (7)

Here h$kxi is the kinetic energy per link and #!i!k" is the
frequency-dependent stiffness. To measure !xx!i!k" we
note that !xx!$" may be expressed in terms of the correla-
tion functions !%&

xx !r; $" # hK%
x !r; $"K&

x !0; 0"i of operators
K&x !r; $" # tbyr&x!$"br!$" and K$x !r; $" # tbyr !$"br&x!$",
which may be estimated efficiently in SSE [15].
Remarkably, it is possible to analytically perform the
Fourier transform with respect to $ yielding

!%&
xx !r; !k" #

!
1

'

Xn$2

m#0

"amn!!k"N!&;%;m"
"
; (8)

where N!&;%;m" is the number of times the operators
K%!r" and K&!0" appear in the SSE operator sequence
separated by m operator positions, and n is the expansion
order. The coefficients "amn!!k" are given by the degenerate
hypergeometric (Kummer) function: "amn!!k"#1 F1!m&
1; n;$i'!k". This expression and (8) allow us to directly
evaluate !xx!r; !k" as a function of Matsubara frequencies,
eliminating any errors associated with the discretization of
the imaginary time interval. Analogously, in the link-
current representation #!i!k" can be calculated [7], and
the conductivity can be obtained from Eq. (7).

In Fig. 3 we show results for !!i!k" versus !k obtained
using the geometrical worm algorithm on H V at Kc
[Fig. 3(a)] and by SSE simulations at tc;(c of H BH
[Fig. 3(c)]. In both cases the results have been extrapolated
to the thermodynamic limit L! 1 at fixed '. As evident
from Fig. 3(a), the results deviate from scaling with !k at
small !k and more significantly so at higher temperatures
(small L$). These deviations are also visible in the con-
tinuous time SSE data in Fig. 3(c), demonstrating that they
cannot be attributed to time discretization errors. Similar
deviations have been noted previously [6,7] but were not
analyzed at fixed '. Since the deviations persist in the L!
1 limit at fixed ', they may only be interpreted as finite T
effects. Expecting a crossover to!k=T scaling at small!k,
we plot our results versus !k=T in Fig. 3(d). For L$ ' 32,
!!!1=T" is already independent of T (L$). In fact, as
shown in Fig. 3(d), for !1...5, !!!k=T; T" can unambigu-
ously be extrapolated to a finite !!!k=T; T ! 0" ( #!x"
limit. This fact is a clear indication that !k=T scaling
indeed occurs as T ! 0. Tentatively, for increasing
!k=T, !!!k=T; T ! 0" appears to reach a constant value
of roughly 0:33!Q (#!1" in excellent agreement with
theoretical estimates [2,23]. We note that deviations from
!k scaling appear to be largely absent in simulations of
H BH with disorder [7,8]. However, at this QCP the dy-
namical critical exponent is different (z # 2). As is evident
from the size of the error bars in Fig. 3, simulations of H V
are much more efficient than the SSE simulations directly
on H BH. In the following analytic continuation we there-
fore use the SSE data mostly as a consistency check.

Our results on the imaginary frequency axis are limited
by the lowest Matsubara frequency, !1 # 2"kBT=@.
However, the information about the behavior of !0!!" %
Re!!!" at low! is embedded in values of the CCCF at all
Matsubara frequencies, allowing us to determine it. In
order to study the !=T scaling predicted for the hydro-
dynamic collision-dominated regime [2] @!=kBT ) 1, we
have attempted analytic continuations of #!i!k" to obtain
!0!!" at real frequencies. SSE results for H BH were
analytically continued using the Bryan maximum entropy
(ME) method [24] with flat initial image. For the results
obtained for the link-current model H V we use a method
that should be most sensitive to low frequencies !=!c < 1
or #!x) 1". We fit the extrapolated low frequency part
(first 10–15 Matsubara frequencies) of #!i!k" to a 6th-
order polynomial. The resulting 6 coefficients are then
used to obtain a !3; 3" Padé approximant using standard
techniques [25]. This approximant is then used for the
analytic continuation of # by i!k ! !& i). Resulting
real frequency conductivities !0!!" are displayed in
Fig. 4(a) versus !=!c. The typical SSE data are plotted
versus !=10 and are only shown for L # 20, ' # 10.

The results for H V show a broadened peak as !! 0,
due to inelastic scattering, followed by a second peak
nicely consistent in height and width with the SSE data.
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FIG. 3 (color online). The conductivity !!!k" in units of !Q
vs Matsubara frequency !k=!c as obtained from H V (a). All
results have been extrapolated to the thermodynamic limit L!
1 using the scaling form f!L" # a& b exp!$L=*"=

####
L
p

[27] by
calculating #!!k" at fixed L$ using 9 lattice sizes from L #
L$ . . . 4L$ as shown in (b). !!!k" in units of !Q vs Matsubara
frequency !k as obtained from SSE calculations of H BH, with
some typical error bars shown. All results have been extrapolated
to the thermodynamic limit by calculating !xx!!k" for fixed '
using 5 lattice sizes L # 12; . . . ; 30 (c). Scaling plot of the
conductivity data from (a) vs !k=T. ! denotes extrapola-
tions to T ! 0 (L$ ! 1) at fixed !k=T using: f!L$" # c&
d exp!$L$=*$"=

######
L$
p

[27] (d).
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The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions
is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus
on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We
find clear evidence for deviations from !k scaling of the conductivity towards !k=T scaling at low
Matsubara frequencies !k. By careful analytic continuation using Padé approximants we show that this
behavior carries over to the real frequency axis where the conductivity scales with !=T at small
frequencies and low temperatures. We estimate the universal dc conductivity to be !! " 0:45#5$Q2=h,
distinct from previous estimates in the T " 0, !=T % 1 limit.

DOI: 10.1103/PhysRevLett.95.180603 PACS numbers: 05.60.Gg, 02.70.Ss, 05.70.Jk

The nontrivial properties of materials in the vicinity of
quantum phase transitions [1] (QPTs) are an object of
intense theoretical [1–3] and experimental studies. The
effect of quantum fluctuations driving the QPTs is espe-
cially pronounced in low-dimensional systems, such as
high-temperature superconductors and two-dimensional
(2D) electron gases, exhibiting the quantum Hall effect.
Particularly valuable are theoretical predictions of the
behavior of the dynamical response functions, such as the
optical conductivity and the dynamic structure factor, since
they allow for direct comparison of the theoretical results
with experimental data. It was pointed out by Damle and
Sachdev [2] that at the quantum-critical coupling the
scaled dynamic conductivity T#2&d$=z!#!; T$ at low fre-
quencies and temperatures is a function of the single
variable @!=kBT:

!#!=T; T ! 0$ " #kBT=@c$#d&2$=z!Q!#@!=kBT$: (1)

Here !Q " Q2=h is the conductivity ‘‘quantum’’ (Q " 2e
for the models we consider), !#x ' @!=kBT$ is a universal
dimensionless scaling function, c a nonuniversal constant,
and z the dynamical critical exponent. For d " 2 the ex-
ponent vanishes, leading to a purely universal conductivity
[4], depending only on frequency !, measured against a
characteristic time @" set by finite temperature T as
@!=kBT. Once @!=kBT % 1, for fixed T, the system no
longer ‘‘feels’’ the effect of finite temperature and it is
natural to expect that at such high ! a crossover to a
temperature-independent regime will take place [3], so
that !#!; T$ ( !#!$ with !#!$ decaying at high frequen-
cies as 1=!2 [2]. Deviations from scaling of ! with !
therefore signal that temperature effects have become im-
portant. Note that the predicted universal behavior occurs
for fixed !=T as T ! 0. The physical mechanisms of
transport are predicted [2] to be quite distinct in the differ-
ent regimes determined by the value of the scaling variable
x: hydrodynamic, collision dominated for x) 1, and col-
lisionless, phase coherent for x% 1 with ! " !#1$

largely independent of x in d " 2 and ! independent of
T [2,5].

