Experimental Top Physics at Linear Colliders

Frank Simon Max-Planck-Institut für Physik Munich, Germany

Linear Collider Physics School, DESY, October 2013

Outline

- Identifying and reconstructing Top
- Measuring Top Properties: Focus on Mass
- Top as a Tool: BSM probes through Asymmetries

Based mainly on two papers:

- K. Seidel, F. Simon, M. Tesar, S. Poss, "Top quark mass measurements at and above threshold at CLIC", EPJ C73, 2530 (2013)
- M.S. Amjad et al., "A precise determination of top quark electro-weak couplings at the ILC operating at √s = 500 GeV", arXiv:1307.8102 [hep-ex]

Top Production at LC

- Typically the process of interest and the dominating process: top pair production
 - s-channel process

- Subdominant process (~ 15% at 500 GeV): Single top production
 - t-channel process

(not always considered yet in studies - particularly important for asymmetry measurements: Tough to separate from ttbar, leads to a dilution of asymmetries - and interference)

Top Decay

- Due to the 3rd family elements in the CKM matrix: Basically 100% decay by Wb transition
- Top mass: Substantially above W + b masses:
 Decay into a real W and a b-Quark
- Short lifetime: ~ 5 x 10⁻²⁵ (about a factor of 10 shorter than hadronization time): Decays as an (almost) free quark: A unique opportunity!

→ the decay of a top quark is characterized through the decay of the W boson!

 $W^{+} \rightarrow e^{+}\nu_{e} : \mu^{+}\nu_{\mu} : \tau^{+}\nu_{\tau} : u\bar{d'} : c\bar{s'}$ 1 : 1 : 1 : 3 : 3

(quarks count 3x due to color charge)

Top Decay

- We typically study top pair production: The decay of both W bosons matter -3 "types" of decays:
 all hadronic
- all hadronic: both W bosons decay into quarks
- semi-leptonic: one W boson decays into quarks, one into leptons
- all-leptonic / dileptons: Both Ws decay into lepton + neutrino

semi-leptonic

Top Decay

- We typically study top pair production: The decay of both W bosons matter -3 "types" of decays:
 all hadronic
- all hadronic: both W bosons decay into quarks
- semi-leptonic: one W boson decays into quarks, one into leptons
- all-leptonic / dileptons: Both Ws decay into lepton + neutrino

semi-leptonic

Which one(s) to go for depends on the analysis goals In general:

- Leptonic final states good for asymmetries: Charge provides simple top / anti-top ID
- Taus are tough: Additional neutrino in final state
- All hadronic: Highest BR, no missing energy Interesting for measurement of properties

It's not all Top - Backgrounds

- Other processes contribute provide similar final states (sometimes after reconstruction errors)
- Main backgrounds typically considered:

type	final state	σ 500 GeV	σ 352 GeV	(numbers for CLIC luminosity spectrum, ILC very similar)
Signal ($m_{top} = 174 \text{ GeV}$)	tī	530 fb	450 fb	
Background	WW	7.1 pb	11.5 pb <	high cross-sections
Background	ZZ	410 fb	865 fb	
Background	$q\bar{q}$	2.6 pb	25.2 pb	
Background	WWZ	40 fb	10 fb 🔫	can mimic ttbar final state:
-		1		WWbb

Even at lepton colliders: Need strategies to reject non-ttbar background!

Extras on top: Machine-Induced Backgrounds

- High energy, high luminosity and strong focusing means lots of beamstrahlung photons
- Production of secondary particles
- Energy sufficient to produce quark pairs: Results in "mini-jet" events

Extras on top: Machine-Induced Backgrounds

- High energy, high luminosity and strong focusing means lots of beamstrahlung photons
- Production of secondary particles
- Energy sufficient to produce quark pairs: Results in "mini-jet" events

These hadrons are a particular reconstruction challenge: "Pile-up" on the physics event, additional particles affect jet reconstruction

Extras on top: Machine-Induced Backgrounds

- High energy, high luminosity and strong focusing means lots of beamstrahlung photons
- Production of secondary particles
- Energy sufficient to produce quark pairs: Results in "mini-jet" events

These hadrons are a particular reconstruction challenge: "Pile-up" on the physics event, additional particles affect jet reconstruction

Impact and strategies for mitigation depend on machine:

- At ILC the BXs are far appart in time (100s of ns):
 Only background from one BX piles up Rejection based on jet finding
- At CLIC the BXs are separated by 0.5 ns: Pile-up from multiple BX Rejection based on timing cuts and jet finding

