VVjj (V=W,Z) final states at LHC

Philipp Anger

TU Dresden, Institut für Kern- und Teilchenphysik

aQGC Workshop - 30th of September 2013

This talk covers the experimental view on VVjj/VBS/aQGC

- no public results from LHC up to now
 - just MC studies are allowed to be presented here :-0
 - see Finn's talk about public results of exclusive γγ→WW
- focusing on questions to theorists
- skipping overview of LHC / experiments

This talk covers the experimental view on VVjj/VBS/aQGC

- no public results from LHC up to now
 - just MC studies are allowed to be presented here :-0
 - see Finn's talk about public results of exclusive $\chi\chi$ →WW
- focusing on questions to theorists
- skipping overview of LHC / experiments

Many questions are included in the talk. Maybe some of them can be answered during the talk but I also summarize the questions at the end of this presentation.

(2) Classification of final state electro-weak bosons and their decay products

5 min

(2) Classification of final state electro-weak bosons and their decay products

5 min

(3) Tagging Jets 5 min

(4) aQGC 15 min

(2) Classification of final state electro-weak bosons and their decay products

5 min

(3) Tagging Jets 5 min

(4) aQGC 15 min

(1.1) Types of **leading-order EW/QCD** diagrams with VVjj final state

(1.1) Types of **leading-order EW/QCD** diagrams with VVjj final state

VVjj-EW

$$\sigma^{\mathrm{LO}} \propto \alpha_{\mathrm{w}}^{\mathbf{6}} \alpha_{\mathrm{s}}^{\mathbf{0}}$$

VVjj-QCD $\sigma^{\rm LO} \propto \alpha_{\rm w}^4 \alpha_{\rm s}^2$

(1.2) Diagrams with V→jj final state

- includes triple-V production (last graph)
- contribution less than 1% after M(j,j) > 150 GeV (checked with Sherpa)
- ❖ gauge invariantly separable from other VVjj-EW and VVjj-QCD diagrams

VVjj-EW
$$\sigma^{
m LO} \propto lpha_{
m w}^{6} lpha_{
m s}^{6}$$

(1.3) Higher order EW and QCD to VVjj processes

VVjj-EW

NLO QCD corrections (known)

W⁺W⁻/ZZ/WZ/W[±]W[±]: Jäger et al. '06-'09 **VBFNLO, PowhegBox**

Mixed QCD-EW corrections (unknown)

NLO EW corrections (unknown)

VVjj-QCD

W⁺W⁻/W[±]: Melia, Melnikov, Rontsch, Zanderighi '10,'11 WZ: Campanario, Kerner, Ninh, Zeppenfeld '13 VBFNLO, PowhegBox

(1.5) Interference between VVjj-EW and VVjj-QCD

- expected to be small
- color suppressed
- order $\alpha_{\rm w}^{\bf 5} \alpha_{\rm s}^{\bf 1}$
- not small for W±W±

- plots for
- using Sherpa MC $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$
- phase-space: M(j,j) > 150 GeV, lepton, jet-pT cuts

(1.6) G_F scheme

At leading order, all parameters derived from G_F, m_Z, m_W:

$$\cos \theta_{\rm w} = \frac{m_{\rm W}}{m_{\rm Z}} \qquad \sin \theta_{\rm w} = \frac{e}{g_{\rm w}}$$

fixed
$$\alpha_{\mathrm{w}} = \frac{e^2}{4\pi} \approx 132.5$$

$$\frac{G_{\rm F}}{\sqrt{2}} = \left(\frac{g_{\rm w}}{2\sqrt{2}}\right)^2 \frac{1}{m_{\rm W}^2}$$

(1.6) G_F scheme

At leading order, all parameters derived from G_F, m_Z, m_W:

$$\cos \theta_{\rm w} = \frac{m_{\rm W}}{m_{\rm Z}} \qquad \sin \theta_{\rm w} = \frac{e}{g_{\rm w}}$$

fixed
$$\alpha_{\mathrm{w}} = \frac{e^2}{4\pi} \approx 132.5$$

$$\frac{G_{\rm F}}{\sqrt{2}} = \left(\frac{g_{\rm w}}{2\sqrt{2}}\right)^2 \frac{1}{m_{\rm W}^2}$$

Should this scheme be used for VVjj?
Combine VVjj-EW with GF scheme and VVjj-QCD without?
Are other studies using it?
Why?