Intriguingly, early numerical studies [6–9] of QPTs in
model systems have failed to observe scaling with
@!=kBT. The results of the experiments seeking to verify
the scaling hypothesis are ambiguous as well. Some of
them, performed at the 2D quantum Hall transitions [10]
and 3D metal-insulator transitions [11], appear to support
it. Others either note the absence of scaling [12] or suggest
a different scaling form [13]. While the discrepancy be-
tween theory and experiment may be attributed to the
unsuitable choice of the measurement regime [2], typically
leading to @!=kBT % 1, there is no good reason why the
predicted scaling would not be observable in numerical
simulations if careful extrapolations first to L! 1 and
then T ! 0 for fixed !=T are performed.

Our primary goal is to resolve this controversy by per-
forming precise numerical simulations of the frequency-
dependent conductivity at finite temperatures in the vicin-
ity of the 2D QPT, exploiting recent algorithmic advances
to access larger system sizes and a wider temperature
range. After the extrapolation of the results to the thermo-
dynamic and T " 0 limits and careful analytic continu-
ation, we are able to demonstrate how the predicted
universal behavior of the conductivity may indeed be
revealed.

We consider the 2D Bose-Hubbard (BH) model with the
Hamiltonian H BH "H 0 *H 1, where the first term
describes the noninteracting soft core bosons hopping via
the nearest-neighbor links of a 2D square lattice, and the
second one includes the Hubbard-like on-site interactions:

H 0 " &t
X

r;#
#byr br*# * byr*#br$ &$

X
r
nr; (2)

H 1 "
U
2

X
r
nr#nr & 1$: (3)

Here # " x; y, nr " byr br is the particle number operator
on site r, and byr ; br are the boson creation and annihilation
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QMC yields �(0)/�1 ⇡ 1.36

Holography yields �(0)/�1 = 1 + 4� with |�|  1/12.

Maximum possible holographic value �(0)/�1 = 1.33

W.  Witzack-Krempa and S. Sachdev, arXiv:1302.0847
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Fermi surface+antiferromagnetism

The electron spin polarization obeys
�

⌃S(r, �)
⇥

= ⌃⇥(r, �)eiK·r

where K is the ordering wavevector.
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Fermi surfaces translated by K = (�,�).

Fermi surface+antiferromagnetism
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Unconventional pairing at and near hot spots
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Sign-problem-free Quantum Monte Carlo for 
antiferromagnetism in metals
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 There is an approximate pseudospin 
symmetry in metals with antiferromagnetic  
spin correlations.

 The pseudospin partner of d-wave 
superconductivity is an incommensurate         
d-wave bond order

 These orders form a pseudospin doublet, 
which is responsible for the “pseudogap” phase.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)
T. Holder and W. Metzner, Phys. Rev. B 85, 165130 (2012)

C. Husemann and W. Metzner, Phys. Rev. B 86, 085113 (2012)
K. B. Efetov, H. Meier, and C. Pépin, arXiv:1210.3276.

S. Sachdev and R. La Placa, arXiv:1303.2114
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HJ =

X

i<j

Jij ~Si · ~Sj

with

~Si =

1
2c

†
i↵~�↵�ci� is the antiferromagnetic exchange interac-

tion. Introduce the Nambu spinor
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which is invariant under the SU(2) pseudospin transformations

 i↵ ! Ui i↵

This pseudospin symmetry is important in classifying spin liquid

ground states of HJ . It is fully broken by the electron hopping tij
but does have remnant consequences in doped spin liquid states.

Pseudospin symmetry of the exchange interaction

I. A✏eck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38, 745 (1988)
E. Dagotto, E. Fradkin, and A. Moreo, Phys. Rev. B 38, 2926 (1988)
P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006)
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We will start with the Néel state, and find important

consequences of the pseudospin symmetry in metals

with antiferromagnetic correlations.
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“Hot” spots
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Low energy theory for critical point near hot spots
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Low energy theory for critical point near hot spots
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Phys. Rev. Lett. 84, 5608 
(2000).
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This low-energy theory is invariant under

independent SU(2) pseudospin rotations on each

pair of hot-spots: there is a global SU(2)

4

symmetry, and ⇧S(k) = ⇧Q(k) near the hot spots.
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Unconventional particle-hole pairing at and near hot spots

Q is ‘2kF ’
wavevector
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Incommensurate d-wave bond order
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“Bond density” 
measures amplitude 
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valence bond.
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M. A. Metlitski and 
S. Sachdev, 

Phys. Rev. B 85, 075127 
(2010)

Incommensurate d-wave bond order
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A Four Unit Cell Periodic
Pattern of Quasi-Particle States
Surrounding Vortex Cores in

Bi2Sr2CaCu2O8!"
J. E. Hoffman,1 E. W. Hudson,1,2* K. M. Lang,1 V. Madhavan,1

H. Eisaki,3† S. Uchida,3 J. C. Davis1,2‡

Scanning tunneling microscopy is used to image the additional quasi-particle
states generated by quantized vortices in the high critical temperature super-
conductor Bi2Sr2CaCu2O8!". They exhibit a copper-oxygen bond–oriented
“checkerboard” pattern, with four unit cell (4a0) periodicity and a #30 ang-
strom decay length. These electronic modulations may be related to the mag-
netic field–induced, 8a0 periodic, spin density modulations with decay length
of #70 angstroms recently discovered in La1.84Sr0.16CuO4. The proposed ex-
planation is a spin density wave localized surrounding each vortex core. General
theoretical principles predict that, in the cuprates, a localized spin modulation
of wavelength $ should be associated with a corresponding electronic modu-
lation of wavelength $/2, in good agreement with our observations.

Theory indicates that the electronic structure of
the cuprates is susceptible to transitions into a
variety of ordered states (1–10). Experimentally,
antiferromagnetism (AF) and high-temperature
superconductivity (HTSC) occupy well-known
regions of the phase diagram, but, outside these
regions, several unidentified ordered states exist.
For example, at low hole densities and above the
superconducting transition temperature, the un-
identified “pseudogap” state exhibits gapped
electronic excitations (11). Other unidentified
ordered states, both insulating (12) and conduct-
ing (13), exist in magnetic fields sufficient to
quench superconductivity. Categorization of the
cuprate electronic ordered states and clarifica-
tion of their relationship to HTSC are among the
key challenges in condensed matter physics
today.

