
High Performance Computing

at Diamond

Nick Rees

and Greg Matthews, Frederik Ferner, Tina

Friedrich, Ulrik Pedersen, Matt Pearson, Jon

Thompson, Tobias Richter, Mark Basham,

Graeme Winter etc....

Summary

• Scientific Computing Overview

• High Speed Storage

• Real-time Processing

• HDF5 developments

COMPUTING OVERVIEW

History

• Diamond originally had no provision for central

science computing.

• Started to develop it in 2007-2008, with recruitment of

some system administrators, building a computer

room, and network, storage and compute cluster

capital projects.

• Fully endorsed in 2011 with an international review

that praised us for building up a world class system in

a short time.

System Administration Team

• 6 people, comprising:

– Team leader

– Two storage administrators (one senior)

– Two systems and cluster administrators.

– One assistant administrator.

• Network is managed through Business IT

– One dedicated network administrator for the Science

network.

• Works closely with other groups to provide for the

beamlines’ current and future needs.

– Particularly the Scientific Software team.

5

Infrastructure

6

High Density

Computer Room

(CSCR2)

Low Density

Computer Room

(CSCR1)

6 Communication

Rooms

Science Network Layout

7

Computer Clusters

• Intel/AMD clusters:
– 132 Intel based nodes,

1280 Intel cores in
service.

• GPU Clusters:
– 80 NVIDIA GPGPU’s,

23328 GPU cores in
service.

• Split across 6 clusters,
with a range of
capabilities.

• Mostly used by MX and
tomography beamlines.

• All accessed via Sun
Grid Engine interface.

8

Storage

• Three main types of disk
storage:
– High speed storage optimised

for parallel access by
compute clusters

• Used by high data rate
beamlines

– Standard RHEL storage
• Used for beamlines with lower

data rates, home directories,
software development etc.

– NetApp NAS
• For virtual systems and where

we have replication and
snapshot requirements.

• Client systems have a
uniform view of all storage,
with access controlled by
permissions.

• Windows access provided by
Samba.

9

Services

• Support the traditional set of computer services

– DNS, DHCP, LDAP, Active Directory, Web Servers, DB

servers, provisioning repositories etc.

• Have a number of virtual systems, now based on a

VMware and NetApp NAS infrastructure.

10

HIGH SPEED STORAGE

DLS Storage History

• 2006: First storage, installed separately all on beamlines

– slow (30 MB/sec) and difficult to manage

• 2008: Bought central Lustre/DDN system

– 3 GB/sec

– worked OK for MX and cluster processing

– had problems with metadata and small files

• 2011: Second Lustre/DDN system installed in April

– 6 GB/sec

– Faster metadata

– Used mainly for MX:

• 3 x 25 Hz Pilatus 6M (150 MB/sec each)

• 1x30 Hz Pilatus 2M

• 1 ADSC system

– 2008 system is still used for for tomography

• 4 Hz PCO4000 (90 MB/sec)

Read speeds

Write speeds

M
B

/s

0

5

0
0

 1

0
0
0

 1
5
0
0

2
0
0

0

2
5
0
0

3
0
0
0

 3
5
0
0

4
0
0
0

 12:20 12:30 12:40 12:50 12:40

Time (minutes)

Data Rates while Data Taking

A less regular example

Next challenge

FEM

FEM

FEM

FEM

FEM

FEM

Detector head

Sensor/Medipix3
Hybrids

Readout Node

Readout Node

Readout Node

Readout Node

Readout Node

Readout Node

Master Node

10GigE

Optical Links

Network

• Faster detectors

– 100 Hz Pilatus 6M (600 MB/sec write).

– Tomography detector with 2 PCO.edge systems writing
simultaneously (2x900 MB/sec).

– Excalibur – 6 parallel Medipix3 detector controllers.

• Recently bought next generation DDN system

– SFA12K-40 ~ 32-40 GB/sec

– Currently limited to ~16-20 GB/sec because of spindle count

• But problem is with client write speed.

– Lustre 1.X client write speed is limited to ~400 MB/sec (or ~750
MB/sec with checksums off).

• One core in the client is pegged at 100% usage.

– GPFS is much better (~3 GB/sec)

– Lustre 2.0 was meant to be better

• However initial tests weren’t convincing...

Client Write Speed

From: R Hedges K Fitzgerald M G and Stearman D “Comparison of leading parallel NAS file systems on

commodity hardware” https://e-reports-ext.llnl.gov/pdf/457620.pdf

Data Throughput speeds

• Lustre 1.8
– 115 MB, 1 GbE

– ~400 MB/s, 10 GbE with checksums on

– ~750 MB/s, 10 GbE with checksums off

– Reports of ~ 1100 MB/s with IB

– Client thread saturates 100% of 1 core.

• 2.3.0 Servers, 1.8.8 Clients
– ~500 MB/s, 10 GbE with checksums on

– ~700 MB/s, 10 GbE with checksums off

• 2.3.0 Servers, 2.3.61 Clients
– ~650 MB/s, 10 GbE (no difference with or without checksums)

– Still see some client thread saturation

• GPFS
– 115 MB/s, 1 GbE

– 1100 MB/s, 10 GbE

– 2100 MB/s, QDR IB (single thread)

– 3100 MB/s QDR IB (multiple threads)

Metadata speeds (ops/sec)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Directory
creation

Directory stat Directory
removal

File creation File stat File removal Tree creation Tree removal

Lustre

GPFS

So, which Filesystem?