- * small NLO corrections? arXiv: hep-ph/0109062
- ❖ to ensure unitarity restoration by light SM Higgs?

VVjj processes have two electroweak bosons in the final state

- diboson measurements as a first check are very important for VVjj studies
- also important test of the Standard Model and background for new physics and Higgs searches (aTGC)
- next slide: overview of diboson measurements at ATLAS / CMS

Standard Model total production cross-section corrected for leptonic branching fractions, compared to theoretical expectations

no significant deviations from the SM observed massive diboson measurements:

- unfolded differential cross-sections for most of the channels
- jet multiplicity bins not yet measured

			xsec [fb]	xsec [fb]
			VVjj-EW	VVjj-QCD
	W±W±jj → l±vl±vjj	best ratio between VVjj-EW and VVjj-QCD (due to no gluons in the initial state for VVjj-QCD)	20	19
fully	W+W-jj → l+vl-vjj	huge ttbar background	91	3030
leptonic final	WZjj → lvl+l-jj	clean channel due to three leptons in the final state	30	687
	ZZjj → l+l-l+l-jj	clean channel due to four leptons in the final state	2	106
	ZZjj → l+l-vvjj	higher branching ratio but more difficult to measure	3	162

semileptonic final states	WWjj, WZjj →lvjjj _{tag} j _{tag}	larger branching ratio, easier mass reconstruction, but harder to distinguish from hadronic background		
וווומו אמנכא		hadronic background, Z-mass window useful		
photons in the final state		often not taken into account for VVjj VBS studies, since longitudinal degrees are interesting for VBS		

process	main backgrounds
	leptonic WZ decay [missing one lepton]
W±W±jj → l±vl±vjj	
	fake leptons [jet misidentified as a lepton]
\A/:\A/:\ \ \ \	double-leptonic ttbar decay
vv+vv-jj → I+VI-Vjj	double-leptonic ttbar decay fake leptons [jet misidentified as a lepton]
\\/\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	fake leptons [jet misidentified as a lepton]
WZjj → lvl+l-jj	ZZ→IIII
ZZjj → + - + -jj	fake leptons [jet misidentified as a lepton]
Wyjj → Ivyjj	fake photon [jet misidentified as a photon]
Ζγϳϳ → ννγϳϳ	fake photon [jet misidentified as photon, non-collision events]
Ζγϳϳ → ΙΙγϳϳ	fake photon [jet misidentified as a photon]

Dominant backgrounds always derived from data, others with small contribution from simulation.

Fake factor method (used for fake leptons = jets misidentified as leptons)

- estimate fake factor from data (= probability for a jet-like/loose lepton object to pass the tight selection requirements)
- use fake factor to extrapolate the yield from a loose lepton sample (background enriched) to the fully selected leptons

Data/MC scale factor

using data control sample dominated with background to rescale simulation

Efficiency measurement

measurement of selection efficiency and applying to background dominated data control sample

Template fit method (fake photons = jets misidentified as photons)

* two component fit using signal and background templates in discriminating observable