Because the suppression of superconductiv-
ity inside a vortex core can allow one of the
alternative ordered states (1–10) to appear there,
the electronic structure of HTSC vortices has
attracted wide attention. Initially, theoretical ef-
forts focused on the quantized vortex in a Bard-
een-Cooper-Schrieffer (BCS) superconductor
with dx2-y2 symmetry (14–18). These models
included predictions that, because of the gap

nodes, the local density of electronic states
(LDOS) inside the core is strongly peaked at the
Fermi level. This peak, which would appear in
tunneling studies as a zero bias conductance
peak (ZBCP), should display a four-fold sym-
metric “star shape” oriented toward the gap
nodes and decaying as a power law with
distance.

Scanning tunneling microscopy (STM) stud-
ies of HTSC vortices have revealed a very dif-
ferent electronic structure from that predicted by
the pure d-wave BCS models. Vortices in
YBa2Cu3O7 (YBCO) lack ZBCPs but exhibit
additional quasi-particle states at %5.5 meV
(19), whereas those in Bi2Sr2CaCu2O8!" (Bi-
2212) also lack ZBCPs (20). More recently, the
additional quasi-particle states at Bi-2212 vorti-
ces were discovered at energies near %7 meV
(21). Thus, a common phenomenology for low-
energy quasi-particles associated with vortices is
becoming apparent. Its features include (i) the
absence of ZBCPs, (ii) a radius for the actual
vortex core (where the coherence peaks are
absent) of #10 Å (21), (iii) low-energy quasi-
particle states at %5.5 meV (YBCO) and %7
meV (Bi-2212), (iv) a radius of up to #75 Å
within which these states are detected (21), and
(v) the absence of a four-fold symmetric star-
shaped LDOS.

Because d-wave BCS models do not explain
this phenomenology, new theoretical approach-
es have been developed. Zhang (5) and Arovas
et al. (22) first focused attention on magnetic
phenomena associated with HTSC vortices with
proposals that a magnetic field induces antifer-
romagnetic order localized by the core. More
generally, new theories describe vortex-induced
electronic and magnetic phenomena when the
anticipated effects of strong correlations and

strong antiferromagnetic spin fluctuations are
included (22–26). Common elements of their
predictions include the following: (i) the prox-
imity of a phase transition into a magnetic or-
dered state can be revealed when the supercon-
ductivity is weakened by the influence of a
vortex (22–26), (ii) the resulting magnetic order,
either spin (22, 23, 25) or orbital (24, 26), will
coexist with superconductivity in some region
near the core, and (iii) this localized magnetic
order will generate associated spatial modula-
tions in the quasi-particle density of states (23–
26). Given the relevance of such predictions to
the identification of alternative ordered states,
determination of the magnetic and electronic
structure of the HTSC vortex is an urgent
priority.

Information on the magnetic structure of
HTSC vortices has recently become available
from neutron scattering and nuclear magnetic
resonance (NMR) studies. Near optimum dop-
ing, some cuprates show strong inelastic neutron
scattering (INS) peaks at the four k-space points
(1/2 % ", 1/2) and (1/2, 1/2 % "), where " # 1/8
and k-space distances are measured in units of
2&/a0. This demonstrates the existence, in real
space, of fluctuating magnetization density with
spatial periodicity of 8a0 oriented along the
Cu-O bond directions, in the superconducting
phase. The first evidence for field-induced mag-
netic order in the cuprates came from INS ex-
periments on La1.84Sr0.16CuO4 by Lake et al.
(27). When La1.84Sr0.16CuO4 is cooled into the
superconducting state, the scattering intensity at
these characteristic k-space locations disappears
at energies below #7 meV, opening up a “spin
gap.” Application of a 7.5 T magnetic field
below 10 K causes the scattering intensity to
reappear with strength almost equal to that in the
normal state. These field-induced spin fluctua-
tions have a spatial periodicity of 8a0 and wave
vector pointing along the Cu-O bond direction.
Their magnetic coherence length LM is at least
20a0, although the vortex-core diameter is only
#5a0. More recently, studies by Khaykovich et
al. (28) on a related material, La2CuO4!y, found
field-induced enhancement of elastic neutron
scattering (ENS) intensity at these same incom-
mensurate k-space locations, but with LM '
100a0. Thus, field-induced static AF order with
8a0 periodicity exists in this material. Finally,
NMR studies by Mitrović et al. (29) explored
the spatial distribution of magnetic fluctuations
near the core. NMR is used because 1/T1, the
inverse spin-lattice relaxation time, is a measure
of spin fluctuations, and the Larmor frequency
of the probe nucleus is a measure of their loca-
tions relative to the vortex center. In YBCO at
B ( 13 T, the 1/T1 of 17O rises rapidly as the
core is approached and then diminishes inside
the core. These experiments are all consistent
with vortex-induced spin fluctuations occurring
outside the core.

Theoretical attention was first focused on the
regions outside the core by a phenomenological
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model that proposed that the circulating super-
currents weaken the superconducting order pa-
rameter and allow the local appearance of a
coexisting spin density wave (SDW) and HTSC
phase (23) surrounding the core. In a more
recent model, which is an extension of (5) and
(22), the effective mass associated with spin
fluctuations results in an AF localization length
that might be substantially greater than the core
radius (30). An associated appearance of charge
density wave order was also predicted (31)
whose effects on the HTSC quasi-particles
should be detectable in the regions surrounding
the vortex core (23).

To test these ideas, we apply our recently
developed techniques of low-energy quasi-par-
ticle imaging at HTSC vortices (21). We choose
to study Bi-2212, because YBCO and LSCO
have proven nonideal for spectroscopic studies
because their cleaved surfaces often exhibit
nonsuperconducting spectra. Our “as-grown”
Bi-2212 crystals are generated by the floating
zone method, are slightly overdoped with Tc !
89 K, and contain 0.5% of Ni impurity atoms.
They are cleaved (at the BiO plane) in cryogen-
ic ultrahigh vacuum below 30 K and immedi-
ately inserted into the STM head. Figure 1A
shows a topographic image of the 560 Å square
area where all the STM measurements reported
here were carried out. The atomic resolution
and the supermodulation (with wavelength
"26 Å oriented at 45° to the Cu-O bond direc-
tions) are evident throughout.

To study effects of the magnetic field B on
the superconducting electronic structure, we
first acquire zero-field maps of the differential
tunneling conductance (G ! dI/dV) measured
at all locations (x, y) in the field of view (FOV)
of Fig. 1A. Because LDOS(E ! eV) # G(V ),
where V is the sample bias voltage, this results
in a two-dimensional map of the local density
of states LDOS(E, x, y, B ! 0). We acquire
these LDOS maps at energies ranging from –12
meV to $12 meV in 1-meV increments. The B
field is then ramped to its target value, and, after
any drift has stabilized, we remeasure the topo-
graph with the same resolution. The FOV
where the high-field LDOS measurements are
to be made is then matched to that in Fig. 1A
within 1 Å ("0.25a0) by comparing character-
istic topographic/spectroscopic features. Final-
ly, we acquire the high-field LDOS maps,
LDOS(E, x, y, B), at the same series of energies
as the zero-field case.

