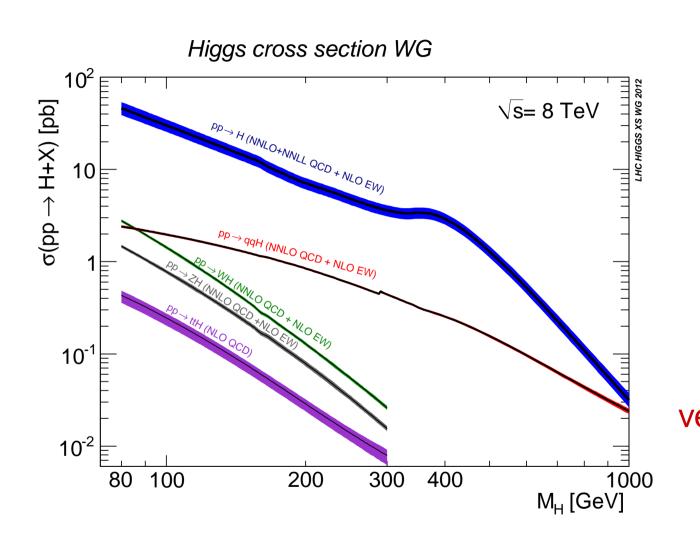
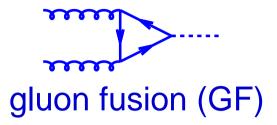
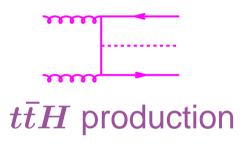
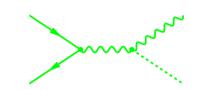
VVjj production at the LHC –a Standard Model perspective




Anomalous Quartic Gauge Couplings


Dresden – September 2013

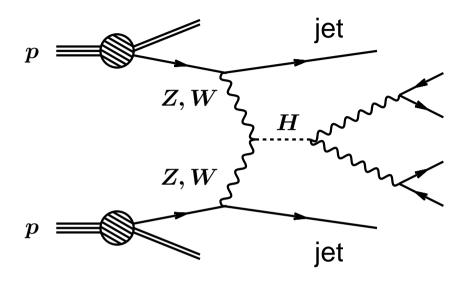
Barbara Jäger
Johannes Gutenberg University Mainz


Higgs production @ LHC

W, Z bremsstrahlung

vector boson fusion (VBF)

- important production mode for:
 - \cdot Higgs boson at $M_H=126$,
 - heavy Higgs boson(s),
 - scalar bosons in new physics scenarios

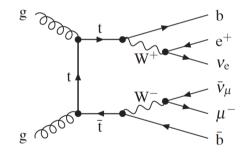

- perturbatively well under control
- experimentally clean signature

sensitive to Higgs couplings and CP properties

accurate predictions essential!

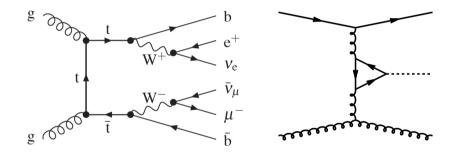
pp o Hjj via VBF: event topology

suppressed color exchange between quark lines gives rise to


- little jet activity in central rapidity region
- ◆ scattered quarks → two forward tagging jets (energetic; large rapidity)
- Higgs decay products typically between tagging jets

distinct event topology of the Higgs signal in

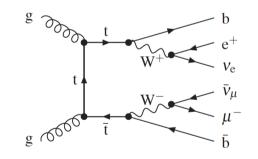
$$pp o Hjj$$
 via VBF with $H o W^+W^- o e^\pm\mu^\mp p_T$

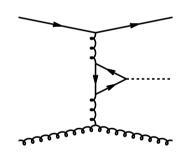

- important for suppression of backgrounds
- $lacktriangledow tar{t} + 0, 1, 2 ext{ jets production}$ (note: $tar{t} o W^+W^-bar{b}$)

distinct event topology of the Higgs signal in

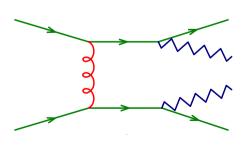
$$pp o Hjj$$
 via VBF with $H o W^+W^- o e^\pm\mu^\mp p_T$

- important for suppression of backgrounds
- $lacktriangledow tar{t} + 0, 1, 2 ext{ jets production}$ (note: $tar{t} o W^+W^-bar{b}$)


lack pp o Hjj via gluon fusion (followed by $H o W^+W^-$)

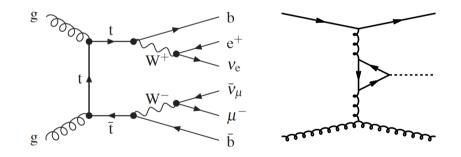

distinct event topology of the Higgs signal in

$$pp o Hjj$$
 via VBF with

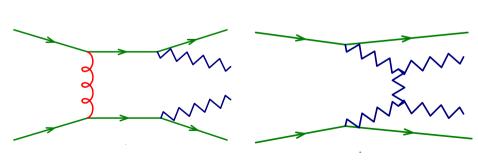

$$H o W^+W^- o e^\pm\mu^\mp p_T$$

- important for suppression of backgrounds
- $lacktriangledow tar{t} + 0, 1, 2 ext{ jets production}$ (note: $tar{t} o W^+W^-bar{b}$)

- lack pp o Hjj via gluon fusion (followed by $H o W^+W^-$)
- ightharpoonup QCD W^+W^-jj production

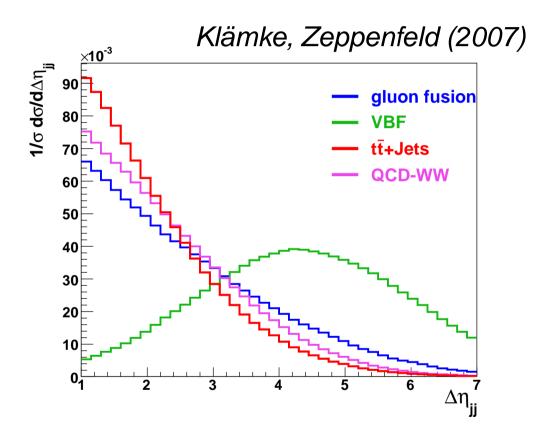


distinct event topology of the Higgs signal in


$$pp o Hjj$$
 via VBF with

$$H o W^+W^- o e^\pm\mu^\mp p_T$$

- important for suppression of backgrounds
- $lacktriangledow tar{t} + 0, 1, 2 ext{ jets production}$ (note: $tar{t} o W^+W^-bar{b}$)