(3) Tagging Jets

several definitions possible and useful depending on the final state

- * two jets with the largest pT in the event (most common; useful cut at at least 25 GeV due to pileup)
- * two jets with largest pT and opposite sign rapidity outside the central region (semileptonic channels)
- two jets with largest separation in rapidity

properties for VVjj-EW

♣ large difference in rapidity and large invariant mass

rule of thumb for VVjj-EW

- jets not extremely forward (peak at $|\eta| \sim 1...3$)
- * after reasonable cuts on M(j,j), at least one jet very forward (peak $|\eta| \sim 2...4$; some $|\eta| \sim 4...5$), second tagging jet not very forward ($|\eta| \sim 1...3$)

but keep in mind:

η	1	2	3	4	5
θ	40°	15°	6°	2°	0.8°

(3) Tagging Jets

examples of forward jet measurements at CMS (left) and ATLAS (right) [a talk on its own]

(4) aQGC

- allowed in the Standard Model are just charged vertices at tree-level:
 - four-boson vertex: WWγγ, WWZγ, WWWW, WWZZ
 - * tri-boson vertex: WWZ, WWγ
- neutral couplings are forbidden in the Standard Model:
 - * ZZZZ, ZZZY, ZZYY, ZYYY, YYYY, ZZZ, ZZY, ZYY, YYY
- ideally (see later), aQGC parametrization is chosen to just modify the fourboson interaction
- aQGC also accessible in triple weak boson production (see separate talk)

(4) aQGC Outline

- direct searches for additional resonances
- indirect searches
- unitarization
- discriminating variables
- prospects for 14 TeV
- Monte Carlo generators

(4) aQGC direct search - adding new resonances (arXiv:0806.4145)

prospects for $\sqrt{s}=14~{ m TeV}$ (Cern-esg-005, atlas-phys-pub-2012-005)

- f_0 resonance $(m = 1 \text{ TeV}, g = 1.75, \Gamma = 50 \text{ GeV})$
- VBS ZZjj → ℓℓℓℓjj
- $m_{ii} > 1 \text{ TeV}$
- sensitivity for 300fb^{-1} : 1.7σ
- sensitivity for 3000fb^{-1} : 5.5σ
- plot: invariant four-lepton mass

LHC at 7/8 TeV ($m_{VV} \sim 0.5$ TeV) not in the range of very heavy resonances --> study of traces of resonances at low energy (deviations from SM couplings, 'decoupling', arXiv: 1307.8170) is possible:

indirect search: parametrization of the low-mass tail of these resonances in an effective Low Energy Theory

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{\text{dimension } d} \sum_{i} \frac{c_i^{(d)}}{\Lambda_i^{d-4}} \mathcal{O}_i^{(d)}$$

- effective Lagrangian extended by additional operators
- Iowest independent aQGC interactions at dimension 8 (dimension 6 also makes aQGC, but also aTGC)
- * two different parametrization (see next slides)

linear realization of symmetry breaking arXiv:hep-ph/0606118v2, Eboli et. al

- * three possibilities to get dimension-8 operators lead to 20 different parameters:
 - * operators with just covariant derivative of Higgs doublet: parameter $f_{S,i}$ with $i \in \{0,1\}$
 - * operators with covariant derivative of Higgs doublet and field strength: $f_{M,j}$ with $j \in \{0,...,7\}$
 - operators with just field strength tensor: $f_{T,k}$ with $k \in \{0,...,9\}$
- * all of them implemented in VBFNLO arXiv:0811.4559

$$\mathcal{L}_{S,0} = \left[(D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[(D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{M,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$

$$\mathcal{L}_{M,1} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right]$$

$$\mathcal{L}_{M,2} = \left[B_{\mu\nu} B^{\mu\nu} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\mu}\Phi \right]$$

$$\mathcal{L}_{M,4} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu}\Phi \right] \times B^{\beta\nu}$$

$$\mathcal{L}_{M,5} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu}\Phi \right]$$

$$\mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{M,7} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\nu}\Phi \right]$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$

$$\mathcal{L}_{T,5} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha}$$

linear realization of symmetry breaking arXiv:hep-ph/0606118v2, Eboli et. al

- * three possibilities to get dimension-8 operators lead to 20 different parameters:
 - * operators with just covariant derivative of Higgs doublet: parameter $f_{S,i}$ with $i \in \{0,1\}$
 - * operators with covariant derivative of Higgs doublet and field strength: $f_{M,j}$ with $j \in \{0,...,7\}$
 - operators with just field strength tensor: $f_{T,k}$ with $k \in \{0,...,9\}$
- * all of them implemented in VBFNLO arXiv:0811.4559