• Not a simple choice, but bottom line is that file
system throughput should not limit detector.
– Lustre fine for high aggregate cluster processing rates

– GPFS clearly better for single point data rates

• Our current Lustre setup was explicitly designed for 1
GbE client systems.
– Clearly insufficient now

– New system must saturate 10 GbE.

• Testing the new DDN system with both Lustre and a
GPFS file systems.
– Final decision to be made next week.

• Will consider 40 GbE and QDR/FDR IB networks as
a next step.

REAL-TIME PROCESSING

Diamond Software Goals

• We aim to do all we can to support the user to do the
best science.

• Our responsibilities extend before, during and after
the run.

• So, when it comes to data processing:
– We must provide timely feedback on data quality

– We must provide as much assistance as practicable to
produce publication level data.

• The more reduction we can do before they leave the quicker
and easier it will be to publish.

• The more publications the more likely Diamond will be
successful.

• We have clear commitment from directors to invest
heavily in software and IT.

areaDetector Software Model

Data Sources

• Detector
Drivers

Data
Processing

• Flat fielding

• Centroiding

Data Sinks

• File Writing

• Video
streaming

• Virtually all Diamond detector software is based on

the areaDetector model.

• We have never had a case where area detector limits

detector performance.

DLS High Data Rate Approach

DLS High Data Rate Approach

• Largest scan identified so far is ~ 100 GB, so:
– Buffer data in RAM of detector controller.

– Migrate data to high-speed parallel disk.

– Process data on clusters.

– Compress data if possible to reduce problems
• SAXS data compresses by ~50.

• What we are working on is:
– Improving file writing so we can saturate a 10 Gbit link.

– Providing similar support for Windows and Linux detector systems.

– Provide processing on detector controller with areaDetector..

– Providing feedback by displaying some of the images directly from
memory in the detector controller using a fraction of the network link.

– Improving the user interface (particularly in Tomography) to make the
technical problems of large data rates transparent to the user.

• What we the next steps may be:
– Passing the data directly from the detector controller to the compute

systems (possible protocols include MPI, EPICS V4 or ActiveMQ).

– Different forms of compression to improve transfer rates at the expense
of CPU cycles.

DLS High Data Rate Approach

HDF5 DEVELOPMENTS

HDF5 Data Files

• EPICS and GDA both
need to write the data file.

• We use HDF5 links to
create one logical file from
multiple real files.
– Avoids file contention

issues.

– Allows detector files to be
highly optimised for
performance.

• The header data is written
directly by GDA.

• The detector data is
written using EPICS
HDF5 area detector
plugin.

17 February 2012

28

GDA EPICS

Detector Data

.hdf5 file

Detector Data

.hdf5 file

Detector Data

.hdf5 file

Detector Data

.hdf5 file

Header Data

.nxs file

Header Data

.nxs file

Example: Tomography

• Tomography scans
are demanding:
– Data rate ~ 500 MB/s.

– Data size > 100 GB.

– First operation is read
data perpendicular to
write direction.

• Classic matrix
transpose problem

• Real challenge for
typical cache design.

• Completely unsuited
to running inside the
GDA server.

17 February 2012

29

Sinogram

Frames

Sinogram

Frames

Image Frames Image Frames

Tomography data file format

• Data must be optimised
for reading sinograms.

• All frames are written to a
single file.

• File is arranged in chunks
of a fixed number of rows
and a fixed number of
frames.

• The chunk size matches
the Lustre stripe size so is
written to a different
Lustre server.

• Data is in cache until all
frames in a chunk are
written.

17 February 2012

30

Recent HDF5 developments

• Last year the following developments were funded:

– Writing of pre-compressed chunks.

• Acquisition software can pre-compress data efficiently (i.e. in

parallel), and write those directly to the HDF5 file without going

through the HDF5 filtering mechanism.

• Implemented by The HDF Group, funded by PSI and Dectris.

– Filter plugins

• User can supply a shared library at run-time that implements an

HDF5 filter.

• Allows the user to read and write compressed datasets with

custom compression algorithms without recompiling the

application by dynamically loading the corresponding filter.

• Implemented by The HDF Group, funded by DESY.

– Available in HDF5 1.8.11 (May 2013)

Future HDF5 developments

• Single Writer Multiple Reader (SWMR)

– Data can be added and modified, but file hierarchical structure

cannot be changed.

– Writer task pre-creates file structure and then enables SWMR.

– Reader tasks open file with read-only and SWMR flags and can

then read data as it becomes available.

– A Reader always sees a consistent HDF5 file - no errors occur

while reading HDF5 metadata and raw data.

– If the Writer crashes, it leaves the file in a non-corrupted state.

– There is no performance penalty for file access and

modifications under SWMR.

• Available in HDF5 v1.10.0 (2014)

• Funded by Diamond, Dectris and ????

Future HDF5 developments

• Parallel compressed writer
– Allow multiple writers to write a compressed HDF5 in parallel

– Have thought of 2 approaches:

• Have parallel MPI jobs, and manage the compressed file layout
by inter-job communication.

• Have independent jobs writing separate files in parallel, but
have an additional file referring to a aggregate HDF5 dataset
via an array of soft links.

– The latter requires a HDF5 dataset to be able to be defined
from an array of HDF5 soft-links. The dimensions and chunk
layout of the linked datasets will have to be compatible with
the dimensions and layout of the parent.

– Has many other use cases, not just parallel compressed
writing...

– Which approach would you prefer?

Summary

• We have come a long way in a short time.

• Diamond is committed to investing in software and IT.

• We support the efforts to improve the HDF5 file

format as a foundation for us all to use Nexus as a

common interchange format.