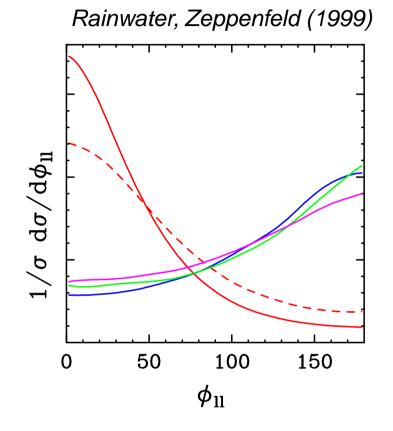
- lacklack pp o Hjj via gluon fusion (followed by $H o W^+W^-$)
- ightharpoonup QCD W^+W^-jj production
- \bullet EW W^+W^-jj production

tagging jets: properties

rapidity separation of the tagging jets

jets more central in QCD- than in EW-induced production processes

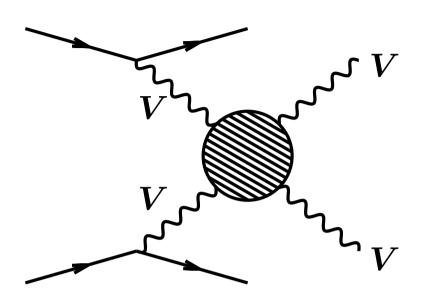
angular distribution of charged leptons


in $H \to W^+W^-$: spins anti-correlated

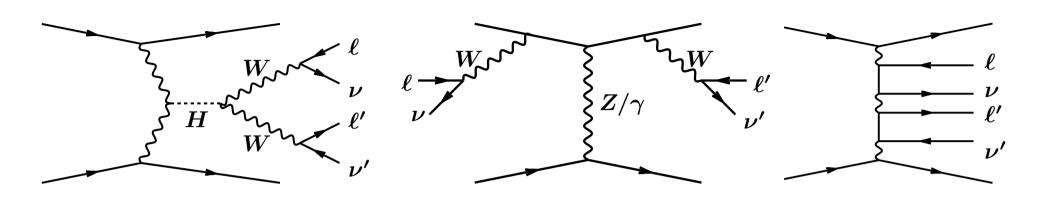
leptons emitted preferentially in same direction

no such correlation, if W bosons do not stem from the Higgs Dittmar, Dreiner (1996)

distribution for EW W^+W^- production significantly different from Higgs signal

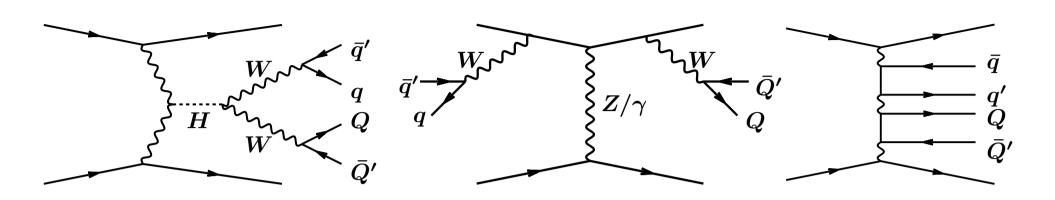

$$egin{array}{lll} egin{array}{lll} egin{arra$$

...today's background – tomorrow's signal ...?



vector boson scattering: VV o VV

vector-boson scattering processes
are extremely sensitive to
new interactions in the
gauge boson sector


pp o VVjj: vector boson scattering in the Standard Model

experiment: don't observe VVjj final state, but hadronic or leptonic decay products

 $4 ext{leptons} + jj$ $1 ext{low statistics}$ $2 ext{clean signature}$

pp o VVjj: vector boson scattering in the Standard Model

experiment: don't observe VVjj final state, but hadronic or leptonic decay products

4jets + jj

high statistics large backgrounds

4leptons + jjlow statistics
clean signature

EW VVjj production in the Standard Model

need stable, fast & flexible Monte Carlo program allowing for

computation of various jet and lepton observables for VBF production of

$$W^+W^-jj$$
, $ZZjj$, $W^\pm Zjj$, and $W^\pm W^\pm jj$

at NLO-QCD accuracy

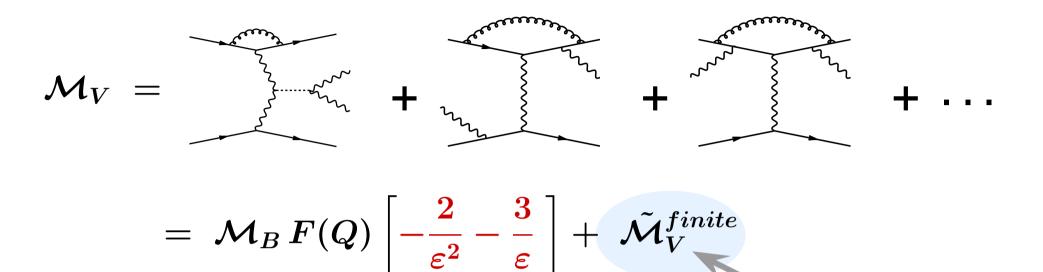
(leptonic decay correlations fully taken into account)

- straightforward implementation of experimental selection cuts
 - · G. Bozzi, C. Oleari, D. Zeppenfeld, B. J. (2006–2009)
 - · A. Denner, L. Hosekova, S. Kallweit (2012)

ingredients of the calculation

need to compute numerical value for ...