- \clubsuit $f_{M,j}$ parameters have D6 equivalents (a_0 , a_c)? They effect TGC?
- $\bullet f_{S,i}$ and $f_{T,k}$ are unique to dimension eight?
- ♣ All parameters conserve CP and custodial symmetry?
- Do some of these parameters have advantages/disadvantages or real physical interpretations and are more useful than others?

```
\mathcal{L}_{S,0} = \left[ (D_{\mu}\Phi)^{\dagger} D_{\nu}\Phi \right] \times \left[ (D^{\mu}\Phi)^{\dagger} D^{\nu}\Phi \right]
 \mathcal{L}_{S,1} = \left[ (D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[ (D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]
\mathcal{L}_{M,0} = \text{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\beta} \Phi \right]
\mathcal{L}_{M,1} = \text{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\nu\beta} \right] \times \left[ (D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]
\mathcal{L}_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi]
\mathcal{L}_{M,3} = [B_{\mu\nu}B^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi]
\mathcal{L}_{M,4} = \left[ (D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu}D^{\mu}\Phi \right] \times B^{\beta\nu}
\mathcal{L}_{M,5} = \left[ (D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu}D^{\nu}\Phi \right] \times B^{\beta\mu}
\mathcal{L}_{M,6} = \left[ (D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu}\Phi \right]
\mathcal{L}_{M,7} = \left[ (D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]
 \mathcal{L}_{T,0} = \text{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \text{Tr} \left[ \hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]
 \mathcal{L}_{T,1} = \text{Tr} \left[ \hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \text{Tr} \left[ \hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]
 \mathcal{L}_{T,2} = \text{Tr} \left[ \hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \text{Tr} \left[ \hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]
 \mathcal{L}_{T,3} = \text{Tr} \left[ \hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}
 \mathcal{L}_{T,4} = \text{Tr} \left[ \hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}
 \mathcal{L}_{T,5} = \text{Tr} \left[ \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times B_{\alpha\beta} B^{\alpha\beta}
 \mathcal{L}_{T,6} = \text{Tr} \left[ \hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times B_{\mu\beta} B^{\alpha\nu}
 \mathcal{L}_{T,7} = \text{Tr} \left[ \hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times B_{\beta\nu} B^{\nu\alpha}
 \mathcal{L}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta}
  \mathcal{L}_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}
```

linear realization of symmetry breaking arXiv:hep-ph/0606118v2, Eboli et. al

VVjj final state	ZZ	Zy YY	W+W- WZ	W±W±	Wγ	
VVV final state	ZZZ	ZZɣ Zɣɣ	WWZ WZZ	WWW	WVy	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
f _{S,0} , f _{S,1}	X	0	X	Х	0	0
$f_{M,0}$, $f_{M,1}$, $f_{M,6}$, $f_{M,7}$	Х	Х	Х	Х	Х	О
f _{M,2} , f _{M,3} , f _{M,4} , f _{M,5}	Х	Х	Х	0	Х	О
f _{T,0} , f _{T,1} , f _{T,2}	Х	Х	Х	Х	Х	Х
f _{T,5} , f _{T,6} , f _{T,7}	Х	Х	Х	0	Х	Х
f _{T,8} , f _{T,9}	Х	Х	0	0	0	Х