N.B.: Hadrons / BX lower at CLIC than at ILC at the same energy

• Strategy depends on targeted ttbar final state

Top Experiment LC Physics School 2013

Frank Simon (fsimon@mpp.mpg.de)

Tandros

• Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
- missing energy measurement

Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

All-hadronic

• global hadronic energy reconstruction

Coping with Backgrounds: Jet Finding

- $\gamma\gamma \rightarrow$ hadrons events lead to additional particles, predominantly forward
- With the standard e⁺e⁻ jet finding algorithm, the Durham algorithm, these particles get added almost completely to the signal jets
- Can be solved by using the k_t algorithm optimized for hadron collisions: Two-particle distance defined by $\Delta \eta$, $\Delta \varphi$, not by the angle between the particles
 - First studied for CLIC, successful in controlling very large backgrounds at 3 TeV
 - Also ideal at ILC, now the default for all analyses (basically since γγ → hadrons background has been included in the simulations)

Identifying Semi-Leptonic Events

Reconstructing Top Quarks

assign the right jets to the right particles - Good separation of bjets (best, second) from light jets (here ILD, semileptonic ttbar)

Exploiting Prior Knowledge: Kinematic Fits

- Particularly relevant for invariant mass reconstruction but also serves as a powerful background rejection tool!
- Use known constraints

 (total energy, momentum,
 masses of W,
 equal mass of t and tbar, ...)
 to improve event reconstruction
 assuming a ttbar event
 - Will very often fail to satisfy constraints for non-ttbar events: Efficiently rejects background

Separating Signal and Background

- Typically using multivariate analysis tools Exploiting specific ttbar properties, such as high multiplicity, rather spherical events compared to background
 - Typical variables: sphericity, b-tags, multiplicity, W masses, dcut, top mass w/o kin fit

Top reconstruction: The bottom line

- Excellent signal / background separation Almost background-free ttbar events, irrespective of collider type (ILC, CLIC) - Details depend on analysis optimization / goals
 - S/B ~8.5 (12) for FH (SL) at 500 GeV
 - S/B ~4.5 directly above threshold
- High reconstruction efficiency
 - 34% (44%) for FH (SL) at 500 GeV
 - 92% for selected decay modes at threshold

Numbers for CLIC mass study

Measuring Top Properties - Focus on Mass

Measuring the Mass: Two Approaches

- Measurement in top pair production, two possibilities, each with advantages and dis-advantages:
 - Invariant mass
 - experimentally well defined (but not theoretically: "PYTHIA mass")
 - can be performed at arbitrary energy above threshold: high integrated luminosity
 - Threshold scan
 - theoretically well understood, can be calculated to higher orders
 - needs dedicated running of the accelerator (but is also in a sweet spot for Higgs physics)

Top Mass in a Threshold Scan

- The ultimate measurement at a lepton collider: Theoretically well under control
- Experimentally: Measure the total cross-section of ttbar production at several energies around the threshold
 - Requires: Clean identification of ttbar events, well-understood background levels
 - Not required: Perfect kinematic reconstruction of final state (but it helps to control / understand efficiencies!)

Top Mass in a Threshold Scan

- The ultimate measurement at a lepton collider: Theoretically well under control
- Experimentally: Measure the total cross-section of ttbar production at several energies around the threshold
 - Requires: Clean identification of ttbar events, well-understood background levels
 - Not required: Perfect kinematic reconstruction of final state (but it helps to control / understand efficiencies!)

Side remark: Simulating Threshold scans

- Most event generators (for example PYTHIA (LO), WHIZARD, ...) do not simulate the ttbar threshold correctly - And we need ways of taking the latest theory developments into account (NNNLO, EW corrections, ...)
- At least for the total cross section: Factorize the problem!
 - Determine efficiencies and background contamination on fully simulated samples close to threshold
 - Scale signal according to theory prediction for each energy

Threshold Scan: From Theory to Observable

- The pure ttbar cross-section receives modifications from two effects:
 - Initial State Radiation Physics, due to radiation of electrons prior to collision ("structure functions of electrons")
 - Luminosity Spectrum depends on ulletthe machine - Affected by focusing, phase space, ...

Threshold Scan: From Theory to Observable

The pure ttbar cross-section receives modifications from two effects:

- Initial State Radiation Physics, due to radiation of electrons prior to collision ("structure functions of electrons")
- Luminosity Spectrum depends on ulletthe machine - Affected by focusing, phase space, ...

Threshold Scan: From Theory to Observable

The pure ttbar cross-section receives modifications from two effects:

- Initial State Radiation Physics, due to radiation of electrons prior to collision ("structure functions of electrons")
- Luminosity Spectrum depends on the machine - Affected by focusing, phase space, ...

