Big Data at Google and How to
Go gle Process a Trillion Cells per Mouse Click

LSDMA Karlsruhe 24.9.2013

Alex Hall

Google Overview

e Big Data Analysis “Mainstream at Google”
o MapReduce (MR)
o Sawzall

o Dremel

e AdSpam Team
Why do we care about interactive data analysis

e PowerDrill Ul: internal web-app to slice & dice data

e PowerDirill Serving: in-memory column-store
scaling from millions to billions of rows

Google MapReduce: Basics

2003: Jeff Dean, Sanjay Ghemawat
Map: input ==> (key, value)
Reduce: (key, [values]) ==> output
Number of queries:

Map: WebSearch ==> (query, 1)
Reduce: (query, [1,...,1])==> query, len([1,..,1])

Google MapReduce: Shine and Whine

Shine:

Whine:

Write a simple program, run on 10k machines
Process data at 50GB/s

No need to have experience with parallel systems
Flexibility/low-level control via cmd-line opts

Need MR-foo to debug/optimize

A lot of boilerplate/repetitions (think: sums)
Not interactive -- slow “discovery cycles”
Engineers-only tool (C++, etc)

. !{ 3

il

g

Mo - TR N EE

f il o A
] ¥R
.Illl' ||III\l

B i 1 I -i . .
I

Y
|
y WO
| oy [T
I ¥

X

/
\
i

i | t
St
:Jil_r.--I A i
T AR R | i]
PR e | ‘ 28 |
{ Ll b TR (. it| (1]
i .I .'I':.I.!‘l: .:.'\"1 =|.: 1 —— .:_i'il i | |
| 1 I.Ii T!I :.!: | i i |
| ' |

|
|
|

Google Sawzall: Basics

2005: Rob Pike et. all
szl: scripting language for MR

Map:

given an input record --
szl script describes how to emit to "aggregators”

Reduce:
10+ system-provided aggregators
sum, maximum, quantile, sample, unique, top

Google Sawzall: Example

proto "WebSearch.proto"

search: WebSearch = input;

num per ip: table sum[ip: string] of count: int;
if (search.query == "flowers") {

emit num per ip[format ip(search.ip v4)] <- 1;

$ saw —--program example.szl \
-—input files /gfs/clusterl/websearch/2012/05/28/websearch/*.recordio
--destination /gfs/cluster2/SUSER/nperip@l00

$ dump --source /gfs/cluster2/SUSER/nperip@l100

Google Sawzall: Shine and Whine

Shine:

e Sawzall scripting instead of C++ & gcc
e Powerful & extensive library and aggregators
e Users: engineers, product managers and analysts

Whine:

e No built-inf/awkward chaining
e Not interactive (same as MR)

Google Sawzall Memegen

Google Dremel: Basics

2006/2010: Sergey Melnik, Andrey Gubarev

What

e Represents records as column-store
e Petabytes of data, millions of tables
e SQL as query-language

How

e Streams from disk

e Thousands of light-weight servers

e Mixer-tree which aggregates intermediate results

Interactive query results for 100s of millions of rows

Google Dremel: Example

$ dremel
> SELECT format ip(ip v4) as 1ip,
count (*) as count
FROM "/gfs/clusterl/websearch/2012/05/28/websearch/*.columnio"
WHERE query = "flowers"
GROUP BY 1ip;

Google Dremel: Shine and Whine

Shine:

e Interactive data analysis over millions records
e SQL & CLl instead of szl & saw
e users: all Googlers (including sales folks)

Whine:

e No graphical analysis tool
e Scale! What if we want to go over billions of records

Go

gle AdSpam: Interactive Data Analysis

AdSpam team provides online filters to catch “invalid clicks”

Typical analyses:
e Manually check set of suspicious clicks
e Slice and dice the data, look at various metrics

800

]
i-!(I(l o

100

Clicks vs Time

B Spam

W valid

Illllll"llullll. 1 ||lll|l"l||l||"|l“| ""\5

'K'Kq't"

ﬂ @(D y)

B Span
W valid
O Expected

.

Goals:
e Review: quickly decide whether clicks are invalid
e Filter development: research new filter ideas

Google

PowerDrill Ul

Google internal web-app for easy slicing and dicing

Shows charts e.g., clicks over time, top ten countries,

Interactive way of restricting the data set

alexhall@google.com | Report a bug

M

Defined Fields

all_defined_fields

Protocol Message

compute_id Xyz -

date XyzZ -
log

rowkey Xyz -

time XyZz -

user Xyz -

nominal
date

nominal
nominal
country

Scenario 0 M
Where statement t I d ts ‘
Scenario DiffTool ol
By Week T

x| O3 0s,: 3¢

Ibigtable/srv-vb/powerdrill. powerdrill_log') « Flatten By (OVER): empty

Table: ration('/bigtable/mix-ic/adspam-tean,
— HoursSpent — Users

1,250 ¢

1,000 +----
750 ¢
500 +

250 1

SRS P DR D WS DD P DR D F PN AP
O 0 .0 0 0.0 w2
I “7’&“7@“7@”’@“' S
Country =1
x| 2% s, 3
Table: ration('/bigtable/mix-ic/adspam-teany, /bigtable/srv-vb/powerdrill. powerdril.log') « Flatten By (OVER): empty

“ Country +x v COUNT* ~ DistinctQueries x ~ Users X ¥ HoursSpent x
+ x> 136,728,363 27,787,271 87 53,529.13
us = x| o= 16,870,870 8,752,600 3,953 21,083.60
IE + x> 11,033,828 5,524,310 293 6,160.00
IN + x> 3,324,987 1,801,822 307 3,028.70
CH + x> 3,104,041 1,448 492 609 5,736.90
Du B x| = 140,469 65,718 32 64.60
UK + x> 67,537 31,599 218 599.67

AU +x> 40,308 25,286 147 133.90

(se19nb jeusalul 9|8009) s80| Ad

Google PowerDrill Ul

Each chart => SQL “GROUP BY” query
Restriction => WHERE statement

On every interaction

e Send SQL queries to the backend
Dremel, PowerDrill Serving

e Backend processes SQL on suspicious click data

Needs to be super fast on billions of records!