linear realization of symmetry breaking arXiv:hep-ph/0606118v2, Eboli et. al

VVjj final state	ZZ	Zy YY	W+W- WZ	W±W±	Wγ	
VVV final state	ZZZ	ZZɣ Zɣɣ	WWZ WZZ	WWW	WVy	አአአ
f _{S,0} , f _{S,1}	Х	0	Х	х	0	0
f _{M,0} , f _{M,1} , f _{M,6} , f _{M,7}	Х	Х	Х	х	Х	0
f _{M,2} , f _{M,3} , f _{M,4} , f _{M,5}	Х	Х	Х	0	Х	0
f _{T,0} , f _{T,1} , f _{T,2}	Х	Х	Х	х	Х	Х
f _{T,5} , f _{T,6} , f _{T,7}	Х	Х	Х	0	Х	Х
f _{T,8} , f _{T,9}	Х	Х	0	0	0	Х

What about $f_{T,3}$, $f_{T,4}$? Appear in first papers but started to 'disappear'.

non-linear realization of symmetry breaking [arXiv: hep-ph/9304240]

- chiral Lagrangian
- symmetries enforced without light Higgs
- * add higher-order dimension-4 operators (NLO in E/Lambda): β_1 , α_i with $i = \{1,...,19\}$

	СР	custodial sym.		dimension	
α_1	conserving	conserving	aTGC	4	S parameter (LEP)
α ₂ , α ₃	conserving	conserving	just aTGC	4	constrained at LEP / aTGC
α4, α5	conserving	conserving	just aQGC	4	
α ₆ , α ₇	conserving	violating		4	
a ₈	conserving	violating	aTGC	4	U parameter (LEP)
Q 9	conserving	violating	aTGC	4	
a ₁₀	conserving	violating		4	
α ₁₁	conserving (violates C and P)		aTGC	4	
a ₁₂₁₉	violating			4	
ß ₁	conserving	violating	aTGC	2	T parameter (LEP)

non-linear realization of symmetry breaking [arXiv: hep-ph/9304240]

- ♣ chiral Lagrangian
- symmetries enforced without light Higgs
- SM Higgs can be included [arXiv: hep-ph/1307.8170].

 What will be the difference to the linear realization with the Higgs build in from the start?
- * add higher-order dimension-4 operators (NLO in E/Lambda): β_1 , α_i with $i = \{1,...,19\}$

	СР	custodial sym.		dimension	
α ₁	conserving	conserving	aTGC	4	S parameter (LEP)
α ₂ , α ₃	conserving	conserving	just aTGC	4	constrained at LEP / aTGC
α4, α5	conserving	conserving	just aQGC	4	
a ₆ , a ₇	conserving	violating		4	
a ₈	conserving	violating	aTGC	4	U parameter (LEP)
Q 9	conserving	violating	aTGC	4	
α ₁₀	conserving	violating		4	
α ₁₁	conserving (violates C and P)		aTGC	4	
Q ₁₂₁₉	violating			4	
ß ₁	conserving	violating	aTGC	2	T parameter (LEP)

2 parameters effecting (just) aQGC: α_4 , α_5 . How can this be compared to 20 parameters of the linear realization?

(4) aQGC unitarization

adding aQGC can lead to violation of unitarity \rightarrow loss of physical meaning I will not go into detail here \rightarrow see theory talks tomorrow

K-matrix form-factor	(infinitely heavy and wide resonance) + experience from pion physics + includes other unitarization schemes - 'difficult' to implement - up to now just in Whizard $\alpha \to \alpha(\hat{s}) = \frac{\alpha}{(1 + \frac{\hat{s}}{\Lambda^2})^n} $ + heavily used in aTGC studies - kind of arbitrary scale and exponent - up to now just in VBFNLO
clipping cutoff	cut in M _{VV} + easy to implement in MC generator + can be applied on generated events - how to choose cutoff scale? - very unmotivated / unphysical