$$|\mathcal{M}_B|^2 = \left|\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \right|$$


...Born amplitude squared in 4 dim

$$|\mathcal{M}_R|^2 = \left|\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \right|$$

... real-emission amplitude squared in 4 dim and counter-terms for infrared-divergent configurations

almost 3000 diagrams → essential: organize calculation economically!

virtual contributions

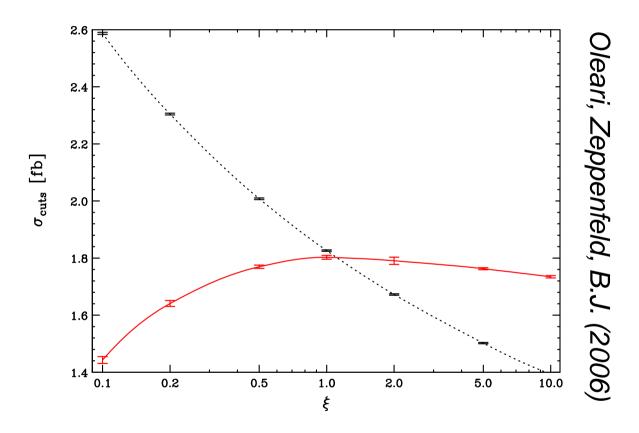
determined numerically

[c. f. Denner, Dittmaier (2002,2005)]

combination of real emission, virtuals, and subtraction terms: poles canceled analytically → finite results

phase-space integration can be performed numerically (Vegas)

implementation

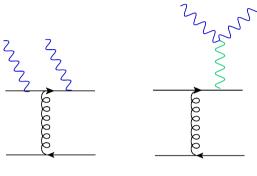


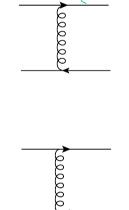
...put everything into dedicated

Monte-Carlo program VBFNLO ...

EW W^+W^-jj production: theoretical uncertainty

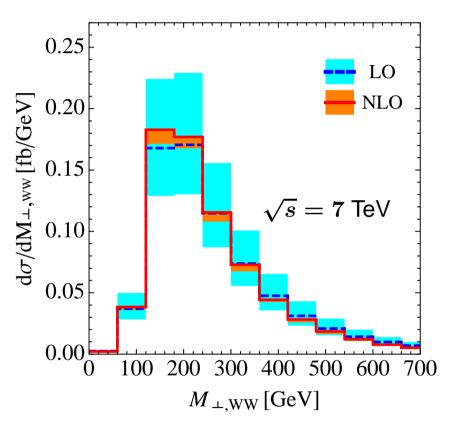
estimate theoretical uncertainty by studying dependence of cross section on unphysical scale parameter $\mu=\xi M_W$

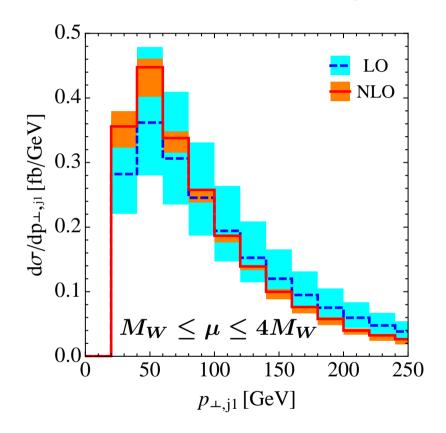



LO: no control on scale

NLO QCD: scale dependence strongly reduced

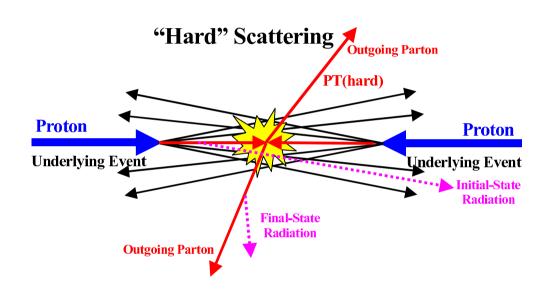
QCD-induced VVjj production


QCD-induced W^+W^-jj production constitutes irreducible background to


$$pp o Hjj o W^+W^-jj$$

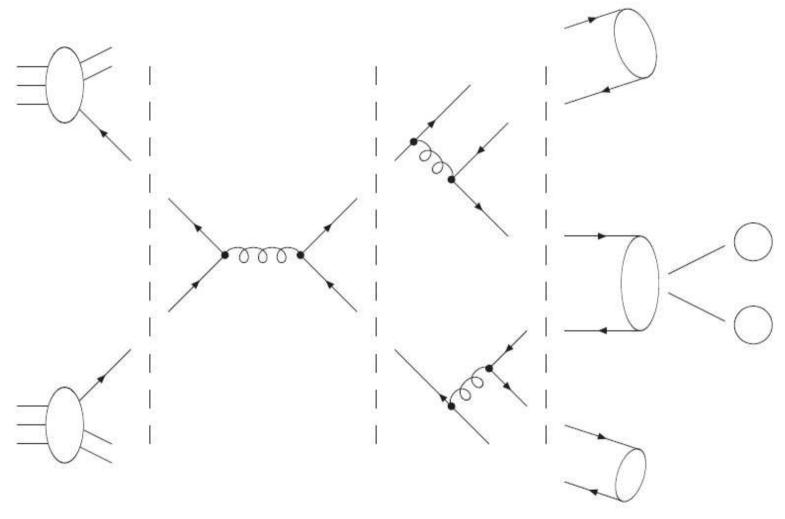
NLO-QCD predictions available Melia, Melnikov, Rontsch, Zanderighi (2011); Greiner et al. (2012)

QCD-induced W^+W^-jj production at NLO



NLO-QCD corrections significantly reduce scale uncertainty

more realistic simulation


for realistic description of scattering processes at hadron colliders:

combine matrix elements for hard scatteringwith programs for simulation of

underlying event, parton shower, and hadronization

(PYTHIA, HERWIG, SHERPA,...)

