High Performance Computing
at Diamond

Nick Rees

and Greg Matthews, Frederik Ferner, Tina
— Friedrich, Ulrik Pedersen, Matt Pearson, Jon
— Thempson, Tobias Richter, Mark Basham,
. Graeme Winter etc....

diamond

Summary

Scientific Computing Overview
High Speed Storage

Real-time Processing

HDF5 developments

diamond

—COMPUTING OVERVIEW

)

diamond

History

« Diamond originally had no provision for central
science computing.

« Started to develop it in 2007-2008, with recruitment of
some system administrators, building a computer
room, and network, storage and compute cluster
capital projects.

* Fully endorsed in 2011 with an international review
that praised us for building up a world class system in
a short time.

N

) diamond
J |

System Administration Team

* 6 people, comprising:
— Team leader
— Two storage administrators (one senior)
— Two systems and cluster administrators.
— One assistant administrator.

* Network is managed through Business IT

— One dedicated network administrator for the Science
network.

« Works closely with other groups to provide for the
beamlines’ current and future needs.
— Particularly the Scientific Software team.

y 1) diamond
I

Infrastructure

Mueeting :
Room 1.56 Kitchen

6 Communication

Rooms
Kitchen with
vendi
n
gy Reom1.102
Ream 1.32
Kitchen with
. vending
Primt
Raam

BOOSTER
SYNCHROTRg

Low Density
Computer Roo
(CSCR1) ™

. ! lMeeting
.. \ é) Room 1.132- 134
_— Meeting
~—— . DIAMOND HOUSE \ Room 1,137
\ 1130

—_ - QMmg
\ o FQ:N_,_,\ High Density

O B Rio Computer Room
.H M.&ting F:mz (CSCRZ)

Kitchen with gaam1.172
vending

\m‘ diamond

Science Network Layout

Core 2 Switch

/

diamond

Computer Clusters

* |ntel/AMD clusters:

— 132 Intel based nodes,
1280 Intel cores in
service.

« GPU Clusters:

— 80 NVIDIA GPGPU's,
23328 GPU cores in
service.

« Split across 6 clusters,
with a range of
capabillities.

* Mostly used by MX and

.. tomography beamlines.

 All acecessed via Sun

— \Q?d Engine interface.
\

/

diamond

Storage

« Three main types of disk
storage:
— High speed storage optimised
for parallel access by
compute clusters

* Used by high data rate
beamlines

— Standard RHEL storage

* Used for beamlines with lower
data rates, home directories,
software development etc.

— NetApp NAS

* For virtual systems and where
we have replication and
snapshot requirements.

* Client systems have a
’ uniform view of all storage,
— with access controlled by
permissions.

Windows aeeess provided by e
mba. \ 2
y | diamond
|

—

Services

« Support the traditional set of computer services

— DNS, DHCP, LDAP, Active Directory, Web Servers, DB
servers, provisioning repositories etc.

 Have a number of virtual systems, now based on a
VMware and NetApp NAS infrastructure.

) diamond
J/

—HIGH SPEED STORAGE

-‘;;\ | I
|) diamond
‘ |

DLS Storage History

« 2006: First storage, installed separately all on beamlines
— slow (30 MB/sec) and difficult to manage

« 2008: Bought central Lustre/DDN system
— 3 GB/sec
— worked OK for MX and cluster processing
— had problems with metadata and small files

« 2011: Second Lustre/DDN system installed in April
— 6 GB/sec
— Faster metadata

— Used mainly for MX:
» 3 x 25 Hz Pilatus 6M (150 MB/sec each)
» 1x30 Hz Pilatus 2M
« 1 ADSC system

— 2008 System is still used for for tomography
\ + 4 Hz PCO4000 (90 MB/sec)
\ b

) diamond
J|

MB/s

500 1000 1500 2000 2500 3000 3500 4000

0

Data Rates while Data Taking

— \\rite speeds

Read speeds

12:40
Time (minutes)

A less regular example

S S
& o

. 1
e —

e

 Faster detectors

Next challenge

— 100 Hz Pilatus 6M (600 MB/sec write).

— Tomography detector with 2 PCO.edge systems writing
simultaneously (2x900 MB/sec).

