
Tracking for the ILCTracking for the ILC

Marcel StanitzkiMarcel Stanitzki

DESY, 08/10/2013DESY, 08/10/2013



2 Linear Collider School  08/1O/2013Marcel Stanitzki

IntroductionIntroduction

● Disclaimer
– I am a “silicon guy”, hence there will be a certain 

focus on silicon trackers

● This talk should serve as an introduction
– Overview on relevant issues

– Neither encyclopaedic nor complete

● Goal
– Understand the issues and “what people talk about”

– Get you interested in tracking detectors
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Tracking -What is it ?Tracking -What is it ?

Tracking:
to follow or pursue the track, traces, or 
footprints of. 
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Basic ideaBasic idea

● Reconstruct the charged 
particle's trajectory through 
the detector
▬ Obtain several position 

measurements

● Minimal interruption of the 
track
▬ Minimize material

● Adding magnetic field
▬ Get particle momentum
▬ Charge information
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Particles through matterParticles through matter

PDG 2012
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Particles through matterParticles through matter

● We're mostly dealing with minimum ionizing 
particles
– Track momenta usually between 1-100 GeV

● Particles traversing thin material layers
– Small deviations caused by mainly Coulomb-

Scattering

– Deviations depend on Material (Z,A and ρ)

X 0=
716.4A
Z (Z+ 1)⋅ln (287 /√Z )

⋅
1
ρ

θ0=13.6
MeV
βc p

⋅Z √ x / X 0 [1+0.0038ln (x / X 0)]
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Modeling the Energy lossModeling the Energy loss

● For single particles
▬ Strong fluctuations on the 

individual particle level
▬ Pure Bethe Approach not 

useful

● Best described by a 
Landau-Function
▬ 90 % of interactions  have 

less than mean energy loss 
rate

▬ But large tail of large 
energy loss events

PDG 2012

Note:
The Landau-Function itself 
is an approximation for 
thin tracking layers
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The Bubble ChamberThe Bubble Chamber
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Wire chambersWire chambers
● Bubble Chambers are great...

▬ Slow
▬ Readout by photographs

● Mid 60's 
▬ Wire chambers as most basic 

electronic tracking chambers

● Basic principle
▬ HV Wire in gas-filled volume
▬ Electrons drift to the closest 

wires
▬ Avalanche effect to  amplify 

charge

+ + + + +
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Particles in a magnetic fieldParticles in a magnetic field

● All driven by the 
Lorentz Force

● Particles trajectories 
follow a helix
▬ Arc/Circle in xy
▬ Line in z

● Various 
parametrizations
▬ Each experiment has 

one... Wikipedia

F⃗=q⋅⃗v×B⃗

x
y

z
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LCIO Helix ParametrizationLCIO Helix Parametrization
● 5 Parameters

▬ φ0 :azimuthal angle of 
the momentum at the p. 
c. a.

▬ Ω : track curvature  t
▬ d0:signed impact 

parameter in xy 
▬ tanλ is the slope dz/ds 

of the straight line in the 
sz plane

▬ z0: position of the track 
at the p. c. a.

● See LC-DET 2006-004
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Single Point ResolutionSingle Point Resolution

● The figure-of-merit of any 
tracking detector

● Single Detector element
▬ Pitch d

● Track Probability (D(z) is flat
▬ Expectation value is 0 

(center)

● Variance is:

d
2

−
d
2

σ z
2=∫( z−〈 z 〉)2dz /∫D( z)dz 〈 z 〉=0

σ z
2=∫

−
d
2

+
d
2 z2dz /d

z

σ z
2=

d

√12
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Two-Track SeparationTwo-Track Separation

● How well can one 
separate tw0 adjacent 
tracks

● Driven by single point 
resolution (d/√12)

● Important in dense 
environments
▬ e.g. Tracking within Jets

● Improving separation...
▬ More granularity
▬ Smarter Tracking
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Tracking resolutionTracking resolution

● Ultimately Tracking resolution driven by
▬ Single Point Resolution
▬ Multiple-Scattering

● Hence
▬

● Notes
▬ Multiple Scattering dominates at low momenta (~ < 

10-20 GeV)
▬ At higher momenta the single-point resolution 

becomes the limiting factor (~ > 50 GeV)

σTrack=√σHit
2 +σMS

2
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Tracking at the ILCTracking at the ILC

● LC tracking showcase
▬

▬ Measuring the  Z recoil 
mass 

● Excellent Tracking 
resolution is key to 
this measurement

● Trade-off between 
resolution and 
required luminosity

e+ e-→ZH→μ+μ- X
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Tracking at the ILC (II)Tracking at the ILC (II)