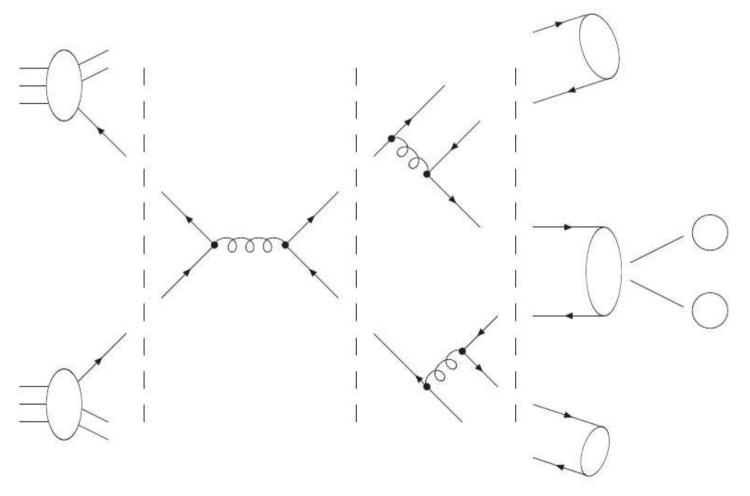
stages of a hadronic collision

hard partonic scattering

 $\mu \sim Q \gg \Lambda_{
m QCD}$

parton shower

 $Q>\mu>\Lambda_{
m QCD}$

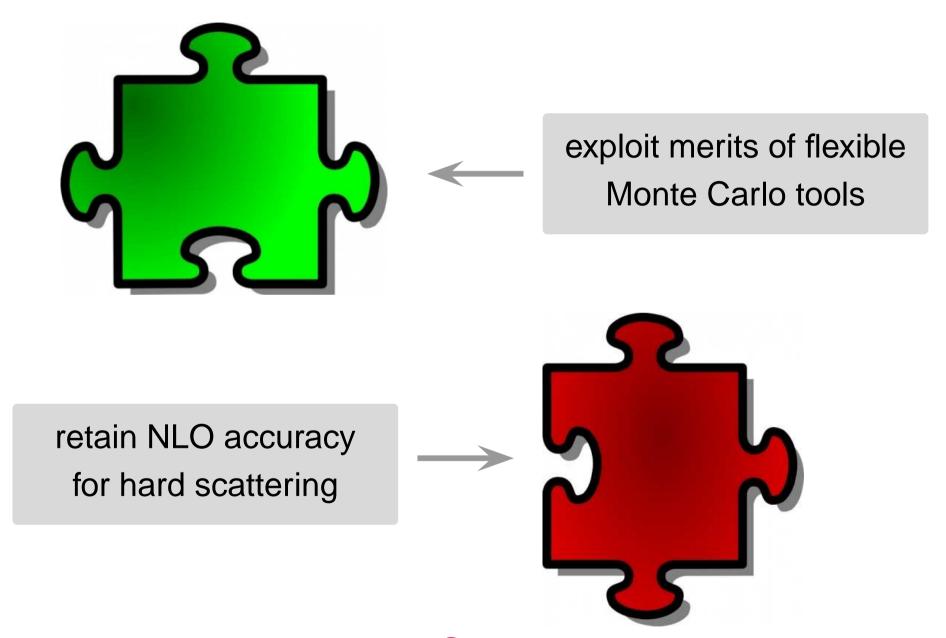

hadronization and decay

 $\mu \sim \Lambda_{
m QCD}$

stages of a hadronic collision

perturbation theory

multiple soft & collinear emissions non-perturbative; pheno models tuned on data



hard partonic scattering

parton shower

hadronization and decay

realistic & precise predictions

NLO-QCD vs. Shower Monte Carlo

NLO QCD:

- LO Shower Monte Carlo:
- \checkmark accurate shapes at high p_T
- $m{ imes}$ bad description at high p_T
- normalization accurate at NLO
- normalization accurate only at LO
- reduced scale dependence
- $m{ imes}$ wrong shapes at low p_T

- \checkmark Sudakow suppression at low p_T
- description only at parton level
- events at hadron level

- merge the two approaches, keeping the advantages of both:
 - MC@NLO [Frixione, Webber]
 - POWHEG [Nason et al.]

parton showers & NLO-QCD: the POWHEG method

POsitive Weight Hardest Emission Generator

general prescription for matching parton-level NLO-QCD calculations with parton shower programs

[Frixione, Nason, Oleari]

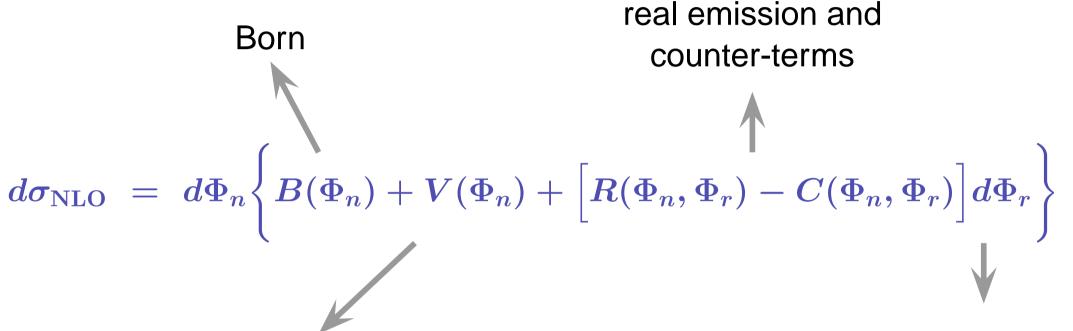
- generate partonic event with single emission at NLO-QCD
- all subsequent radiation must be softer than the first one
- event is written on a file in standard Les Houches format
 - → can be processed by default parton shower program (HERWIG, PYTHIA,...)

parton showers & NLO-QCD: the POWHEG method

POsitive Weight Hardest Emission Generator

general prescription for matching parton-level NLO-QCD calculations with parton shower programs

[Frixione, Nason, Oleari]