To focus preferentially on B field effects,
we define a type of two-dimensional map:

S E1

E2(x, y, B) ! !
E1

E2

%LDOS&E, x, y, B'

! LDOS&E, x, y, 0'(dE (1)

which represents the integral of all additional
spectral density induced by the B field be-
tween the energies E1 and E2 at each location

(x, y). We use this technique of combined
electronic background subtraction and energy
integration to enhance the signal-to-noise ra-
tio of the vortex-induced states. In Bi-2212,
these states are broadly distributed in energy
around )7 meV (21), so S )1

)12(x, y, B) effec-
tively maps the additional spectral strength
under their peaks.

Figure 1B is an image of S1
12(x, y, 5)

measured in the FOV of Fig. 1A. The loca-
tions of seven vortices are evident as the
darker regions of dimension "100 Å. Each
vortex displays a spatial structure in the inte-
grated LDOS consisting of a checkerboard
pattern oriented along Cu-O bonds. We have
observed spatial structure with the same pe-
riodicity and orientation, in the vortex-in-
duced LDOS on multiple samples and at
fields ranging from 2 to 7 T. In all 35 vortices
studied in detail, this spatial and energetic
structure exists, but the checkerboard is more
clearly resolved by the positive-bias peak.

We show the power spectrum from the
two-dimensional Fourier transform of
S1

12(x, y, 5),PS[S1
12(x, y, 5)]!{FT%S1

12&x, y, 5)]}2,
in Fig. 2A and a labeled schematic of these
results in Fig. 2B. In these k-space images,
the atomic periodicity is detected at the points
labeled by A, which by definition are at
(0,)1) and ()1,0). The harmonics of the
supermodulation are identified by the sym-
bols B1 and B2. These features (A, B1, and
B2) are observed in the Fourier transforms of
all LDOS maps, independent of magnetic
field, and they remain as a small background
signal in PS[S1

12(x, y, 5)] because the zero-
field and high-field LDOS images can only
be matched to within 1 Å before subtraction.
Most importantly, PS[S1

12(x, y, 5)] reveals
new peaks at the four k-space points, which
correspond to the spatial structure of the vor-
tex-induced quasi-particle states. We label
their locations C. No similar peaks in the
spectral weight exist at these points in the
two-dimensional Fourier transform of these
zero-field LDOS maps.

To quantify these results, we fit a Lorent-
zian to PS[S1

12(x, y, 5)] at each of the four
points labeled C in Fig. 2B. We find that they
occur at k-space radius 0.062 Å*1 with width
+ ! 0.011 ) 0.002 Å*1. Figure 2C shows
the value of PS[S1

12(x, y, 5)] measured along
the dashed line in Fig. 2B. The central peak
associated with long-wavelength structure,
the peak associated with the atoms, and the
peak due to the vortex-induced quasi-particle
states are all evident. The vortex-induced
states identified by this means occur at ()1/4,
0) and (0, )1/4) to within the accuracy of the
measurement. Equivalently, the checkerboard
pattern evident in the LDOS has spatial peri-
odicity 4a0 oriented along the Cu-O bonds.
Furthermore, the width + of the Lorentzian
yields a spatial correlation length for these
LDOS oscillations of L ! (1/,+) - 30 ) 5

Å (or L - 7.8 ) 1.3a0). This is substantially
greater than the measured (21) core radius. It
is also evident in Figs. 1B and 2A that the
LDOS oscillations have stronger spectral
weight in one Cu-O direction than in the

Fig. 1. Topographic and spectroscopic images of
the same area of a Bi-2212 surface. (A) A topo-
graphic image of the 560 Å field of view (FOV ) in
which the vortex studies were carried out. The
supermodulation can be seen clearly along with
some effects of electronic inhomogeneity. The
Cu–O–Cu bonds are oriented at 45° to the su-
permodulation. Atomic resolution is evident
throughout, and the inset shows a 140 Å square
FOV at .2 magnification to make this easier to
see. The mean Bi-Bi distance apparent here is
a0 ! 3.83 Å and is identical to the mean Cu-Cu
distance in the CuO plane "5 Å below. (B) A map
of S1

12(x, y, 5) showing the additional LDOS in-
duced by the seven vortices. Each vortex is ap-
parent as a checkerboard at 45° to the page
orientation. Not all are identical, most likely be-
cause of the effects of electronic inhomogeneity.
The units of S1

12(x, y, 5) are picoamps because it
represents /dI/dV!0V. In this energy range, the
maximum integrated LDOS at a vortex is "3
pA, as compared with the zero field integrated
LDOS of "1 pA. The latter is subtracted from
the former to give a maximum contrast of "2
pA. We also note that the integrated differen-
tial conductance between 0 and *200 meV is
200 pA because all measurements reported in
this paper were obtained at a junction resis-
tance of 1 gigaohm set at a bias voltage of
–200 mV.
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Direct observation of competition between
superconductivity and charge density wave
order in YBa2Cu3O6.67

J. Chang1,2*, E. Blackburn3, A. T. Holmes3, N. B. Christensen4, J. Larsen4,5, J. Mesot1,2,
Ruixing Liang6,7, D. A. Bonn6,7, W. N. Hardy6,7, A. Watenphul8, M. v. Zimmermann8, E. M. Forgan3

and S. M. Hayden9

Superconductivity often emerges in the proximity of, or in
competition with, symmetry-breaking ground states such as
antiferromagnetism or charge density waves1–5 (CDW). A
number of materials in the cuprate family, which includes the
high transition-temperature (high-Tc) superconductors, show
spin and charge density wave order5–7. Thus a fundamental
question is to what extent do these ordered states exist
for compositions close to optimal for superconductivity.
Here we use high-energy X-ray diffraction to show that
a CDW develops at zero field in the normal state of
superconducting YBa2Cu3O6.67 (Tc = 67K). This sample has
a hole doping of 0.12 per copper and a well-ordered oxygen
chain superstructure8. Below Tc, the application of a magnetic
field suppresses superconductivity and enhances the CDW.
Hence, the CDW and superconductivity in this typical high-Tc
material are competing orders with similar energy scales,
and the high-Tc superconductivity forms from a pre-existing
CDW environment. Our results provide a mechanism for the
formation of small Fermi surface pockets9, which explain the
negative Hall and Seebeck effects10,11 and the ‘Tc plateau’12 in
this material when underdoped.