● Linear Collider Detectors are build around 
Particle-Flow paradigm (see Mark's Talk)

● This means combing the tracking and the 
calorimeter information
▬ LC physics is very frequently multi-jet physics
▬ Note that in a PFA detector ~ 60 % of the jet energy 

is measured using the tracker

● Excellent track resolution and track separation 
are essential for the PFA reconstruction
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SiD & ILDSiD & ILD

● ILD
▬ rTracker=1.8 m

▬ B = 3.5 T

● SiD
▬ rTracker=1.2 m

▬ B = 5 T

SiD ILD
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Two ApproachesTwo Approaches
● All-silicon Tracking 

▬ SiD's choice

● Tracking system
▬ 5 layer pixel Vertex 

detector
▬ 5 layer Silicon strip 

tracker

● Few highly precise hits
▬ Max 12 hits

● Low material budget 
● Concept proven by CMS

● Gaseous Tracking
▬ ILD's choice

● Tracking System
▬ 3 double layer Vertex 

detector
▬ Intermediate silicon 

layers
▬ TPC

● Max number of hits
▬ 228 

● High hit redundancy
● Classical approach
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Available HitsAvailable Hits

SiD
ILD
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Silicon Detector BasicsSilicon Detector Basics

● Basic building block
▬ pn-junction (aka 

diode)
▬ Reverse-bias
▬ Fully depleted 

● Collecting the charge 
▬ Either holes or 

electrons
▬ Using charge drift and 

diffusion

● Thickness ~ 300 μm

pp p

n

+

h+ e-

–+

–
Depletion zone

undepleted zone

Vb

w
d
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Mean charge

Most probable charge ≈ 0.7 ~  mean

The collected Charge The collected Charge 

● Assuming Minimum 
Ionizing Particle (MIP) 

● Mean Energy loss
▬ dE/dxSi = 3.88 MeV/cm, 

for 300 μm thick = 116 
keV

● Most Probable Loss (0.7 
mean) = 81 keV
▬ 3.6 eV needed to make e-

h pair
▬ 22500 e-  produced
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Strips, Strixels, PixelsStrips, Strixels, Pixels

● Silicon detectors come in various flavors
● Silicon Strips 

▬ Small pitch strips (~ 50-75 μm), ~ several cm long
▬ Gives a 2D hit (usually in rφ)
▬ Z information is weak (cm level)

● Silicon Pixels
▬ Can be as small as 10x10 μm 
▬ Real 3D hits

● Strixels
▬ Basically very short strips 
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From Sensor to ModuleFrom Sensor to Module

● The module is the 
tracker building 
block

● A typical Module 
consists of
▬ The sensor itself
▬ Interconnects
▬ Readout ASIC
▬ Power and data 

cables
▬ Mechanical support 

structures
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Double-Sided Strip ModulesDouble-Sided Strip Modules

● Everyone likes 3D Hits
▬ But pixels are expensive

● Idea
▬ Strip modules that deliver ~ 

3D Hits

● Today
▬ Sandwich of two strip 

modules
▬ Either 90 degree (rare)
▬ Small angle stereo

ModulesSupport
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The SiD TrackerThe SiD Tracker
● All silicon tracker

▬ Using silicon micro-strips 
with Double metal layers

● 5 barrel layers and 4 disks
● Cooling

▬ Gas-cooled

● Material budget
▬ less than 20 % X0 in the 

active area

● Readout using KPiX ASIC
▬ Bump-bonded directly to 

the modules
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Time Projection ChamberTime Projection Chamber

● Invented in the 70's
● Uniform electric field

▬ drifts tracks of electrons 
towards into 2D readout 
pads at the endplate.

▬ The signal amplitudes and 
arrival times provide 3D 
information

● Inside solenoid B field
▬ Particle momenta can be 

estimated from the track 
curvature 
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Endplate Endplate 

● Drifted charge is amplified 
at the TPC endplate

● Today:
▬ Two main options for gas 

amplification: GEM or 
Micromegas

▬ Readout pad size ~ 
1x6mm2  106 pads/endplate

● Readout electronics 
integrated in the endplate
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Material BudgetMaterial Budget

SiD
ILD

Both concepts have very aggressive material budget
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Readout ASICSReadout ASICS

● The Readout ASIC is a key ingredient to an 
excellent tracker

● The ASIC
▬ Amplifies and digitizes the charge
▬ Provides timing information
▬ Buffering
▬ Transfers data to the DAQ