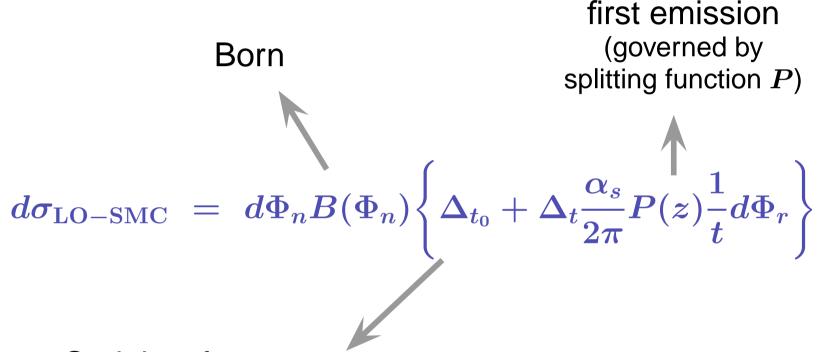

- lacktriangle applicable to any p_T -ordered parton shower program
- no double counting of real-emission contributions
- produces events with positive weights
- ♦ tools for "do-it-yourself" implementation publicly available (the POWHEG-BOX)

[Alioli, Nason, Oleari, Re]

NLO cross sections

reminder: differential NLO cross section

finite virtuals:


$$V_b(\Phi_n) + \int d\phi_r \, C(\Phi_n,\Phi_r)$$

radiation phase space:

$$d\Phi_r = dtdzd\phi$$

shower Monte Carlo cross sections

leading order shower Monte Carlo cross section

Sudakov factor:

$$\Delta_t \; = \; \exp\left[-\int d\Phi_r' rac{lpha_s}{2\pi} P(z') rac{1}{t'} heta(t'-t)
ight]$$

... probability for no emission at scale t'>t

POWHEG cross sections

$$\overline{B} \; = \; \left\{ B(\Phi_n) + V(\Phi_n) + \int d\Phi_r \Big[R(\Phi_n,\Phi_r) - C(\Phi_n,\Phi_r) \Big]
ight\}$$

$$d\sigma_{ ext{POWHEG}} \ = \ d\Phi_n \overline{B}(\Phi_n) igg\{ \Delta(\Phi_n, p_T^{ ext{min}}) + \Delta(\Phi_n, p_T) rac{R(\Phi_n, \Phi_r)}{B(\Phi_n, \Phi_r)} d\Phi_r igg\}$$

POWHEG "Sudakov" factor:

$$\Delta(\Phi_n,p_T) \; = \; \exp\left[-\int d\Phi_r' rac{R(\Phi_n,\Phi_r')}{B(\Phi_n)} heta\left(k_T(\Phi_n,\Phi_r')-p_T
ight)
ight] \; .$$

the POWHEG cross section

$$d\sigma_{ ext{NLO}} \ = \ d\Phi_n iggl\{ B(\Phi_n) + V(\Phi_n) + \Big[R(\Phi_n,\Phi_r) - C(\Phi_n,\Phi_r) \Big] d\Phi_r iggr\}$$

$$d\sigma_{ ext{LO-SMC}} \ = \ d\Phi_n B(\Phi_n) iggl\{ \Delta_{t_0} + \Delta_t \, rac{lpha_s}{2\pi} P(z) rac{1}{t} \, d\Phi_r iggr\}$$

$$egin{align} d\sigma_{ ext{POWHEG}} &= d\Phi_n \overline{B}(\Phi_n) iggl\{ \Delta(\Phi_n, p_T^{ ext{min}}) \ &+ \Delta(\Phi_n, p_T) \, rac{R(\Phi_n, \Phi_r)}{B(\Phi_n, \Phi_r)} \, d\Phi_r iggr\} \ \end{aligned}$$

parton showers & NLO-QCD: the POWHEG-BOX

- **x** user has to supply process-specific quantities:
 - lists of flavor structures for Born and real emission processes
 - Born phase space
 - Born amplitudes squared, color-and spin-correlated amplitudes
 - real-emission amplitudes squared
 - finite part of the virtual corrections
 - Born color structure in the limit of a large number of colors
- ✓ all general, process-independent aspects of the matching are provided by the POWHEG-BOX

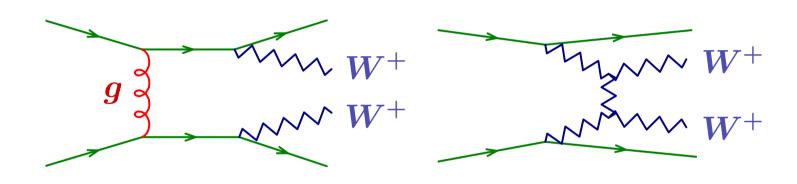
parton showers & NLO-QCD: the POWHEG-BOX

up-to-date info on the POWHEG-BOX and code download:

http://powhegbox.mib.infn.it/

selected processes in the POWHEG-BOX:

- ♦ Hjj production via VBF [Oleari, Nason (2009)]
- ♦ Hjj production via gluon fusion [Campbell et al. (2012)]
- ightharpoonup QCD W^+W^+jj production [Melia, Nason, Rontsch, Zanderighi (2011)]
- lacktriangle EW W^+W^+jj production [Zanderighi, B.J. (2011)]
- ightharpoonup EW W^+W^-jj production [Zanderighi, B.J. (2013)]


$pp o W^+W^+jj$ in the POWHEG-BOX

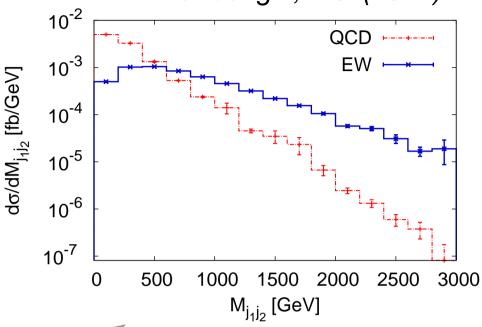
QCD-induced production

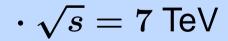
Melia, Melnikov, Rontsch, Zanderighi (2010); Melia, Nason, Rontsch, Zanderighi (2011)