Google PowerDrill Serving

Dremel

Column-store, streams from disk
Petabytes of data, millions of tables
Thousands of light-weight servers
Fast for 100s of millions of rows

PowerDrill Serving

In-memory column-store

“as much as possible” in-memory
Few selected data-sets

~1500 servers, 6 TB ram

Scale to 10s of billions of rows

VLDB 2012

Google PowerDrill Serving -- Usage in AdSpam

e Heavily used within AdSpam since 3 years.
Single user after a “hard day’s work”: up to 12k queries

e Used primarily on 2 major datasets
e Typically a single mouse click triggers 20 SQL queries
e On average these queries process data

corresponding to 782 billion cells

e Returnin 30-40 seconds

Google Remainder of the Talk

e Comparing existing backends/formats
e Basic data-structures
e Key ideas: skipping data & cacheing

e Optimizations/algorithmic engineering “tricks”

e Performance in practice

Go:*:gle" Comparing Existing Backends/Formats
e CSV files (comma separated values)
Compute stats by iterating over a csv-file; scan whole file line-by-line

e RecordlO files
Google binary “record” file-format; scan whole file record-by-record

e Dremel
Columnwise storage: full scan of data, but only necessary columns

Latency in milliseconds Memory in KB
Ccsv 55,099 75,207 52,924 1,778 573,339 573,339 573,339 573,339

RecordlO 271,134 50,587 28,497 39,235 651,074 851,074 051,074 651,074
Dremel 1,874 18,191 8,907 48,628 21,943 60,369 118,734 90,792

Google PD Serving -- Basic Data-Structures

Columnwise storage, per field store:
e Dictionary: occurring values <=> int “ids”
e Represent the actual data as list of such ids

Latency in milliseconds Memory in KB
Dremel 7,874 18,191 8,907 48,628 27,943 60,369 118,734 90,792
Basic / 20 \ 214 179 686 20,001 41,453 132,682 91,232
Q1 Top countries Q2 Count & latency / day | Q3 Top tables Q4 Top tables
-> 5 mio times pre-computed date(..) WHERE restriction | no WHERE
counts[countryld]++ many values / ids | many values / ids

Google Observations

Columnwise full scans are very fast! Cache locality, good to opt...

Would be nice to skip data though ...

SELECT ...
WHERE country = ‘IE’

100k

5> mio records compute > mio
on restricted

records data set records I

SELECT ...
WHERE country = ‘IE’

Cached

Index?
— Fixed set of fields (only for certain WHERE restrictions)

— Expensive to evaluate compared to full scan
DBs like SQL Server do full scans if more that 10% of data touched

Caches?
— Insufficient because too much variance on the queries

Google Best of Both: Index vs. Full Scans

e Partition the data during import (composite range partitioning)
e Add “index” per chunk: per field a list of occurring values

=> WHERE restricts chunks, fast columnwise scan per chunk

100k country: “IE”

.y L . » country: “DE”, “FR”, ...
85k country: “US city: “Dublin 89k - e
. " oaN e records L um city: “Munich”, “Paris”, ...
city: “MTV”, “NYC”, ... table_name: “a ’ ’
records y - records table_name: “c”, ...

table_name: “a”, “b”, ...

123k
records

150k
records records records

Google Best of Both: Index vs. Full Scans

e Partition the data during import (composite range partitioning)
e Add “index” per chunk: per field a list of occurring values
=> WHERE restricts chunks, fast columnwise scan per chunk

SELECT ...
WHERE country = ‘IE’

100k country: “IE”
city: “Dublin”

" n

table_name: “a

records
recor.s

“active”
recoru:

150k
records recoras records

“not active”

Google Improve Cache Hits

e Cache result per chunk
e “Normalize” WHERE statement per chunk, e.g.,
Chunk contains only country = ‘IE’ -> remove WHERE

SELECT ...

SELECT ... WHERE true

WHERE country = ‘IE’

I "*’||z=!ﬂl|‘:

. 100k
85k - records

recor.s

country: “IE”
city: “Dublin”

" n

table_name: “a

records

recoru:

150k ~r, records q53i cos
records ' records records

Google Reduce Memory Footprint

Goal: Billions of rows in memory

Google Compression Savings per Step

Savings (per step)

Basic (compared to Dremel)

-11% — 34%

Chunks (partitioning)

-16% — 0%

Optimized storage of int ids

11% — 99.5%

Optimized dictionaries (trie)

0% — 78%

Snappy -- generic compression alg

29% — 49%

Reorder

16% — 55%

Google Performance

e Latency
Reduced from 7-48 seconds to 7-260 milliseconds

e Memory
From 27, 60, 90 MB down to 35KB, 12MB, 5.6MB

e In production, on average
o Average response time low # of seconds

400

350
8 300+
Q

o 92.41% of records skipped g 0
5.02% served from cached results ,§ 150]
2.66% scanned]

PR
O N

o 70% of queries fetch no data from disk,
96.5% less than 1GB (overall)

Google Outlook

Next big topics for our team
e Moving beyond AdSpam

e Fast-approximations
o What is possible if we trade-off speed for accuracy?
going beyond simple approximations

o On-going collaboration with visiting researcher Reimar Hofmann
professor at Hochschule Karlsruhe