● ASIC are specifically designed for each tracker
▬ Industry-level CMOS design
▬ Making a good ASIC is an art



33 Linear Collider School  08/1O/2013Marcel Stanitzki

ASIC building blocksASIC building blocks

Charge 
Signal

Charge 
Signal Pre-AmpPre-Amp ShaperShaper ThresholdThreshold

TimingTiming

MemoryMemory SparsificationSparsification

Readout
Driver

Readout
Driver

ComparatorComparator

ToTToT

ADCADC
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Readout and Pre-AmpReadout and Pre-Amp

● isolate strips from each other 
– collect/measure charge on each strip 

– high impedance bias connection (resistor or 
equivalent)

● Usually AC (capacitive) coupling for input 
amplifier t
– avoid large DC input from leakage current.

● Both structures are often integrated 
directly on the silicon sensor 
– Bias resistors via deposition of doped 

polycrystalline silicon, and 

– capacitors via metal readout lines over the 
implants but separated by an insulating 
dielectric layer (SiO2 , Si3N4)

+

–

h+e-
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ShaperShaper

● Pre-Amp usual very 
“simple” and integrating

● Output signal not optimal 
for digitization
– No well defined peak

– No “clear edge” for timing

● Need to apply some level of 
“shaping” to make a nice 
pulse
– Many shaping circuits on the 

market
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Thresholding & DigitizationThresholding & Digitization
● Now the analog signal is ready for digitization
● However Digitization is costly 

– Time and power

– Configurable Analog threshold before digitization

● Three basic types of Digitizers
– Comparators

– ToT (Time over Threshold)

– ADC (Analog to Digital Converter)

● Figures of merit
– Resolution in bits 

– Speed

– Power consumption



37 Linear Collider School  08/1O/2013Marcel Stanitzki

ComparatorsComparators

● A Comparator is simplest 
way to digitize

● Compare Vinput to Vref

– Vinput>Vref        Output=1

– Vinput < Vref     Output=0

● Disadvantage
– Simple binary information

– Hit or no hit

● Advantages
– Simple, fast and low power
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ToTToT

● This is a simple 
Counter

● If Vinput>Vref    

– Counter starts 

● If Vinput<Vref  again

– Stop counter

● Digitized information
–  Number of counts

● Limited by clock and 
signal shape

Basic Assumption 
Pulse Width ~ Pulse Height
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ADCADC

● ADCs are an art form these days
● Many different circuits and ideas

– Speed of conversion

– Resolution

– Robustness

– ADC design is popular thesis subject

● I'll focus on two basic types
– Wilkinson ADC

– FLASH ADC

● This is by far incomplete
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Wilkinson ADCWilkinson ADC
● This is a very simple ADC
● At t=0

– Counter starts

– ADC generates voltage 
ramp 

● If Vramp=Vinput

– Counter is stopped

– Ncounts is digitized 
information

● Speed driven by counter 
clock
– Slow but low-power

Voltage Ramp
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FLASH ADCFLASH ADC

● Speedwise this is the 
Ferrari of ADC's
– Conversion in 1 clock 

cycle

● Complex with loads of 
circuitry
– Power-hungry

– N bits 2n-1 Comparators 
needed

● FLASH ADCs are chosen 
when speed is essential
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Writing the DataWriting the Data

● After digitization data is transferred to the buffer 
memory and combine with the timestamp info

● For a tracker 
– 1 % Hit occupancy

● So for 256 channel Readout ASIC
– A few hits (2-3)

● Remainder of data could be eliminated
– Digital Threshold and sparsification
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SparsificationSparsification
● Example
● Raw data (16 bytes)

– 00 01 01 09 02 25 03 9F 04 17 05 01 06 00 07 01

● Sparsification (Threshold > 10) (6 bytes)
– 02 25 03 9F 04 17 

● Sparsification reduces bandwidth requirements

– Smarter chips have even more elaborate sparsifiers
● Every modern chip has some kind of sparsification circuitry
● Depends on applications

– e.g Calorimeter chips have to deal with very high local 
occupancies
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Analog vs BinaryAnalog vs Binary
● An old discussion
● Binary only stores hit/no hit

– Hit resolution is limited to d/√12

– Robust and simple

● Analog also stores the digitized pulse height
– More information available

– Can further improve on hit resolution

– Better detector monitoring

● Many trackers, many opinions
– ATLAS is binary

– CMS is analog

– LC detectors plan to do analog
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Track reconstructionTrack reconstruction