EW production

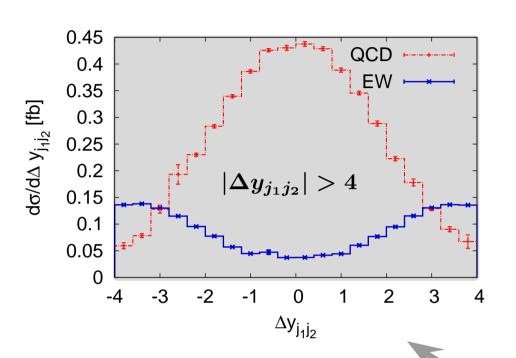
Oleari, Zeppenfeld, B.J. (2009); Zanderighi, B.J. (2011)

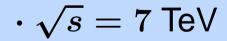
NLO-QCD results for \sqrt{s} =7 TeV with basic jet cuts only ($p_T^{
m tag} > 20$ GeV):


$$\sigma_{
m QCD}^{
m inc}=2.12$$
 fb


$$\sigma_{
m EW}^{
m inc}=1.097$$
 fb

$pp o W^+W^+jj$: QCD versus EW production

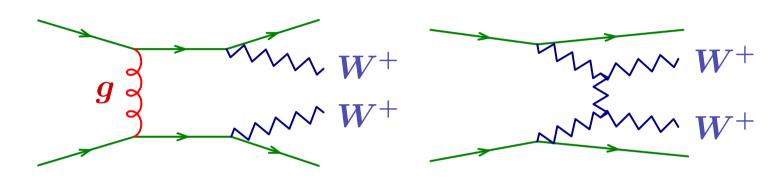

Zanderighi, B.J. (2011)


- · basic jet cuts only
- NLO-QCD accuracy

$pp o W^+W^+jj$: QCD versus EW production

Zanderighi, B.J. (2011)

- basic jet cuts only
- NLO-QCD accuracy


$pp o W^+ W^+ j j$ in the POWHEG-BOX

QCD-induced production

Melia, Melnikov, Rontsch, Zanderighi (2010); Melia, Nason, Rontsch, Zanderighi (2011)

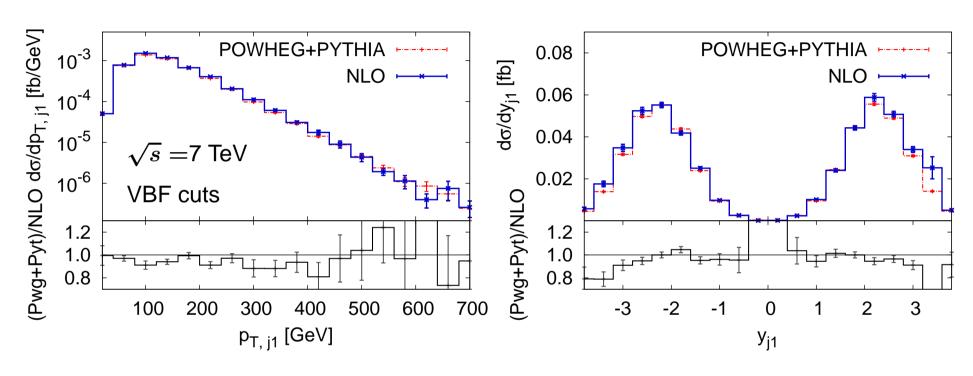
EW production

Oleari, Zeppenfeld, B.J. (2009); Zanderighi, B.J. (2011)

NLO results for \sqrt{s} =7 TeV with basic jet cuts only ($p_T^{\mathrm{tag}} > 20$ GeV):

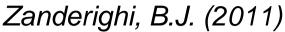
$$\sigma_{
m QCD}^{
m inc}=2.12$$
 fb

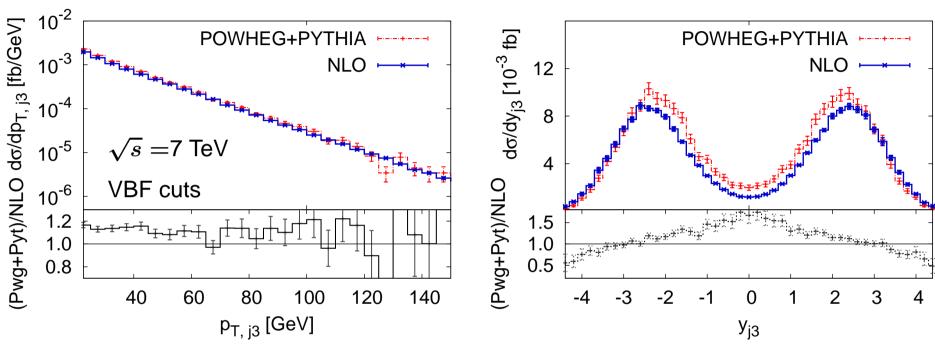
$$\sigma_{
m EW}^{
m inc}=1.097$$
 fb


NLO results with VBF cuts:

$$\sigma_{
m QCD}^{
m cuts}=0.0074$$
 fb

$$\sigma_{
m EW}^{
m cuts}=0.201$$
 fb


$pp o W^+W^+jj$ in the POWHEG-BOX


Zanderighi, B.J. (2011)

good agreement between parton-level NLO calculation and POWHEG matched with PYTHIA for many observables

$pp o W^+W^+jj$ in the POWHEG-BOX

typical for VBF processes: little jet activity at central rapidities

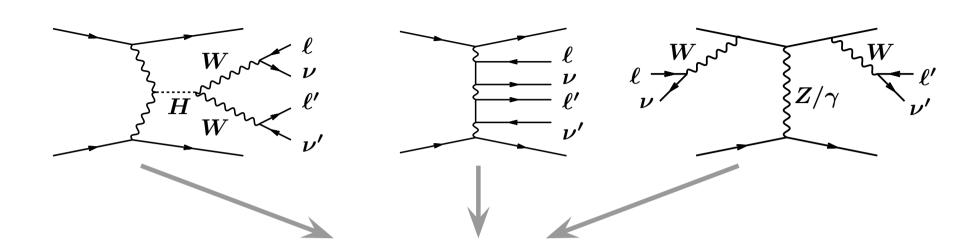
→ exploited by central-jet veto techniques

note: parton-shower effects slightly enchance central jet activity

the next step: $pp o W^+W^-jj$

$pp o W^+W^-jj$ in the POWHEG-BOX

full description of EW process $pp \to W^+W^-jj$, including fully leptonic and semi-leptonic decays:

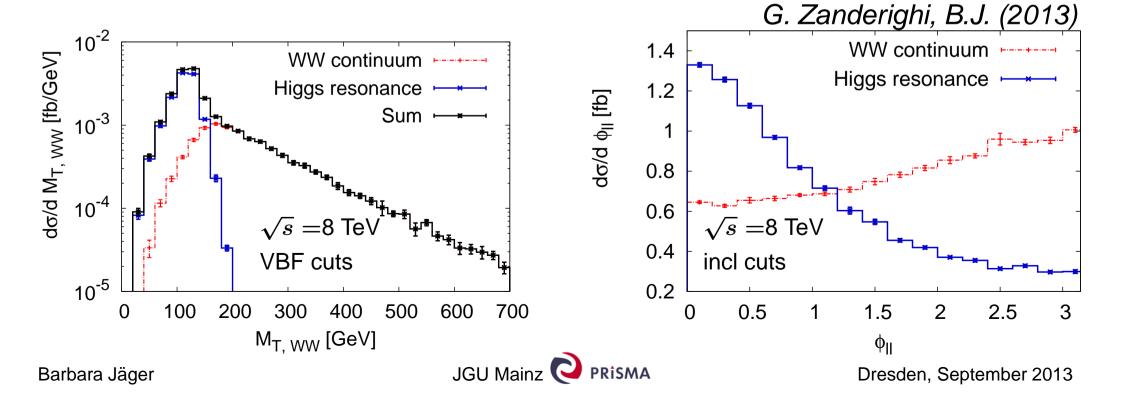

matching of hard matrix elements with parton shower at NLO QCD

- ✓ provide implementation in versatile public program package POWHEG-BOX
- challenge: complex multi-leg process with involved resonance structure
- → conceptually and computationally demanding*

★ requires about 12 hours × 100 nodes on a HPC cluster

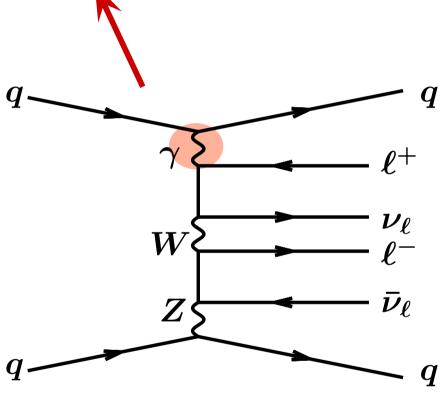
$pp o W^+W^-jj$: technicalities

different topologies populate different regions in phase space


split phase space into two regions for :

$$M_H - \Delta M \le M_{2\ell 2\nu} \le M_H + \Delta M$$

lacktriangle all other values of $M_{2\ell 2
u}$

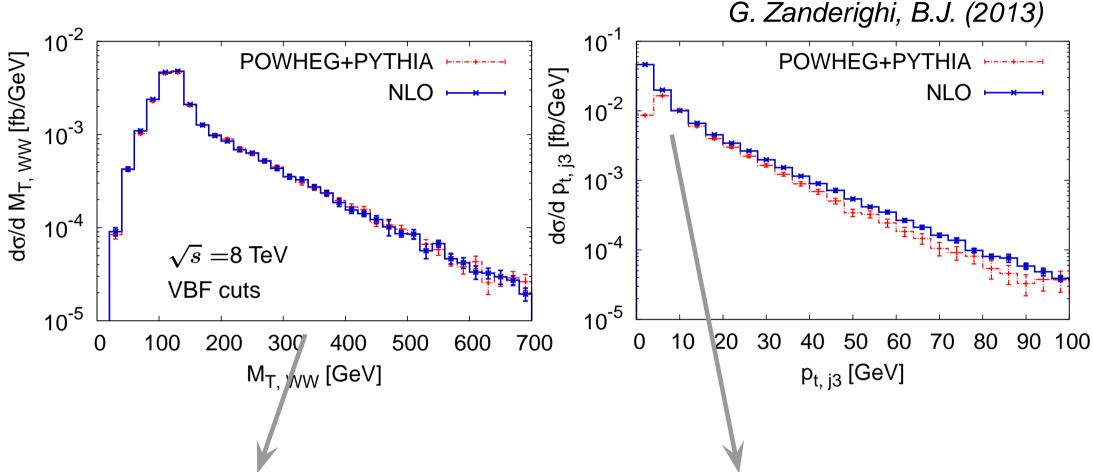

$pp o W^+W^-jj$: technicalities V_{ν}^{W}

different topologies populate different regions in phase space:

$pp o W^+W^-jj$: technicalities

photon propagator $\sim 1/Q_{\gamma}^2$

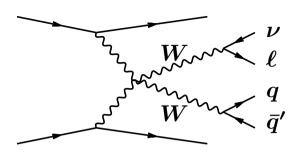
need to handle singularities for photons in t-channel with $Q_{\gamma}^2 o 0$


(numerically irrelevant for meaningful observables)

- (1) damping factor to effectively suppress matrix elements
- (2) Born-suppression factor to achieve efficient phase space integration

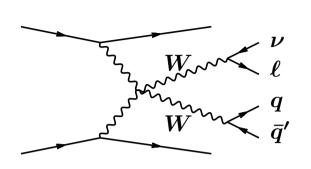
$$F \sim \left(rac{p_{T,1}^2}{p_{T,1}^2+\Lambda^2}
ight)^2 \left(rac{p_{T,2}^2}{p_{T,2}^2+\Lambda^2}
ight)^2$$