Charge density waves in solids are periodic modulations of con-
duction electron density. They are often present in low-dimensional
systems such as NbSe2 (ref. 4). Certain cuprate materials such as
La2�x�yNdySrxCuO4 (Nd-LSCO) and La2�xBaxCuO4 (LBCO) also
show charge modulations that suppress superconductivity near x =
1/8 (refs 6,7). In some cases, these are believed to be unidirectional
in the CuO2 plane, and have been dubbed ‘stripes’2,3. There is now a
mounting body of indirect evidence that charge and/or spin density
waves (static modulations) may be present at high magnetic fields
in samples with high Tc: quantum oscillation experiments on un-
derdoped YBa2Cu3Oy (YBCO) have revealed the existence of at least
one small Fermi surface pocket9,10, whichmay be created by a charge
modulation11. More recently, nuclear magnetic resonance (NMR)
studies have shown a magnetic-field-induced splitting of the Cu2F
lines of YBCO (ref. 13). An important issue is the extent towhich the
tendency towards charge order exists in high-Tc superconductors2,3.

Here we report a hard (100 keV) X-ray diffraction study, in
magnetic fields up to 17 T, of a detwinned single crystal of
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Germany, 9H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. *e-mail: johan.chang@epfl.ch.

YBa2Cu3O6.67 (with ortho-VIII oxygen ordering8,12, Tc = 67K
and p = 0.12, where p is the hole concentration per planar
Cu). We find that a CDW forms in the normal state below
TCDW ⇡ 135K. The charge modulation has two fundamental
wave vectors qCDW = q1 = (�1,0,0.5) and q2 = (0,�2,0.5), where
�1 ⇡ 0.3045(2) and �2 ⇡ 0.3146(7), with no significant field- or
temperature-dependence of these values. The CDW gives rise
to satellites of the parent crystal Bragg peaks at positions such
as Q = (2 ± �1,0,0.5). Although the satellite intensities have a
strong temperature and magnetic field dependence, the CDW is
not field-induced and is unaffected by field in the normal state.
Below Tc it competes with superconductivity, and a decrease of
the CDW amplitude in zero field becomes an increase when
superconductivity is suppressed by field. A very recent paper14
reports complementary resonant soft X-ray scattering experiments
performed on (Y,Nd)Ba2Cu3O6+x as a function of doping and in
the absence of amagnetic field. The results are broadly in agreement
with our zero field data.

Figure 1a,g shows scans through the (2� �1,0,0.5) and (0,2�
�2,0.5) positions at T = 2K. Related peaks were observed at
(2+�1,0,0.5) and (4��1,0,0.5) (see Supplementary Fig. S3). The
incommensurate peaks are not detected above 150K (Fig. 1c). From
the peak width we estimate that the modulation has an in-plane
correlation length ⇠a ⇡ 95± 5Å (at 2 K and 17 T—see Methods).
The existence of four similar in-plane modulations (±�1,0) and
(0,±�2) indicates that the modulation is associated with the (nearly
square) CuO2 planes rather than the CuO chains. The present
experiment cannot distinguish between 1�q and 2�q structures,
that is, we cannot tell directly whether modulations along the a and
b directions co-exist in space or occur in different domains of the
crystal. However, Bragg peaks from the twoCDWcomponents have
similar intensities and widths (Fig. 1b,g) despite the orthorhombic
crystal structure, which breaks the symmetry between them. This
suggests that q1 and q2 are coupled, leading to the co-existence of
multiple wave vectors, as seen in other CDW systems such as NbSe2
(ref. 4). The scan along the c⇤ direction in Fig. 1d has broad peaks
close to l = ±0.5 reciprocal lattice units (r.l.u.), indicating that the
CDW is weakly correlated along the c direction, with a correlation
length ⇠c of approximately 0.6 lattice units.
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Figure 2 | Competition between charge–density-wave order and superconductivity. a, Temperature dependence of the peak intensity at (1.695, 0, 0.5)
(circles) and (0, 3.691, 0.5) (squares) for different applied magnetic fields. The square data points have been multiplied by a factor of four. In the normal
state, there is a smooth onset of the CDW order. In the absence of an applied magnetic field there is a decrease in the peak intensity below Tc. This trend
can be reversed by the application of a magnetic field. b, Magnetic field dependence of the lattice modulation peak intensity at (1.695,0,0.5) for different
temperatures. At T = 2 K, the peak intensity grows approximately linearly with magnetic field up to the highest applied field. c,d, Gaussian linewidth of the
(1.695, 0, 0.5) CDW modulation plotted versus temperature and field respectively. The raw linewidth, including a contribution from the instrumental
resolution, is field-independent in the normal state (T > Tc). In contrast, the CDW order becomes more coherent below Tc, once a magnetic field is applied.
This effect ceases once the amplitude starts to be suppressed owing to competition with superconductivity. The vertical dashed lines in a,c illustrate the
connection between these two features of the data that define the Tcusp temperatures. All other lines are guides to the eye. Error bars indicate standard
deviations of the fit parameters described in Methods.

The intensities of the incommensurate Bragg peaks are sensitive
to atomic displacements parallel to the total scattering vector
Q. The comparatively small contribution to Q along the c⇤

direction from l = 0.5 r.l.u. means that our signal for a (h,
0, 0.5) peak is dominated by displacements parallel to the a
direction. (There will also be displacements parallel to the c
direction but we are essentially insensitive to them in our present
scattering geometry). Our data indicate that the incommensurate
peaks are much stronger if they are satellites of strong Bragg
peaks of the form (⌧ = (2n,0,0)) at positions such as ⌧ ± q1.
This indicates that the satellites are caused by a modulation
of the parent crystal structure. The fact that the scattering is
peaked at l = ±0.5 r.l.u. means that neighbouring bilayers are
modulated in antiphase. The two simplest structures (Fig. 3a,b)
compatible with our data (see Supplementary Information) involve
the neighbouring CuO2 planes in the bilayer being displaced in
the same (bilayer-centred) or opposite (chain-centred) directions,
resulting in the maximum amplitude of the modulation being on
the CuO2 planes or CuO chains respectively. In their 2�q form,
these structures would lead to the in-plane ‘checkerboard’ pattern
shown in Fig. 3c. Scanning tunnelling microscopy studies of other
underdoped cuprates16 and of field-induced CDW correlations in
vortex cores17 also support the tendency towards checkerboard
formation18, although disorder can cause small stripe domains
to mimic checkerboard order19. Our observation of a CDW

may be related to phonon anomalies20, which suggest that in
YBCO near p⇡ 1/8 there are anomalies in the underlying charge
susceptibility for q⇡ (0,0.3).

Cuprate superconductors show strong spin correlations, and
the interplay between spin and charge correlations may be at the
heart of the high-Tc phenomenon. The spin correlations are largely
dynamic, with energies up to several hundred meV. YBa2Cu3O6+x
and La2�x(Ba,Sr)xCuO4+� show incommensurate magnetic order,
which can be enhanced by suppressing superconductivity with an
applied magnetic field21–24; this has some analogies with the CDW
order observed here. The magnetic order is static on the ⇠1meV
frequency scale of neutron diffraction and has been detected in
lightly doped YBa2Cu3O6+x for p 0.082 (ref. 21), and moderately
doped La2�xSrxCuO4 for p  0.14 (ref. 24). The YBa2Cu3O6.67
(p⇡ 1/8) sample studied here is expected to have a relatively large
spin gap, h̄! ⇡ 20meV (ref. 25), in its magnetic excitations at
low temperature, making it unlikely that it orders magnetically.
As discussed earlier, this is confirmed by other measurements13,14,
so the CDW does not seem to be accompanied by spin order.
Moreover, there is no obvious relationship between qCDW and the
wave vector of the incipient spin fluctuations qSF ⇡ (0.1,0) of
similarly doped samples25.