(4) aQGC unitarization

adding aQGC can lead to violation of unitarity → loss of physical meaning

I will not go into detail here → see theory talks tomorrow

K-matrix	projection of (eigen)amplitudes at Argand circle (optical theorem ensures unitarity) + physics interpretation (infinitely heavy and wide resonance) + experience from pion physics + includes other unitarization schemes - 'difficult' to implement - up to now just in Whizard
form-factor	$\alpha \to \alpha(\hat{s}) = \frac{\alpha}{(1+\frac{\hat{s}}{\Lambda^2})^n} \\ + \text{ heavily used in aTGC studies} \\ - \text{ kind of arbitrary scale and exponent} \\ - \text{ up to now just in VBFNLO}$
clipping cutoff	cut in M _{VV} + easy to implement in MC generator + can be applied on generated events - how to choose cutoff scale? - very unmotivated / unphysical

Limits / measurements

- ❖ as function of form-factor scale (done for aTGC)?
- * as function of form-factor scale AND exponent (how to motivate each exponent?)
- ❖ for FF-scale that gives best limits and still unitary results?

How to define clipping scale? (done in the past: use largest scale that still gives unitary results)

(4) aQGC ATLAS prospects for 14 TeV

VBS WZjj → IvIIjj analysis ATL-PHYS-PUB-2013-006

- MadGraph, linear realization, cutoff unitarization
- \bullet expected sensitivity for 14 TeV in terms of 5σ -discovery values:

analysis	parameter	$300 \; {\rm fb^{-1}}$	$3000 \; { m fb}^{-1}$
VBS $WZjj o \ell \nu \ell \ell jj$	$f_{T,1}/\Lambda^4 \text{ TeV}^{-4}$	1.3	0.6
VBS $W^{\pm}W^{\pm}jj \rightarrow \ell^{\pm}\nu\ell^{\pm}\nu jj$	$f_{S,0}/\Lambda^4~{ m TeV^{-4}}$	10	4.5
$Z\gamma\gamma$	$f_{T,8}/\Lambda^4 \text{ TeV}^{-4}$	0.9	0.4
$Z\gamma\gamma$	$f_{T,9}/\Lambda^4 \text{ TeV}^{-4}$	2.0	0.7

- ♣ huge impact of unitarization → large model dependence
- very low sensitivity after form-factor unitarization

- ♣ huge impact of unitarization → large model dependence
- very low sensitivity after form-factor unitarization

Unique to $f_{S,i}$? Why?

- ❖ aQGC don't change kinematics, just the ratio of Feynman diagrams within VVjj-EW
- ◆ add aQGC → four-boson diagram enhanced → back-to-back bosons (and leptons)

Shown here:

W+W+jj final state, pT(jet) > 20 GeV, pT(leptons) > 10 GeV, $|\eta| < 5$, $\Delta R(j,j) > 0.4$, M(j,j) > 150 GeV

^{*} form-factor scale: lowest possible scale to still ensure unitarity

Signature (view of an experimentalist):

- ❖ aQGC don't change kinematics, just the ratio of Feynman diagrams within VVjj-EW
- * add aQGC → four-boson diagram enhanced → back-to-back bosons (and leptons)

Shown here:

W+W+jj final state, pT(jet) > 20 GeV, pT(leptons) > 10 GeV, $|\eta| < 5$, $\Delta R(j,j) > 0.4$, M(j,j) > 150 GeV

* form-factor scale: lowest possible scale to still ensure unitarity

Since many people are asking and will ask this question: Is it possible/meaningful to select/enhance a single diagrams within VVjj-EW? E.g. is it defined to enhance the four-boson vertex alone to see the sensitivity to this single (most interesting) diagram?

