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Overview

● Big Data Analysis “Mainstream at Google”
○ MapReduce (MR)
○ Sawzall
○ Dremel

● AdSpam Team
Why do we care about interactive data analysis

● PowerDrill UI: internal web-app to slice & dice data

● PowerDrill Serving: in-memory column-store
scaling from millions to billions of rows



MapReduce: Basics

2003: Jeff Dean, Sanjay Ghemawat

Map:       input              ==> (key, value)
Shuffle
Reduce: (key, [values]) ==> output

Number of queries:
Map:       WebSearch     ==> (query, 1) 
Reduce: (query, [1,...,1])==> query, len([1,..,1])



Shine:
● Write a simple program, run on 10k machines
● Process data at 50GB/s
● No need to have experience with parallel systems
● Flexibility/low-level control via cmd-line opts

Whine:
● Need MR-foo to debug/optimize
● A lot of boilerplate/repetitions (think: sums)
● Not interactive -- slow “discovery cycles”
● Engineers-only tool (C++, etc)

MapReduce: Shine and Whine



MR Memegen



Sawzall: Basics

2005: Rob Pike et. all

szl: scripting language for MR

Map: 
given an input record --
szl script describes how to emit to "aggregators"

Reduce: 
10+ system-provided aggregators
sum, maximum, quantile, sample, unique, top



Sawzall: Example

proto "WebSearch.proto"

search: WebSearch = input;

num_per_ip: table sum[ip: string] of count: int;

if (search.query == "flowers") {

  emit num_per_ip[format_ip(search.ip_v4)] <- 1;

}

$ saw --program example.szl \

      --input_files /gfs/cluster1/websearch/2012/05/28/websearch/*.recordio

      --destination /gfs/cluster2/$USER/nperip@100

$ dump --source /gfs/cluster2/$USER/nperip@100 

  --------------------

  | ip        | count| 

  --------------------

  | "1.2.3.4" |  23  |

  | "3.4.5.6" | 736  |

  | "6.7.8.9" |  42  |

  |        ...       |

  --------------------



Sawzall: Shine and Whine

Shine:
● Sawzall scripting instead of C++ & gcc
● Powerful & extensive library and aggregators
● Users: engineers, product managers and analysts

Whine:
● No built-in/awkward chaining
● Not interactive (same as MR) 



Sawzall Memegen



2006/2010: Sergey Melnik, Andrey Gubarev

What
● Represents records (proto-buffers) as column-store
● Petabytes of data, millions of tables
● SQL as query-language

How
● Streams from disk
● Thousands of light-weight servers (leaves)
● Mixer-tree which aggregates intermediate results

Interactive query results for 100s of millions of rows

Dremel: Basics



Dremel: Example

$ dremel

> SELECT format_ip(ip_v4) as ip,

         count(*) as count

    FROM "/gfs/cluster1/websearch/2012/05/28/websearch/*.columnio"

   WHERE query = "flowers"

   GROUP BY ip;

  --------------------

  | ip        | count| 

  --------------------

  | "1.2.3.4" |  23  |

  | "3.4.5.6" | 736  |

  | "6.7.8.9" |  42  |

  |        ...       |

  --------------------



Dremel: Shine and Whine

Shine:
● Interactive data analysis over millions records
● SQL & CLI instead of szl & saw
● users: all Googlers (including sales folks)

Whine:
● No graphical analysis tool
● Scale! What if we want to go over billions of records



AdSpam: Interactive Data Analysis

AdSpam team provides online filters to catch “invalid clicks”

Typical analyses:
● Manually check set of suspicious clicks
● Slice and dice the data, look at various metrics

Goals:
● Review: quickly decide whether clicks are invalid
● Filter development: research new filter ideas



PowerDrill UI



PowerDrill UI

Each chart => SQL “GROUP BY” query
Restriction => WHERE statement 

On every interaction
● Send SQL queries to the backend

Dremel, PowerDrill Serving, CSV, RecordIO, ...
● Backend processes SQL on suspicious click data

Needs to be super fast on billions of records!



PowerDrill Serving

Dremel
● Column-store, streams from disk
● Petabytes of data, millions of tables
● Thousands of light-weight servers
● Fast for 100s of millions of rows

PowerDrill Serving
● In-memory column-store

“as much as possible” in-memory
● Few selected data-sets
● ~1500 servers, 6 TB ram
● Scale to 10s of billions of rows

VLDB 2012



PowerDrill Serving -- Usage in AdSpam

● Heavily used within AdSpam since 3 years. 
Single user after a “hard day’s work”: up to 12k queries

● Used primarily on 2 major datasets

● Typically a single mouse click triggers 20 SQL queries

● On average these queries process data
corresponding to 782 billion cells
i.e., frequently > 1 trillion cells

● Return in 30-40 seconds (under 2 seconds per query)



Remainder of the Talk

● Comparing existing backends/formats (latency, mem)

● Basic data-structures

● Key ideas: skipping data & cacheing

● Optimizations/algorithmic engineering “tricks” 
Stepwise discussion of effects of optimizations

● Performance in practice



Comparing Existing Backends/Formats

● CSV files (comma separated values)
Compute stats by iterating over a csv-file; scan whole file line-by-line

● RecordIO files
Google binary “record” file-format; scan whole file record-by-record

● Dremel
Columnwise storage: full scan of data, but only necessary columns



PD Serving -- Basic Data-Structures

Columnwise storage, per field store:
● Dictionary: occurring values <=> int “ids”
● Represent the actual data as list of such ids



Observations



Best of Both: Index vs. Full Scans

● Partition the data during import (composite range partitioning)
● Add “index” per chunk: per field a list of occurring values

=> WHERE restricts chunks, fast columnwise scan per chunk



Best of Both: Index vs. Full Scans

● Partition the data during import (composite range partitioning)
● Add “index” per chunk: per field a list of occurring values

=> WHERE restricts chunks, fast columnwise scan per chunk



Improve Cache Hits

● Cache result per chunk
● “Normalize” WHERE statement per chunk, e.g., 

Chunk contains only country = ‘IE’ -> remove WHERE



Reduce Memory Footprint

Goal: Billions of rows in memory



Compression Savings per Step

Savings (per step)

Basic (compared to Dremel) -11% – 34%

Chunks (partitioning) -16% –   0%

Optimized storage of int ids   11% – 99.5%

Optimized dictionaries (trie)     0% – 78%

Snappy -- generic compression alg   29% – 49%

Reorder   16% – 55%



Performance

● Latency
Reduced from 7-48 seconds to 7-260 milliseconds

● Memory
From 27, 60, 90 MB down to 35KB, 12MB, 5.6MB

● In production, on average
○ Average response time low # of seconds

○ 92.41% of records skipped
5.02% served from cached results 
2.66% scanned

○ 70% of queries fetch no data from disk,
96.5% less than 1GB (overall)



Outlook

Next big topics for our team

● Moving beyond AdSpam

● Fast-approximations 
○ What is possible if we trade-off speed for accuracy?

going beyond simple approximations

○ On-going collaboration with visiting researcher Reimar Hofmann
professor at Hochschule Karlsruhe