— Excalibur — 6 parallel Medipix3 detector controllers.
. Recently bought next generation DDN system

— Qurr

en

tIy

| Master Node

dout Ned

/,.fl,. A
5/S€C D

Readout Node

~
iV N

Readout Node

A
Tﬂ ~4l Jl AV >y

Readout Node

Detector head

— Lustre 2 0 was meant to be better i

N\
\

o Readout Node

Readout Node

. However“ initial tests weren’t convincing...

diamond

Client Write Speed

Single File Write
1MB Buffer Varying Stripe Width
1200

1000

58]
]
=

=)
]
=

o
[
=

Data Rate (MB/s)

I~
]
=

1 2 4 8 16 32 64 128
Lustre = GPFS

stripe width

From: R\‘Iyedges K Fitzgeral G and Stearman D “Comparison of leading parallel NAS file systems on
commodity hardware” https://fesreports-ext.linl.gov/pdf/457620.pdf

y \ diamond

Data Throughput speeds

 Lustre 1.8
— 115 MB, 1 GbE
— ~400 MB/s, 10 GbE with checksums on
— ~750 MB/s, 10 GbE with checksums off
— Reports of ~ 1100 MB/s with IB
— Client thread saturates 100% of 1 core.
« 2.3.0 Servers, 1.8.8 Clients
— ~500 MB/s, 10 GbE with checksums on
— ~700 MB/s, 10 GbE with checksums off
« 2.3.0 Servers, 2.3.61 Clients
— ~650 MB/s, 10 GbE (no difference with or without checksums)
— Still see some client thread saturation
+ GPFS
— 115 MB/s, 1 GbE
— 1100 MB/s, 10 GbE
— 2100 MB/s, QDR IB (single thread)

\ 3100 MB/s QDR IB (multiple threads)
\

diamond

Metadata speeds (ops/sec)

4500 A
4000 ~
3500 -
3000 A

2500 A

u Lustre
m GPFS

2000 A

irectory Directol‘Py\]
tion

Directory File creation File stat File removal Tree creation Tree removal
removal

diamond

So, which Filesystem?

* Not a simple choice, but bottom line is that file
system throughput should not limit detector.
— Lustre fine for high aggregate cluster processing rates
— GPFS clearly better for single point data rates

* Qur current Lustre setup was explicitly designed for 1
GbE client systems.
— Clearly insufficient now
— New system must saturate 10 GbE.

« Testing the new DDN system with both Lustre and a
GPFS file systems.

"l — Final decision to be made next week.

o Will consider 40 GbE and QDR/FDR IB networks as

\anext step.

) diamond

I

—REAL-TIME PROCESSING
=

)

diamond

Diamond Software Goals

 We aim to do all we can to support the user to do the
best science.

* Qur responsibilities extend before, during and after
the run.

* S0, when it comes to data processing:
— We must provide timely feedback on data quality

— We must provide as much assistance as practicable to
produce publication level data.

* The more reduction we can do before they leave the quicker
and easier it will be to publish.

« The more publications the more likely Diamond will be
— successful.

« We have clear commitment from directors to invest
\heavily iIn'software and IT.

e

W\
\

) diamond
J/

areaDetector Software Model

* Detector * Flat fielding * File Writing
Drivers « Centroiding . Video
streaming

« Virtually all Diamond detector software is based on

R —

a— the areaDetector model.
- \We havenever had a case where area detector limits

N
\‘Qitector performance.
;) diamond
J
! [

DLS High Data Rate Approach

Detector Controller

\ EPICS
Q Area Detector
/ Processing
¢

Detector Memory:
Dete ctor enough to fit a full

scan GDA Control

Cluster Eto.-age'“' Data Visualisation

\
y » diamond

DLS High Data Rate Approach

« Largest scan identified so far is ~ 100 GB, so:
— Buffer data in RAM of detector controller.
— Migrate data to high-speed parallel disk.
— Process data on clusters.
— Compress data if possible to reduce problems
+ SAXS data compresses by ~50.
 What we are working on is:
— Improving file writing so we can saturate a 10 Gbit link.
— Providing similar support for Windows and Linux detector systems.
— Provide processing on detector controller with areaDetector..