It is interesting to note that TCDW corresponds approximately
withTH (Fig. 4), the temperature at whichHall effectmeasurements
suggest that Fermi surface reconstruction begins26. A CDW that
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. a, Doping dependence of the antiferromagnetic ordering temperature TN, the incommensurate spin-density
wave order TSDW (green triangles; ref. 21), the superconducting temperature Tc and the pseudogap temperature T⇤ as determined from the Nernst effect30

(black squares) and neutron diffraction29 (purple squares). Notice that the Nernst effect30 indicates a broken rotational symmetry inside the pseudogap
region, whereas a translational symmetry preserving magnetic order is found by neutron scattering29. Below temperature scale TH (black circles), a larger
and negative Hall coefficient was observed26 and interpreted in terms of a Fermi surface reconstruction. Our X-ray diffraction experiments show that in
YBCO p = 0.12 incommensurate CDW order spontaneously breaks the crystal translational symmetry at a temperature TCDW that is twice as large as Tc.
TCDW is also much larger than TNMR (red squares), the temperature scale below which NMR observes field-induced charge order13. b, Field dependence of
TCDW (filled red circles) and Tcusp (open squares), the temperature below which the CDW is suppressed by superconductivity, compared with TH (open
black circle) and TVL (filled blue circles), the temperature where the vortex liquid state forms26. Error bars on TSDW, TH, TNMR, and T⇤ are explained in
refs 21,26,30,33. The error bars on TCDW and Tcusp reflect the uncertainty in determining the onset and suppression temperature of CDW order from Fig. 2.

these various orders are ‘intertwined’31. In this context, we can
view our present results as indicating that the electron system
has a tendency towards two ground states: a charge density
wave, which breaks translational symmetry and involves electron–
hole correlations, versus superconductivity, which breaks gauge
symmetry and involves electron–electron correlations.We note that
the q-vectors of the CDW lie close to the separation of pieces of
Fermi surface that have maximum superconducting gap at optimal
doping and have the same sign of the order parameter.

Methods
Our experiments used 100 keV hard X-ray synchrotron radiation from the
DORIS-III storage ring at DESY, Hamburg, Germany. We installed a recently
developed 17 T horizontal cryomagnet designed for beamline use on the triple-axis
diffractometer at beamline BW5. The sample was mounted by gluing it over a hole
in a temperature-controlled aluminium plate within the cryomagnet vacuum and
was thermally shielded by thin Al and aluminizedmylar foils glued to this plate. The
sample temperature could be controlled over the range ⇠2–300K. The incoming
and outgoing beams passed through 1mm thick aluminium cryostat vacuum
windows, which gave a maximum of ⇠ ±10� input and output angles relative to
the field direction, which was parallel to the sample c axis within <1�. Between
the beam access windows and the sample plate, there were further aluminium
foil thermal radiation shields at liquid nitrogen temperature. A 2mm square
aperture collimated the incoming beam, so that it passed mainly through the part
of the sample over the hole in the aluminium plate, greatly reducing background
scattering by the plate. Further slits before the analyser and the detector removed
scattering by the cryostat windows and nitrogen shields. The scattering plane
(a⇤–c⇤) was horizontal. The cryomagnet was mounted on a rotation stage with a
goniometer giving � tilt about the field axis. The sample was initially mounted
with its a axis nearly horizontal. The � goniometer allowed the exact alignment of
this axis using the (2 0 0) Bragg peak and could also be used for low-resolution
scans in the b⇤ direction. Magnetic fields were applied with the sample heated
above Tc; it was then field-cooled to base temperature. When fields were applied,
minor changes in the position and angle of the sample holder were observed; these
were corrected by use of horizontal and vertical motion stages under the cryostat
rotation stage, and by realigning on the (2 0 0) Bragg peak. During temperature
scans, realignment on the (2 0 0) Bragg peak was performed automatically at every
temperature point to ensure that all measurements were centred. After results
had been obtained with the a axis horizontal, the sample was remounted with
the b axis horizontal for further measurements. The YBa2Cu3O6.67 sample had
dimensions a⇥b⇥ c = 3.1⇥1.7⇥0.6mm3 and mass 18mg. The superconducting
transition temperature Tc = 67K (width: 10%–90%= 1.1K) was derived from
a zero-field-cooled magnetization curve at 0.1mT. The single crystal was 99%

detwinned and the Cu–O chains were ordered with the ortho-VIII structure by
standard procedures12.

The diffracted intensities from the CDW, shown in Fig. 1, are composed of
an incommensurate lattice modulation peak on a smoothly varying background.
The background along (h, 0, 0.5) mainly originates from the tails of the ortho-VIII
peaks (see Supplementary Information). It varies strongly from one Brillouin
zone to another; for example, the background around (2.7, 0, 0.5) is an order of
magnitude larger than around (1.7, 0, 0.5). The background has essentially no
field dependence (Fig. 1a–c) so subtracting the zero-field from high-field data is
a simple way to eliminate the background. This reveals the field-enhanced signal
inside the superconducting state (Fig. 1a–d).

As there is a weak temperature dependence in the background (Fig. 1a–c), it
is not possible to eliminate it by subtracting a high-temperature curve. Therefore,
to obtain the temperature dependences shown in Fig. 2, we fitted the data to
a Gaussian function G(Q) and modelled the background by a second-order
polynomial B(Q)= c0 + c1Q+ c2Q2. The constants c0, c1 and c2 have a small
but significant temperature dependence. The low counting statistics resulted in
Gaussians fitting equally well as other possible lineshapes such as Lorentzians.

The signal-to-background ratio is best for the (2� �1, 0, 0.5) peak due
the weaker structural ortho-VIII peak (see Supplementary Fig. S2). From the
Gaussian fits to the (2��1, 0, 0.5) satellite peak at 2 K and 17 T we can estimate
the correlation length ⇠ along the three crystal axis directions. We define ⇠ = 1/� ,
where � = (� 2

