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COMPUTING OVERVIEW 



History 

• Diamond originally had no provision for central 

science computing. 

• Started to develop it in 2007-2008, with recruitment of 

some system administrators, building a computer 

room, and network, storage and compute cluster 

capital projects. 

• Fully endorsed in 2011 with an international review 

that praised us for building up a world class system in 

a short time. 

 

              



System Administration Team 

• 6 people, comprising: 

– Team leader 

– Two storage administrators (one senior) 

– Two systems and cluster administrators. 

– One assistant administrator. 

• Network is managed through Business IT 

– One dedicated network administrator for the Science 

network. 

• Works closely with other groups to provide for the 

beamlines’ current and future needs. 

– Particularly the Scientific Software team. 

 

 

5 
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Computer Clusters 

• Intel/AMD clusters: 
– 132 Intel based nodes, 

1280 Intel cores in 
service. 

• GPU Clusters: 
– 80 NVIDIA GPGPU’s, 

23328 GPU cores in 
service. 

• Split across 6 clusters, 
with a range of 
capabilities. 

• Mostly used by MX and 
tomography beamlines. 

• All accessed via Sun 
Grid Engine interface. 
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Storage 

• Three main types of disk 
storage: 
– High speed storage optimised 

for parallel access by 
compute clusters 

• Used by high data rate 
beamlines 

– Standard RHEL storage 
• Used for beamlines with lower 

data rates, home directories, 
software development etc. 

– NetApp NAS 
• For virtual systems and where 

we have replication and 
snapshot requirements. 

• Client systems have a 
uniform view of all storage, 
with access controlled by 
permissions. 

• Windows access provided by 
Samba. 

9 



Services 

• Support the traditional set of computer services 

– DNS, DHCP, LDAP, Active Directory, Web Servers, DB 

servers, provisioning repositories etc. 

• Have a number of virtual systems, now based on a 

VMware and NetApp NAS infrastructure. 

10 



HIGH SPEED STORAGE 



DLS Storage History 

• 2006: First storage, installed separately all on beamlines 

– slow (30 MB/sec) and difficult to manage 

• 2008: Bought central Lustre/DDN system 

– 3 GB/sec 

– worked OK for MX and cluster processing 

– had problems with metadata and small files 

• 2011: Second Lustre/DDN system installed in April 

– 6 GB/sec 

– Faster metadata 

– Used mainly for MX: 

• 3 x 25 Hz Pilatus 6M (150 MB/sec each) 

• 1x30 Hz Pilatus 2M 

• 1 ADSC system 

– 2008 system is still used for for tomography 

• 4 Hz PCO4000 (90 MB/sec) 
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A less regular example 



Next challenge 
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• Faster detectors 

– 100 Hz Pilatus 6M (600 MB/sec write). 

– Tomography detector with 2 PCO.edge systems writing 
simultaneously (2x900 MB/sec). 

– Excalibur – 6 parallel Medipix3 detector controllers. 

• Recently bought next generation DDN system 

– SFA12K-40 ~ 32-40 GB/sec 

– Currently limited to ~16-20 GB/sec because of spindle count 

• But problem is with client write speed. 

– Lustre 1.X client write speed is limited to ~400 MB/sec (or ~750 
MB/sec with checksums off). 

• One core in the client is pegged at 100% usage. 

– GPFS is much better (~3 GB/sec) 

– Lustre 2.0 was meant to be better 

• However initial tests weren’t convincing... 



Client Write Speed 

From: R Hedges K Fitzgerald M G and Stearman D “Comparison of leading parallel NAS file systems on 

commodity hardware” https://e-reports-ext.llnl.gov/pdf/457620.pdf 



Data Throughput speeds 

• Lustre 1.8 
– 115 MB, 1 GbE 

– ~400 MB/s, 10 GbE with checksums on 

– ~750 MB/s, 10 GbE with checksums off 

– Reports of ~ 1100 MB/s with IB 

– Client thread saturates 100% of 1 core. 

• 2.3.0 Servers, 1.8.8 Clients 
– ~500 MB/s, 10 GbE with checksums on 

– ~700 MB/s, 10 GbE with checksums off 

• 2.3.0 Servers, 2.3.61 Clients 
– ~650 MB/s, 10 GbE (no difference with or without checksums) 

– Still see some client thread saturation 

• GPFS 
– 115 MB/s, 1 GbE 

– 1100 MB/s, 10 GbE 

– 2100 MB/s, QDR IB (single thread) 

– 3100  MB/s QDR IB (multiple threads) 



Metadata speeds (ops/sec) 
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So, which Filesystem? 

• Not a simple choice, but bottom line is that file 
system throughput should not limit detector. 
– Lustre fine for high aggregate cluster processing rates 

– GPFS clearly better for single point data rates 

• Our current Lustre setup was explicitly designed for 1 
GbE client systems. 
– Clearly insufficient now 

– New system must saturate 10 GbE. 

• Testing the new DDN system with both Lustre and a 
GPFS file systems. 
– Final decision to be made next week. 

• Will consider 40 GbE and QDR/FDR IB networks as 
a next step. 



REAL-TIME PROCESSING 



Diamond Software Goals 

• We aim to do all we can to support the user to do the 
best science. 