— Providing feedback by displaying some of the images directly from
memory in the detector controller using a fraction of the network link.

— Improving the user interface (particularly in Tomography) to make the
technical problems of large data rates transparent to the user.
-t What we the next steps may be:

o — Passing the data directly from the detector controller to the compute
systems (possible protocols include MPI, EPICS V4 or ActiveMQ).

— Different forms of compression to improve transfer rates at the expense
.of CPU cycles\.

diamond

DLS High Data Rate Approach

Detector Controller

\ EPICS
Q Area Detector (¢)
/ Processing
{

Detector Memory:
Dete ctor enough to fit a full

scan GDA Control

Cluster Eto.-age'“' Data Visualisation

)
y » diamond

—HDF5 DEVELOPMENTS

—‘;\\\\ I
|) diamond
‘ |

HDF5 Data Files

« EPICS and GDA both
need to write the data file.

« We use HDF5 links to
create one logical file from
multiple real files.

— Avoids file contention
Issues.

— Allows detector files to be
highly optimised for

performance. Header Data
- The header data is written .nxs file
directly by GDA. /

« The detector data is E——
written using EPICS etector Data

HDF5 area detector hdf5 file

lugin.
RO N Detector Data
\ \ hdf5 file

) diamond
J|

Example: Tomography

Tomography scans
are demanding:

— Data rate ~ 500 MB/s.
— Data size > 100 GB.

— First operation is read /
data perpendicular to

write direction.
Classic matrix

S
transpose problem skl

Real challenge for y
typical cache design. v

Completely unsuited
to running inside the

\%DA server

) diamond
J/

N

Tomography data file format

Data must be optimised
for reading sinograms.

All frames are written to a
single file.

File is arranged in chunks
of a fixed number of rows
and a fixed number of
frames.

The chunk size matches
the Lustre stripe size so is
written to a different
Lustre server.

Data is _in cache until all
frames in a chunk are
written. »

diamond

Recent HDFS developments

« Last year the following developments were funded:

— Writing of pre-compressed chunks.

» Acquisition software can pre-compress data efficiently (i.e. in
parallel), and write those directly to the HDF5 file without going
through the HDF5 filtering mechanism.

* Implemented by The HDF Group, funded by PSI and Dectris.
— Filter plugins

» User can supply a shared library at run-time that implements an
HDF5 filter.

» Allows the user to read and write compressed datasets with
custom compression algorithms without recompiling the
application by dynamically loading the corresponding filter.

* Implemented by The HDF Group, funded by DESY.
\ Available\in HDF5 1.8.11 (May 2013)
\ :

diamond

Future HDFS developments

« Single Writer Multiple Reader (SWMR)

— Data can be added and modified, but file hierarchical structure
cannot be changed.

— Writer task pre-creates file structure and then enables SWMR.

— Reader tasks open file with read-only and SWMR flags and can
then read data as it becomes available.

— A Reader always sees a consistent HDF5 file - no errors occur
while reading HDF5 metadata and raw data.

— If the Writer crashes, it leaves the file in a non-corrupted state.

— There is no performance penalty for file access and
modifications under SWMR.

= "« Available in HDF5 v1.10.0 (2014)
===..»_Fundedby Diamond, Dectris and 7777

N N\

) diamond
J|

Future HDFS developments

e Parallel compressed writer
— Allow multiple writers to write a compressed HDF5 in parallel

— Have thought of 2 approaches:

« Have parallel MPI jobs, and manage the compressed file layout
by inter-job communication.

* Have independent jobs writing separate files in parallel, but
have an additional file referring to a aggregate HDF5 dataset
via an array of soft links.

— The latter requires a HDF5 dataset to be able to be defined
from an array of HDF5 soft-links. The dimensions and chunk
layout of the linked datasets will have to be compatible with
the dimensions and layout of the parent.

— Has many other use cases, not just parallel compressed
writing...
— Which'approach would you prefer?

\\\
\

) diamond
J/

Summary

 We have come a long way in a short time.
« Diamond is committed to investing in software and IT.

« We support the efforts to improve the HDF5 file
format as a foundation for us all to use Nexus as a
common interchange format.

) diamond