- ISR reduces the overall cross-section due to long tail to low energy, slightly broadens main peak and changes slope of cross-section "edge"
- Luminosity spectrum substantially washes out peak: Beam energy spread in addition to steeply falling spectrum towards lower energy

Threshold Scan: The Influence of the Machine

 Simulated threshold scan: 10 data points, 10 fb⁻¹ each (~ 1 year of running for a fully commissioned machine)

Threshold Scan: The Influence of the Machine

Results: Expected Precision

 The threshold behavior depends on m_t and strong coupling - Best robustness for further interpretation by combined extraction of both parameters

Mass at Threshold: Systematics

- Measurement likely limited by systematics, given the statistical power of a highluminosity threshold scan at a LC
- Not a full study yet, but several key aspects have been looked at:
 - Theory uncertainties currently based on simple scaling (order 10 MeV to a few 10 MeV, depending on fit strategy -> uncertainty mostly absorbed in α_s uncertainty for combined fits) - More sophisticated studies planned
 - Non-ttbar background: 5% uncertainty results in 18 MeV uncertainty on mass (After selection, the non-ttbar background cross section is ~ 70 fb, so 5%) uncertainty can be reached with ~ 6 fb⁻¹ below threshold)
 - Beam energy: Expect 10⁻⁴ precision on CMS energy: ~30 MeV uncertainty on mass
 - Luminosity spectrum: 20% uncertainty on main peak width results in 75 MeV uncertainty on mass - Achievable precision still under investigation, current indications are that this uncertainty is considerably smaller

Mass at Threshold: Systematics

- Measurement likely limited by systematics, given the statistical power of a highluminosity threshold scan at a LC
- Not a full study yet, but several key aspects have been looked at:
 - Theory uncertainties currently based on simple scaling (order 10 MeV to a few 10 MeV, depending on fit strategy -> uncertainty mostly absorbed in α_s uncertainty for combined fits) More sophisticated studies planned
 - Non-ttbar background: 5% uncertainty results in 18 MeV uncertainty on mass (After selection, the non-ttbar background cross section is ~ 70 fb, so 5% uncertainty can be reached with ~ 6 fb⁻¹ below threshold)
 - Beam energy: Expect 10⁻⁴ precision on CMS energy: ~30 MeV uncertainty on mass
 - Luminosity spectrum: 20% uncertainty on main peak width results in 75 MeV uncertainty on mass - Achievable precision still under investigation, current indications are that this uncertainty is considerably smaller

In addition: Theory uncertainties are incurred when transforming the 1S mass used to describe the threshold to the MSbar mass - O ~ 100 MeV, depending on α_s precision (here, the deal of shifting uncertainties from m_t to α_s would strike back)

Mass above Threshold - Invariant Mass

- Reconstruction of the invariant mass
 - Highest precision when requiring equal mass for both tops in the event, can be used in the kinematic fit - Measure only one mass per event
 - A key challenge: Correct pairing of jets to particles b and W to tops, jets to W
 - Based on flavor tagging and invariant mass of W candidates: Highest b-tags as b jets, pick the best Ws out of the remaining possible combinations (NB: One can make mistakes in the b -identification: Decays of W to cs, tagging of c as b candidate -> Fix iteratively)

Invariant Mass - Results

width)

Systematics - Invariant Mass above Threshold

- Still incomplete, but some key issues were investigated:
 - Possible bias from top mass and width assumptions in detector resolution: Below statistical error, no indication for bias found
 - Jet Energy Scale: Reconstruction of W bosons can be used to fix this to better \bullet than 1% for light jets, assume similar precision for b jets from Z and ZZ events: Systematics on the 50 MeV level
 - Color Reconnection: Not studied yet depends on space-time overlap of finalstate partons from t and anti-t decay - Expected to be less than in WW at LEP2: Comparable or smaller systematics on mass - less than 100 MeV

The key issue - and open question:

Above threshold the "PYTHIA mass" is measured - not well defined theoretically

- \Rightarrow Substantial uncertainties in the interpretation of the measurements, far outweighs statistical uncertainties
- Some theory work in this direction already exists, but more is needed (also in in terms of connecting theory and experimental observables)

Tops as Tools - Asymmetries to search for New Physics

Probing EW Top Couplings

- Most of these couplings can be accessed through measurements of
 - Total cross-section
 - Forward-backward Asymmetry A_{FB}
 - Helicity Angle λ distribution (related to fraction of left- and right-handed tops)
- For each: Two polarizations e⁻_L e⁺_R, e⁻_R e⁺_L
- Gives access to the five CP-conserving non-trivial form-factors

Capability for polarized beams at LCs crucial for these measurements!