• Our responsibilities extend before, during and after 
the run. 

• So, when it comes to data processing: 
– We must provide timely feedback on data quality 

– We must provide as much assistance as practicable to 
produce publication level data. 

• The more reduction we can do before they leave the quicker 
and easier it will be to publish. 

• The more publications the more likely Diamond will be 
successful. 

• We have clear commitment from directors to invest 
heavily in software and IT. 



areaDetector Software Model 

Data Sources 

• Detector 
Drivers 

Data 
Processing 

• Flat fielding 

• Centroiding 

Data Sinks 

• File Writing 

• Video 
streaming 

• Virtually all Diamond detector software is based on 

the areaDetector model. 

• We have never had a case where area detector limits 

detector performance. 



DLS High Data Rate Approach 



DLS High Data Rate Approach 

• Largest scan identified so far is ~ 100 GB, so: 
– Buffer data in RAM of detector controller. 

– Migrate data to high-speed parallel disk. 

– Process data on clusters. 

– Compress data if possible to reduce problems 
• SAXS data compresses by ~50. 

• What we are working on is: 
– Improving file writing so we can saturate a 10 Gbit link. 

– Providing similar support for Windows and Linux detector systems. 

– Provide processing on detector controller with areaDetector.. 

– Providing feedback by displaying some of the images directly from 
memory in the detector controller using a fraction of the network link. 

– Improving the user interface (particularly in Tomography) to make the 
technical problems of large data rates transparent to the user. 

• What we the next steps may be: 
– Passing the data directly from the detector controller to the compute 

systems (possible protocols include MPI, EPICS V4 or ActiveMQ). 

– Different forms of compression to improve transfer rates at the expense 
of CPU cycles. 

 

 

              



DLS High Data Rate Approach 



HDF5 DEVELOPMENTS 



HDF5 Data Files 

• EPICS and GDA both 
need to write the data file. 

• We use HDF5 links to 
create one logical file from 
multiple real files. 
– Avoids file contention 

issues. 

– Allows detector files to be 
highly optimised for 
performance. 

• The header data is written 
directly by GDA. 

• The detector data is 
written using EPICS 
HDF5 area detector 
plugin. 

17 February 2012 
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Example: Tomography 

• Tomography scans 
are demanding: 
– Data rate ~ 500 MB/s. 

– Data size > 100 GB. 

– First operation is read 
data perpendicular to 
write direction.  

• Classic matrix 
transpose problem 

• Real challenge for 
typical cache design. 

• Completely unsuited 
to running inside the 
GDA server. 

17 February 2012 
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Tomography data file format 

• Data must be optimised 
for reading sinograms. 

• All frames are written to a 
single file. 

• File is arranged in chunks 
of a fixed number of rows 
and a fixed number of 
frames. 

• The chunk size matches 
the Lustre stripe size so is 
written to a different 
Lustre server. 

• Data is in cache until all 
frames in a chunk are 
written. 

17 February 2012 
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Recent HDF5 developments 

• Last year the following developments were funded: 

– Writing of pre-compressed chunks. 

• Acquisition software can pre-compress data efficiently (i.e. in 

parallel), and write those directly to the HDF5 file without going 

through the HDF5 filtering mechanism. 

• Implemented by The HDF Group, funded by PSI and Dectris. 

– Filter plugins 

• User can supply a shared library at run-time that implements an 

HDF5 filter. 

• Allows the user to read and write compressed datasets with 

custom compression algorithms without recompiling the 

application by dynamically loading the corresponding filter. 

• Implemented by The HDF Group, funded by DESY. 

– Available in HDF5 1.8.11 (May 2013) 



Future HDF5 developments 

• Single Writer Multiple Reader (SWMR) 

– Data can be added and modified, but file hierarchical structure 

cannot be changed. 

– Writer task pre-creates file structure and then enables SWMR. 

– Reader tasks open file with read-only and SWMR flags and can 

then read data as it becomes available. 

– A Reader always sees a consistent HDF5 file - no errors occur 

while reading HDF5 metadata and raw data. 

– If the Writer crashes, it leaves the file in a non-corrupted state. 

– There is no performance penalty for file access and 

modifications under SWMR. 

• Available in HDF5 v1.10.0 (2014) 

• Funded by Diamond, Dectris and ???? 



Future HDF5 developments 

• Parallel compressed writer 
– Allow multiple writers to write a compressed HDF5 in parallel 

– Have thought of 2 approaches: 

• Have parallel MPI jobs, and manage the compressed file layout 
by inter-job communication. 

• Have independent jobs writing separate files in parallel, but 
have an additional file referring to a aggregate HDF5 dataset 
via an array of soft links. 

– The latter requires a HDF5 dataset to be able to be defined 
from an array of HDF5 soft-links. The dimensions and chunk 
layout of the linked datasets will have to be compatible with 
the dimensions and layout of the parent. 

– Has many other use cases, not just parallel compressed 
writing... 

– Which approach would you prefer? 



Summary 

• We have come a long way in a short time. 

• Diamond is committed to investing in software and IT. 

• We support the efforts to improve the HDF5 file 

format as a foundation for us all to use Nexus as a 

common interchange format. 

 


