Beam test with turn and tilt

Ganna Dolinska, Ievgen Korol, Hanno Perrey, Daniel Pitzl, Simon Spannagel Hamburg CMS Pixel Upgrade meeting, 8.2.2013

- turn sensor to study charge sharing between columns
 - incident angle similar to dip angle in CMS
- beam test this week
- first results

CMS: dip angle dependence of z resolution

- dip angle:
 - $\lambda = \pi/2 \theta$.
- z = column direction
- optimal resolution at $28^{\circ} = \operatorname{atan}(150/285)$
 - sharing between neighboring pixels

DUT with tilt and turn

psi46dig pixel readout chip

Program

- single chip module with psi46dig chip 47
 - bump and wire bonded at PSI
 - ▶ thresholds trimmed to 25, 30, 35, 40, 50, 60, 80 DACs (50 e)
 - ▶ bias -150 V
 - fixed tilt angle 19° (like Lorentz angle in CMS)
 - ▶ 4.4 GeV, typically 500 Hz telescope trigger rate with 9E9 e⁻ in DESY
- Vary turn angle:
 - ► 27°, 18°, 45°, 36° done. 9° and 0° today.
 - take threshold scan at each angle
 - two good 5 min runs per point

columns per cluster

column resolution with turn angle

dig chip47, trim 30, run 6208, 4.4 GeV, 27° turn

top view:

- Horizontal = columns
 - pixel width 150 μm
- turn angle:
 - charge sharing
 - residuals have Gaussian distribution
 - ► sigma = 12.2 μm
 - subtract telescope 7 μm
 - $\sigma_{\text{column}} = 10 \ \mu\text{m}$

column resolution at 27°

trim 30 (1.5 ke), run 6208

trim 80 (4 ke), run 6200

beam test vs CMS

- caveat: truncated
 RMS vs Student's t fit
- data at 9°, 18°, 36°,
 45° to be analyzed...

Summary

- Our test beam setup allows turning in addition to tilting
 - study charge sharing in column direction
 - extended up to 54° turn angle
- Optimal resolution at 27°:
 - ▶ 30% improvement by reducing threshold from 4 to 1.5 ke.
- More analysis to follow...

Back up

DESY Testbeam Schedule 2013 - version of December 14 2012

	Week		TB21		TB22		TB24/1		TB24
			DATURA	none	Telescope	CAL	Telescope	PCMAG	none
swap	ped		(telescope)				PCMAG		i
_	2								Î
14-Jan	3			ITER	Tele setup				1
	4		XO			CALICE AHCAL			1
	5	swapped	CMS Pix-irrad	j		CALICE AHCAL		TPC MMG	ECAL
2-Feb	6	order	CMS Pix-fwd		ATLASPix			TPC MMG	
	7		CLICpix			SiPM	LorAngle		
	8			SiW ECAL		SiPM	LorAngle		
	9			Sc ECAL	EUTelescope			DESY TPC	
4-Mar	10								
	11		ALICE ITS		MuPix 2			DESY TPC	
	12		CMS Pix-irrad		APIX PPS			DESY TPC	
	13		CMS Pix-KA		APIX PPS			LCTPC Time	
1-Apr	14			GRPC-SDHCAL	APIX IBL			LCTPC Time	
	15			GRPC-SDHCAL	APIX DBM				
	16		X0		ILCPOL				
	17			SiW ECAL	ILCPOL		SBS GEM		
	18			SC ECAL		RD50	SBS GEM		
6-May	19		DEPFET			RD50	LorAngle		
	20		FE-14			CAL MMG		GridPix	
	21		CMS Pix-ro			CAL MMG			Belle 2 PID
	22		X0			CALICE AHCAL			<u> </u>
3-Jun	23		CLICpix			CALICE AHCAL			
	24		CLICpix		MuPix 3	CALICE AHCAL			
	25		ALICE ITS		APIX 3D				PICSEL
	26		CMS Trk II		DIA-SiGe				PICSEL

changes to EUTelescope code

inclined track:

$$y = y_0 + (z - z_0) \tan \theta_v$$

- sensor plane at z_p defined by normal vector $\vec{n} = (n_x, n_y, n_z)$
- plane equation: $\{ \vec{r} \mid \vec{n} (\vec{r} \vec{r_p}) = 0 \}$
- insert track equation into plane equation to get intersect:

$$z_i - z_0 = (n_z(z_p - z_0) - n_v y_0 - n_x x_0) / (n_x t_x + n_v t_v + n_z)$$

• get x_i and y_i by inserting z_i into track equations

Rotations and transformations

Transform intersect point into sensor coordinates:

with alignment parameters ϕ , α , ω , a_x , a_y .

Landau distribution chip 47

- digital chip 47
- Telescope run 5559:
 - ▶ bias -150V
 - ► turn 26°, tilt 19°
 - normalized to vertical incidence
- Gain calibration:
 Weibull fit, nominal
 gain 50e/DAC used.
- - peak at 23.1 ke a little low.

column resolution vs cluster charge

dig chip39, trim 24, run 5559, 4.4 GeV, 26° turn

- Best resolution for mips at the Landau peak around 24 ke
- Poor resolution below 18 ke:
 - broken clusters
- Poor resolution in Landau tail above 40 ke:
 - delta rays

column resolution at vertical incidence

dig chip47, trim 24, run 5474, 4 GeV, 0° turn

- Horizontal = columns
 - pixel width 150 μm
- Vertical incidence:
 - no charge sharing
 - residuals have box distribution
- Fit with generalized error function
 - Residual: 50 μm,