Raw HitsRaw Hits Noise 
Removal
Noise 

Removal ClusteringClustering

Track SeedingTrack Seeding

Track Fitting
Kalman Filter
Track Fitting
Kalman Filter

Track RefitTrack Refit

Add infoAdd info
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Noise RemovalNoise Removal

● In Reality no detector is completely noise-free
● Noise Source 

– Random (Noise floor 10-5, 106 channels …)

– Hot channels

– Pick-up Noise (from somewhere else)

● Tracking is an ~n2 problem
– Remove as many noise hits as possible

● Classic approaches
– Remove all channels with Occupancies > O(10) % 

– Dedicated Noise runs during no-beam

● After Noise Removal we're ready for the first tracking 
step
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From Hits to ClustersFrom Hits to Clusters

● A particle may deposit charge in several 
strips/pixels causing several hits
– So not every hit corresponds to a particle

– So need to reconstruct the particle hit

● Hence Clustering algorithms are used
– To merge hits belonging to one particle

● Clustering shows one real advantage of analog 
readout
– Here the additional information really adds resolution
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ClusteringClustering

● Merging
– Cluster all hits together until 

there is a channel without a hit

– Calculate weighted mean for 
cluster position

● Splitting
– Occasionally two tracks  are 

very close

– Hits are merged together

– Cluster splitting to correct for 
this behavior

– This can occasionally be tricky

a)

e)

c)

b)

f)

d)
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Tracking StrategiesTracking Strategies
● A lot in tracking evolves around choosing the right “strategy”
● Outside-In

– Occupancy is a lot small outside, track from the outside and pick up hits 
on the way

● Inside-Out
– Higher granularity in the inner layers, so start from there

● Vertex-Standalone
– Use only the highly granular vertex detector to find tracks

● Reality 
– All of the above to achieve an optimal tracking performance 
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SeedingSeeding

● Need to start from somewhere
● Forming Seed tracks

– Choose e.g. 3 layers

– Form tracks from all hit triplets

– Remove tracks that are not even close 
to the interaction region (z cut)

● These Seed tracks then form the 
input the next step

● Problem
– Combinatorial issue, many seed tracks 

to evaluate

– Choice of seed layers important
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Tracking & FittingTracking & Fitting

● Take all SeedTracks
● Pick up all hits along seed trajectory

– Remove tracks with a below minimum number of hits

– Make a Helix fit 

– Use goodness-of-fit to select good tracks

● Usually several steps
– “Easy tracks” first

● Then 
– Loopers 

– low momentum tracks

– tracks that have smaller number of hits

● Kalman Filter (see next  slides)
– Best tool for this, used by most experiments



53 Linear Collider School  08/1O/2013Marcel Stanitzki

Kalman FilterKalman Filter

● What is it  ?
– Recursive algorithm using “noisy” input data 

– Statistically optimal estimate of the underlying 
system state

– Needs physical propagation model 

● Kalman Filters are the tool of choice for tracking 
objects
– Particles

– Airplanes

– Missiles
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Kalman filter SketchKalman filter Sketch

Prediction step 
Based on e.g. 
physical model

Prior knowledge 
of state

Update step 
Compare prediction 

to measurements

Measurements

Next timestep

Output estimate 
of state

Wikipedia
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Tracking ExampleTracking Example

Start

t=1

t=2

Actual Hits
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VertexingVertexing

Secondary
 Vertex

Primary
Vertex
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Adding Information - RefittingAdding Information - Refitting

● In many cases, one has additional information 
about the track

● E.g. Track origin
– If the Primary vertex is well know (as in a Linear 

collider)

– Can Re-fit track using that information

● If track belongs to a secondary vertex
– Use this constraint as well
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SiD Tracking PerformanceSiD Tracking Performance

● SiD tracking is integrated
– Vertex and Tracker

– 10 Hits/track coverage for 
almost entire polar angle

● Tracking system 
– Achieves desired ΔpT/pT 

resolution of 1.46 ·10-5

– >99 % efficiency over most 
of the phase space

 

σ( pT )

pT
2

=a ⊕
b

p sin θ

Pointing 
resolution

Multiple
scattering
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Things I've skippedThings I've skipped

● A lot of details about silicon detectors and TPC's
● Calibration
● Interconnects
● Advanced Pixel detectors
● Alignment

– Hardware-based

– Software-based

● Fake tracks and Fake rate
● Advanced tracking tools
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Some LiteratureSome Literature

● H. Spieler Semiconductor Detector Systems
● Horowitz & Hill: The Art of Electronics
● C. Grupen Particle Detectors 
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