meas�� 2
R)0.5 is the measured Gaussian standard deviation corrected for

the instrument resolution �R and expressed in Å�1. Along the a axis direction, we
find � = 6.4⇥10�3 r.l.u. ⌘ 1.1⇥10�2 Å�1, and hence ⇠a = 95±5Å. Deconvolving
the poor instrumental resolution along the b axis direction for the (2��1, 0, 0.5)
peak yields a similar correlation length ⇠b ⇠ ⇠a.
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Figure 1 | Incommensurate charge–density-wave order. Diffracted intensity in reciprocal space Q= (h,k,l) = ha⇤ +kb⇤ + lc⇤ where a⇤ = 2⇡/a, b⇤ = 2⇡/b
and c⇤ = 2⇡/c, with lattice parameters a = 3.81 Å, b = 3.87 Å (Supplementary Fig. S1), c = 11.72 Å. Four different scans in reciprocal space, projected into
the first Brillouin zone, are shown schematically in e. a–c, Scans along (h,0,0.5) for temperatures and magnetic fields (applied along the crystal
c-direction) as indicated. An incommensurate lattice modulation, peaked at (2��1, 0, 0), where �1 = 0.3045(2), emerges as the temperature is lowered
below 135 K. The intensity of the satellite in b is of the order 2⇥ 10�6 weaker than the (2, 0, 0) reflection. This becomes field-dependent below the
zero-field superconducting transition temperature Tc = 67 K. The full-width half-maximum instrumental resolution is shown by horizontal lines in b,f. By
deconvolving the resolution from the Gaussian fits to the data taken at 17 T and 2 K, an h-width of �a = 6.4⇥ 10�3 r.l.u. corresponding to a correlation
length ⇠a = 1/�a of 95±5 Å was found (see Methods). d, The field-induced signal I(17 T)� I(0 T) at T = 2 K is modulated along (1.695, 0, l) and peaks at
approximately l = ±0.5. f, Scan along (1.695, k, 0.5). The poor resolution along the k-direction did not allow accurate determination of the width along
(1.695, k, 0.5), but we estimate a value of 0.01 r.l.u., comparable to that along (h, 0, 0.5), indicating similar coherence lengths along a- and b-axis directions.
g–i, Scans along (0, k, 0.5). Incommensurate peaks are found in several Brillouin zones, for example, at positions Q= (0,2±�2,0.5) and (0,4��2,0.5),
where �2 = 0.3146(7), see also Supplementary Fig. S3. The vertical dashed line in g indicates �1 whereas the line in a indicates �2. The lattice modulation
was fitted to a Gaussian function (solid lines in a–d,f–i) on a background (dashed lines) modelled by a second-order polynomial. Error bars are determined
by counting statistics.

In zero field, the intensity of the CDWBragg peak (Fig. 2) grows
on cooling to Tc, below which it is partially suppressed. For T >Tc,
a magnetic field applied along the c direction has no effect. Below
Tc it causes an increase of the intensity of the CDW signal (Figs 1a
and 2). At T = 2K, the intensity grows with applied magnetic field
(Fig. 2b) and shows no signs of saturation up to 17 T. The magnetic
field also makes the CDW more long-range ordered (Fig. 2c). In
zero magnetic field, the q-width varies little with temperature.
However, below Tc in a field, the CDW order not only becomes
stronger, but also becomes more coherent, down to a temperature
Tcusp below which the intensity starts to decrease (Figs 2 and 4).
All of this is clear evidence for competition between CDW and
superconducting orders.

Non-resonant X-ray diffraction is sensitive to modulations of
charge density and magnetic moments. In our case, the expected
magnetic cross-section is several orders of magnitude smaller than
our observed signal, which must therefore be due to charge scatter-
ing. NMR measurements on a sample of the same composition as

ours13 indicate that the CDW is not accompanied by magnetic or-
der, and this is confirmed by soft X-raymeasurements, whichwould
also be sensitive to fluctuating order14. Charge density modulations
in solids will always involve both a modulation of the electronic
charge and a periodic displacement of the atomic positions15. We
are more sensitive to the atomic displacements than to the charge
modulation because ions with large numbers of electrons (as in
YBCO)dominate the scattering (see Supplementary Information).

NMR data13 suggest that CDW order only appears below
T ⇡ 67K andH > 9 T, whereas with X-rays we observe CDW order
in zero field up to 135K. This apparent discrepancy may arise
from differing timescales of various probes (see Supplementary
Information for further discussion). X-ray diffraction experiments
are usually interpreted as measuring the static order of a given
structure, but, if performed with wide energy acceptance, are
also sensitive to short-lived structures. Thus, it is possible that
the observed CDW is quasi-static and only frozen on the NMR
timescale (⇡3 ns) at high fields and lower temperatures.
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Magnetic-field-induced charge-stripe order in the
high-temperature superconductor YBa2Cu3Oy
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Electronic charges introduced in copper-oxide (CuO2) planes
generate high-transition-temperature (Tc) superconductivity but,
under special circumstances, they can also order into filaments
called stripes1. Whether an underlying tendency towards charge
order is present in all copper oxides and whether this has any
relationship with superconductivity are, however, two highly con-
troversial issues2,3. To uncover underlying electronic order, mag-
netic fields strong enough to destabilize superconductivity can be
used. Such experiments, including quantum oscillations4–6 in
YBa2Cu3Oy (an extremely clean copper oxide in which charge
order has not until now been observed) have suggested that super-
conductivity competes with spin, rather than charge, order7–9. Here
we report nuclear magnetic resonance measurements showing that
high magnetic fields actually induce charge order, without spin
order, in the CuO2 planes of YBa2Cu3Oy. The observed static, uni-
directional, modulation of the charge density breaks translational
symmetry, thus explaining quantum oscillation results, and we
argue that it is most probably the same 4a-periodic modulation
as in stripe-ordered copper oxides1. That it develops only when
superconductivity fades away and near the same 1/8 hole doping
as in La22xBaxCuO4 (ref. 1) suggests that charge order, although
visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic pro-
pensity of the superconducting planes of high-Tc copper oxides.
The ortho II structure of YBa2Cu3O6.54 (p5 0.108, where p is the

hole concentration per planar Cu) leads to two distinct planar Cu
NMR sites: Cu2F are those Cu atoms located below oxygen-filled
chains, and Cu2E are those below oxygen-empty chains10. The main
discovery of ourwork is that, on cooling in a fieldH0 of 28.5 T along the
c axis (that is, in the conditions for which quantum oscillations are
resolved; see Supplementary Materials), the Cu2F lines undergo a
profound change, whereas theCu2E lines do not (Fig. 1). To first order,
this change can be described as a splitting of Cu2F into two sites having
both different hyperfine shiftsK5 Æhzæ/H0 (where Æhzæ is the hyperfine
field due to electronic spins) and quadrupole frequencies nQ (related to
the electric field gradient). Additional effects might be present (Fig. 1),
but they areminor in comparisonwith the observed splitting. Changes
in field-dependent and temperature-dependent orbital occupancy (for
example dx2{y2 versus dz2{r2 ) without on-site change in electronic
density are implausible, and any change in out-of-plane charge density
or lattice would affect Cu2E sites as well. Thus, the change in nQ can
only arise from a differentiation in the charge density between Cu2F
sites (or at the oxygen sites bridging them). A change in the asymmetry
parameter and/or in the direction of the principal axis of the electric
field gradient could also be associated with this charge differentiation,
but these are relatively small effects.
The charge differentiation occurs below Tcharge5 506 10K for

p5 0.108 (Fig. 1 and Supplementary Figs 9 and 10) and 676 5K for
p5 0.12 (Supplementary Figs 7 and 8). Within error bars, for each of
the samples Tcharge coincides with T0, the temperature at which the
Hall constant RH becomes negative, an indication of the Fermi surface

reconstruction11–13. Thus, whatever the precise profile of the static
charge modulation is, the reconstruction must be related to the trans-
lational symmetry breaking by the charge ordered state.
The absence of any splitting or broadening of Cu2E lines implies a