(4) aQGC discriminating variables

scalar sum of lepton pT $\Delta \phi$ between W and Z

Shown here:

0.5

W+W+jj (top) / W+Zjj (bottom) final state, pT(jet) > 20 GeV, pT(leptons) > 10 GeV, $|\eta| < 5$, $\Delta R(j,j) > 0.4$, M(j,j) > 150 GeV * form-factor scale: lowest possible scale to still ensure unitarity

1.5

2.5

3

 $\Delta \phi$

2.5

(4) aQGC discriminating variables

- \bullet conversion between $f_{S,i}$ and a_i possible (interesting topic, skipping here)
- ❖ quadratic → linearish shape

Shown here:

W+W+jj final state, pT(jet) > 20 GeV, pT(leptons) > 10 GeV, $|\eta| < 5$, $\Delta R(j,j) > 0.4$, M(j,j) > 150 GeV

* form-fajjctor scale: lowest possible scale to still ensure unitarity

(4) aQGC discriminating variables

* conversion between $f_{S,i}$ and α_j possible (interesting topic, skipping here) Why?

❖ quadratic → linearish shape

* 0,72 - 0,68 - 0,68 - 0,66 -

-1.000

σ(a₄) WWss unitarized

0,4

2,5

3.000

-0,74

- 0,72

0,7

0,68

Shown here:

W+W+jj final state, pT(jet) > 20 GeV, pT(leptons) > 10 GeV, $|\eta|$ < 5, Δ R(j,j) > 0.4, M(j,j) > 150 GeV

* form-fajjctor scale: lowest possible scale to still ensure unitarity

3,5

(4) aQGC interference

- normalized interference between aQGC and the Standard Model (the part of the cross-section linear in the aQGC parameter)
- ❖ W+W+jj (left) and W+Zjj (right) final state
- not unitarized
- → interference small for W+W+jj (up to 2%) and negligible for W+Zjj (<< 1%)

(4) aQGC Monte Carlo generators for VVjj and aQGC

Generator	aQGC parametrization	unitarization	VVjj-EW channels	VVjj-QCD channels	order QCD
VBFNLO	non-linear	form-factor, clipping	all (not all diagrams)	WZjj work ongoing	NLO no events
Whizard	linear	K-matrix, clipping	all	all (via VVjj-EWQCD minus VVjj-EW)	LO
PowhegBox	linear	clipping	WWss (not all diagrams)	WWss	NLO
Sherpa	non-linear	clipping	all	all	LO
Madgraph (and any other generator reading FeynRules)	linear http:// feynrules.irmp.ucl.ac.be/wiki/ AnomalousGaugeCoupling (non-linear)	clipping	all	all	LO
Phantom					

Details and possible updates of this table see generator session on Wednesday.

Summary

Experimental:

- ♣ ATLAS / CMS sensitive to aQGC (better at 14 TeV)
- ❖ keep in mind: Even SM process of VVjj has not been measured up to now
- groundwork in terms of diboson measurements, but additional input useful
- ❖ crucial part: understanding forward jets and backgrounds at low statistics

Theory input needed for aQGC:

- useful parameters to measure? (many + different + overlapping parametrizations, some change TGC, some just QGC, some break symmetries)
- unitarization? (model dependence, which scale, combination)
- how to publish results?

Thank you for your attention!!!

Questions

Important decision between experimentalists at ATLAS and CMS:

- (1) should we decide for one parametrization (linear, non-linear)?
- (2) should we set limits on both?
- (3) use just operators effecting QGC (and not TGC)?
- (4) unitarization?

Important questions to theorists:

- (1) linear parameters: Which are unique to aQGC / dimension-8? Are some more useful then others (there are 20 set limits on all of them)? [slide 20]
- (2) Are there non-linear parameters corresponding to the many linear ones? [slide 22]
- (3) Can the Higgs be added consistently to the non-linear approach and how does the result compare to the linear parametrization [slide 22]?
- (4) Which unitarization is useful for publishing results and combination of results? How to derive scales used for clipping and form factor? [slide 23]
- (5) Why is there no sensitivity to $\alpha_{\{4,5\}}$ / $f_{S,\{0,1\}}$ with form-factor unitarization? [slide 25]