(alternative: explicit generation cuts)


$pp o W^+W^-jj$ with leptonic decays: results

leptonic observables not very sensitive to parton shower

growth of jet distribution tamed by Sudakov factor



"semi-leptonic" final state:

$$W^+W^- o \ell
u + qar q'$$

different from fully leptonic modes:

- $lap{lem}$ branching ratio $\mathrm{BR}_{W o qar{q}'}pprox 3 imes \mathrm{BR}_{W o \ell
 u} o$ larger x-sec
- \checkmark only one neutrino \rightarrow on-shell: M_{WW} reconstruction possible
- sophisticated analysis techniques needed to isolate signal

consider fictitious scenario with heavy Higgs

$$m_H=400~{
m GeV}>2M_W$$

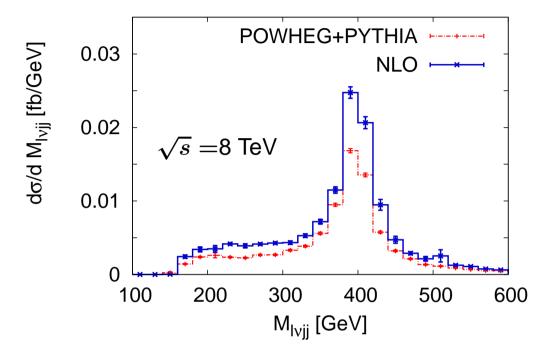
ightarrow W bosons are typically on-shell

require VBF topology for tagging jets:

$$egin{aligned} p_{T,j}^{ ext{tag}} > 25 \; ext{GeV} \,, & |y_j^{ ext{tag}}| < 4.5 \ \Delta y_{jj}^{ ext{tag}} > 3 \,, & m_{jj}^{ ext{tag}} > 600 \; ext{GeV} \end{aligned}$$

lacktriangle two decay jets have to be compatible with $oldsymbol{W}$ decay

$$M_W-10~{
m GeV} \leq m_{jj}^{
m dec} \leq M_W+10~{
m GeV}$$

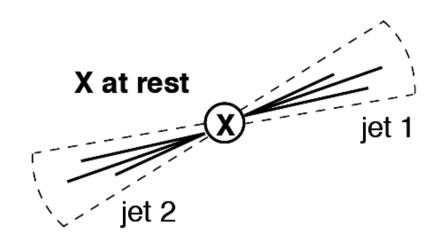


lacktriangledown reconstruct $M_{\ell
u j j}$ using the assumption that

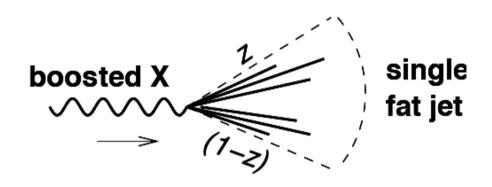
$$M_{\ell
u} = M_W$$

(→ neutrino momentum)

 $m{\times}\ M_{\ell\nu jj}$ distribution very sensitive to parton-shower effects!

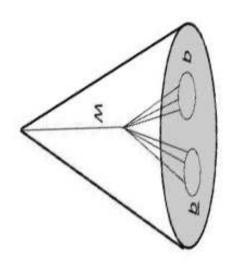


soft radiation smears distribution of W decay jets $o m_{jj}^{
m dec} \sim M_W$ requirement no longer fulfilled



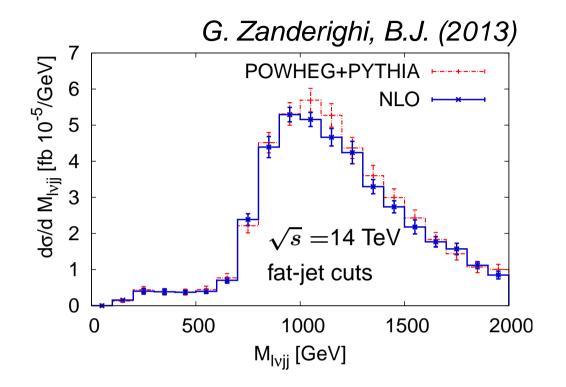
boosted jet techniques

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets



High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

- pioneering work on WW scattering at the LHC Butterworth, Cox, Forshaw (2002)
- lacktriangledown break-through in pp o VHButterworth, Davison, Rubin, Salam (2008)
- today: established field in its own


$$pp o W^+(qar q')W^-(\ell
u)jj$$
 :

require a highly boosted fat jet with invariant mass close to M_W

make use of jet properties / composition:

→ distinguish hadronically decaying heavy bosons from ordinary QCD jets

(stable against parton-shower effects)

selection cuts specific for fat-jet analysis:

$$p_{T,J}^{
m boosted} > 300~{
m GeV}$$
 , $M_J \in (M_W \pm 10~{
m GeV})$, $p_{T,\ell} > 300~{
m GeV}$

results stable against parton-shower effects

cuts enforce highly energetic WW system (above light Higgs resonance)

VBF in the POWHEG-BOX: getting started

- get access to a computing farm
- ♦ download the POWHEG-BOX from:

```
http://powhegbox.mib.infn.it/
```


- ◆ go to the directory of the process you are interested in, e.g.,

 \$ cd POWHEG-BOX/VBF_Wp_Wm
- ♦ for instructions on running the code refer to the documentation in POWHEG-BOX/VBF_Wp_Wm/Docs
- use sample files for input and analysis, or replace them with your own files

summary

VBF crucial for understanding mechanism of electroweak symmetry breaking:

* *Hjj*: very clean Higgs production channel

* VVjj: sensitive to signatures of new physics in the gauge boson sector

important pre-requisites:

explicit calculations revealed that VBF reactions are perturbatively well-behaved

(NLO-QCD corrections and parton-shower effects moderate)

summary

recent years have seen much progress on the theory side:

- ✓ precision calculations for VVjj processes
- ✓ tool development: public codes including
 - NLO-QCD corrections
 - parton-shower effects

... can develop their full potential only
if used by experimentalists ...

...for your attention