one-dimensional character of the modulation within the planes and
imposes strong constraints on the charge pattern. Actually, only two
types of modulation are compatible with a Cu2F splitting (Fig. 2). The
first is a commensurate short-range (2a or 4a period) modulation
running along the (chain) b axis. However, this hypothesis is highly
unlikely: to the best of our knowledge, no such modulation has ever
been observed in the CuO2 planes of any copper oxide; it would there-
fore have to be triggered by a charge modulation pre-existing in the
filled chains. A charge-density wave is unlikely because the finite-size
chains are at best poorly conducting in the temperature and doping
range discussed here11,14. Any inhomogeneous charge distribution
such as Friedel oscillations around chain defects would broaden rather
than split the lines. Furthermore, we can conclude that charge order
occurs only for high fields perpendicular to the planes because the
NMR lines neither split at 15T nor split in a field of 28.5 T parallel
to the CuO2 planes (along either a or b), two situations in which
superconductivity remains robust (Fig. 1). This clear competition
between charge order and superconductivity is also a strong indication
that the charge ordering instability arises from the planes.
Theonlyother patterncompatiblewithNMRdata is an alternationof

more and less charged Cu2F rows defining a modulation with a period
of four lattice spacings along the a axis (Fig. 2). Strikingly, this corre-
sponds to the (site-centred) charge stripes found in La22xBaxCuO4 at
doping levels near p5 x5 0.125 (ref. 1). Being a proven electronic
instability of the planes, which is detrimental to superconductivity2,
stripe ordernot onlyprovides a simple explanationof theNMRsplitting
but also rationalizes the striking effect of the field. Stripe order is also
fully consistent with the remarkable similarity of transport data in
YBa2Cu3Oy and in stripe-ordered copper oxides (particularly the
dome-shaped dependence ofT0 around p5 0.12)11–13. However, stripes
must be parallel from plane to plane in YBa2Cu3Oy, whereas they are
perpendicular in, for example, La22xBaxCuO4. We speculate that this
explains why the charge transport along the c axis in YBa2Cu3Oy

becomes coherent in high fields below T0 (ref. 15). If so, stripe fluctua-
tions must be involved in the incoherence along c above T0.
Once we know the doping dependence of nQ (ref. 16), the difference

DnQ5 3206 50 kHz for p5 0.108 implies a charge density variation
as small as Dp5 0.036 0.01 hole between Cu2Fa and Cu2Fb. A
canonical stripe description (Dp5 0.5 hole) is therefore inadequate
at the NMR timescale of ,1025 s, at which most (below T0) or all
(above T0) of the charge differentiation is averaged out by fluctuations
faster than 105 s21. This should not be a surprise: themetallic nature of
the compound at all fields is incompatible with full charge order, even
if this order is restricted to the direction perpendicular to the stripes17.
Actually, there is compelling evidence of stripe fluctuations down to
very low temperatures in stripe-ordered copper oxides18, and indirect
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that the charge ordering instability arises from the planes.
Theonlyother patterncompatiblewithNMRdata is an alternationof

more and less charged Cu2F rows defining a modulation with a period
of four lattice spacings along the a axis (Fig. 2). Strikingly, this corre-
sponds to the (site-centred) charge stripes found in La22xBaxCuO4 at
doping levels near p5 x5 0.125 (ref. 1). Being a proven electronic
instability of the planes, which is detrimental to superconductivity2,
stripe ordernot onlyprovides a simple explanationof theNMRsplitting
but also rationalizes the striking effect of the field. Stripe order is also
fully consistent with the remarkable similarity of transport data in
YBa2Cu3Oy and in stripe-ordered copper oxides (particularly the
dome-shaped dependence ofT0 around p5 0.12)11–13. However, stripes
must be parallel from plane to plane in YBa2Cu3Oy, whereas they are
perpendicular in, for example, La22xBaxCuO4. We speculate that this
explains why the charge transport along the c axis in YBa2Cu3Oy

becomes coherent in high fields below T0 (ref. 15). If so, stripe fluctua-
tions must be involved in the incoherence along c above T0.
Once we know the doping dependence of nQ (ref. 16), the difference

DnQ5 3206 50 kHz for p5 0.108 implies a charge density variation
as small as Dp5 0.036 0.01 hole between Cu2Fa and Cu2Fb. A
canonical stripe description (Dp5 0.5 hole) is therefore inadequate
at the NMR timescale of ,1025 s, at which most (below T0) or all
(above T0) of the charge differentiation is averaged out by fluctuations
faster than 105 s21. This should not be a surprise: themetallic nature of
the compound at all fields is incompatible with full charge order, even
if this order is restricted to the direction perpendicular to the stripes17.
Actually, there is compelling evidence of stripe fluctuations down to
very low temperatures in stripe-ordered copper oxides18, and indirect

1Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 38042 Grenoble, France. 2Department of Physics and Astronomy, University of British Columbia, Vancouver,
British Columbia V6T1Z1, Canada. 3Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada.

8 S E P T E M B E R 2 0 1 1 | V O L 4 7 7 | N A T U R E | 1 9 1

Macmillan Publishers Limited. All rights reserved©2011

evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).
In stripe copper oxides, charge order at T5Tcharge is always accom-

panied by spin order at Tspin,Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for

139La nuclei. For
themore strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an uppermagnitude for the static
spin polarization as small as gÆSzæ# 23 1023mB for both samples in
fields of,30T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.
In stripe-ordered copper oxides, the strong increase of 1/T2 on

cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence ofmagnetic order: 1/T2 sharply increases belowTcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc< 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are frommuon-spin-rotation (mSR) data (green stars)27.T0
and Tspin vanish close to the same critical concentration p5 0.08. A scenario of
field-induced spin order has been predicted for p. 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein).Ourwork, however, shows that spin order does not occur up to,30T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of theNMR line splitting (Fig. 1f
and Supplementary Figs 8–10).
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Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p5 0.108
(a) and p5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)

a), for p5 0.108 (c) and
p5 0.12 (d). e, f, Stretching exponent a for p5 0.108 (e) and p5 0.12 (f). The
deviation from a5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115K) temperature than Tslow. Tslow is
slightly lower thanTcharge, which is consistentwith the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p5 0.108 (28.5T); filled circles, p5 0.12 (33.5T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions andT2measurements.
All measurements are with H | | c.
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum 
critical points using the methods of gauge-gravity duality.

 The description is far removed from, and 
complementary to, that of the quantum Boltzmann 
equation which builds on the quasiparticle/vortex 
picture.

 Good prospects for experimental tests of frequency-
dependent, non-linear, and non-equilibrium transport   

Summary

Conformal quantum matter
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 Antiferromagnetic quantum criticality leads to 
 d-wave superconductivity (supported by sign-problem-
free Monte Carlo simulations) 

 Metals with antiferromagnetic spin correlations have 
nearly degenerate instabilities: to d-wave 
superconductivity, and to a charge density wave with a d-
wave form factor. This is a promising explanation of the 
pseudogap regime.

Summary

Antiferromagnetism in metals and the high 
temperature superconductors
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