$N_{top}(\cos\theta > 0) + N_{top}(\cos\theta < 0)$

One Example: Measuring AFB

)

$$A_{FB} = \frac{N_{top}(\cos\theta > 0) - N_{top}(\cos\theta < 0)}{N_{top}(\cos\theta > 0) + N_{top}(\cos\theta < 0)}$$

ely identifying the top (or anti-top)!

n a leptonic W decay, the charge of the lepton tags with that the charge of the top quark:

- Increasing statistics: Using fully hadronic decays by tagging the charge of the b quark
 - Sum up the charge of all tracks associated to an identified b-jet Take jets with a
 positive sum as belonging to a tbar, jets with a negative sum as belonging to t
 (still work in progress Need to optimize flavor-tagging algorithm for charge ID)

- Maximum parity violation in the weak interaction:
 - For right-handed top quarks (dominate for righthanded electrons in the collision): The W boson is emitted preferentially in the flight direction of the top - direction of hadronic W (and with that of the top) well reconstructed - in addition a very soft b quark

5000

- Maximum parity violation in the weak interaction:
 - For right-handed top quarks (dominate for righthanded electrons in the collision): The W boson is emitted preferentially in the flight direction of the top - direction of hadronic W (and with that of the top) well reconstructed - in addition a very soft b quark
 - For left-handed top quarks (dominate for left-handed electrons in the collision): The W boson is emitted preferentially against the flight direction of the top - W almost at rest, flight direction of the top has to be done through the b (highly-energetic b jet)

5000

- Maximum parity violation in the weak interaction:
 - For right-handed top quarks (dominate for righthanded electrons in the collision): The W boson is emitted preferentially in the flight direction of the top - direction of hadronic W (and with that of the top) well reconstructed - in addition a very soft b quark
 - For left-handed top quarks (dominate for left-handed electrons in the collision): The W boson is emitted preferentially against the flight direction of the top - W almost at rest, flight direction of the top has to be done through the b (highly-energetic b jet)

5000

400

Mistakes in top angle reconstruction when assigning the wrong b-jet to the W (has no consequence for t_R)

 The cure: Impose strict requirements on the quality of reconstructed events: Correct b momentum in t restframe, correct t boost, correct angle between b and W:

$$\chi^2 = \left(\frac{\gamma_t - 1.435}{\sigma_{\gamma_t}}\right)^2 + \left(\frac{E_b^* - 68}{\sigma_{E_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.26}{\sigma_{\cos\theta_{bW}}}\right)^2$$

Taking a Hard Line: Fixing Event Migrations

The results:

A statistical precision on A_{FB} for 500 fb⁻¹ equally shared between two polarization configurations of:

- 1.8% for polarizations (-0.8, +0.3 predominantly $e^{-}L e^{+}R$)
- 1.3% for polarizations (0.8, -0.3 predominantly $e^{-}R e^{+}L$)

Systematics

- As for the mass, the studies are not complete yet, but quite a few effects have been looked at
 - Overall luminosity key for cross sections, cancels for asymmetries expected to be known at the 0.1% level
 - Polarization: Expect 0.1% uncertainty for electrons, 0.35% for positrons -Uncertainties on asymmetries on the 0.25% level - smaller than statistical uncertainties
 - Selection efficiencies: Need to be understood, systematics can be reduced with less "complicated" selection - Replacement of χ^2 cut by b-charge might to suppress event migrations desirable
 - Other experimental uncertainties (acceptance, b-tagging, material, ...) LEP used an uncertainty on R_b of 0.2%
 - Theory uncertainties: Comparable to experimental uncertainties at present

In general: Expect systematics not exceeding statistical precision - if required control of experimental quantities is achieved

The global Picture: Top Couplings at a LC

 More than an order of magnitude improvement over LHC expectations across the board- in some cases as much as two orders

Additional potential may exist at higher energies - with further improved BSM sensitivities Not studied yet...

Summary

- Linear colliders offer excellent conditions for precision top physics: Good reconstruction of events, almost background-free identification
 - Profits from
 - Knowledge of initial state in e⁺e⁻ collisions
 - Excellent detectors: Flavor tagging, jet reconstruction, hermeticity
 - Cross-sections of physics backgrounds not very much larger than signal
- A qualitatively new level of precision in the measurement of top properties: Mass with a to 100 MeV (or better?)
 - Requires theory uncertainties at the same or smaller level Possible for a threshold scan - Much more is needed to achieve the same above threshold
- Use tops to probe New Physics: EW couplings 1 order of magnitude+ better than LHC - Exploit sensitivity of high-mass top quark to possible BSM physics

