

G. Moortgat-Pick (Uni Hamburg/DESY)

Why is the SM incomplete?

The SM is tremendously successful description of the physics that we have tested so far at experiments. Why are we not happy?

- doesn't contain gravity
- doesn't explain neutrino masses
- doesn't have candidate for dark matter
 - 23% of universe is cold dark matter!
- no unification of gauge couplings possible
- further problem: `hierachy problem'
 - --- Higgs mass unstable w.r.t. large quantum corrections: $\delta M_H^2 \sim \Lambda^2$

The Hierarchy Problem

$$\Delta(p^2) \sim \frac{1}{p^2 - m^2 + \Sigma(p^2)}$$

Photon self-energy in QED:

consequence of U(1) gauge invariance of QED — photon stays massless

$$\Delta_{\gamma\gamma}^{-1}(p^2)
ightarrow 0$$
 for $p^2
ightarrow 0$

Electron self-energy in QED:

 \rightarrow logarithmically divergent correction to electron mass δm_e

Within QED: divergence can be removed via renormalization $\Rightarrow k \rightarrow \infty$ possible

QED as effective theory, underlying more fundamental theory at scale $\Lambda \Rightarrow$ cutoff scale

For $\Lambda = M_{\text{PL}}$: $\delta m_e \approx 2\frac{\alpha}{\pi}m_e \log(M_{\text{PL}}/m_e) \approx 0.2m_e$ modest correction, proportional to m_e reason: chiral symmetry in limit $m_e \to 0$, $\psi_e \to \exp(i\gamma_5\theta)\psi_e$

 \rightarrow breaking proportional to $m_e \rightarrow$ symmetry protects m_e

Contribution of heavy fermions to Higgs self-energy:

$$\begin{split} \phi & \overbrace{f} & \phi \\ & \overbrace{f} & \\ & \Sigma_{f}^{\phi\phi} \sim -2 \ N(f) \ \lambda_{f}^{2} \int d^{4}k \left(\frac{1}{k^{2} - m_{f}^{2}} + \frac{2m_{f}^{2}}{(k^{2} - m_{f}^{2})^{2}}\right) \\ & \text{for } \Lambda \to \infty: \quad \Sigma_{f}^{\phi\phi} \sim -2 \ N(f) \ \lambda_{f}^{2} \left(\int \frac{d^{4}k}{k^{2}} + 2m_{f}^{2} \int \frac{dk}{k}\right) \\ & \sim \Lambda^{2} & \sim \ln \Lambda \end{split}$$

quadratically divergent!

For
$$\Lambda = M_{\rm P}$$
: $\delta M_{\phi}^2 \sim M_{\rm P}^2 \Rightarrow \delta M_{\phi}^2 \approx 10^{30} M_{\phi}^2 \ (M_{\phi} \lesssim 1 \text{ TeV})$

no additional symmetry for $M_{\Phi} = 0$, no protection against large corrections

- --> in general: scalar masses tend to be near highest theory mass scale
- \rightarrow hierarchy problem, extreme fine-tuning necessary to get small M_{Φ}

Requests to BSM models

New physics model should explain all SM shortcomings?

- unification of all interactions?
- hierarchy?
- explain three families?
- embed gravity?
- embed neutrino masses?
- be consistent with all experimental bounds (electroweak precision, EDM,...)?
- baryon asymmetry in the universe? dark matter?
- Renormalizable (up to which scale)? (SM up to $\Lambda < M_{Pl} \approx 10^{19} \text{ GeV}!$)
- Should recover the SM?

SUSY is a mature candidate ! (provides an answer to almost all questions)

Does not mean that it will be the right theory, but one learns a lot!

• Idea: New symmetry relating internal symmetries (gauge invariance) to space-time symmetries (general relativity)?

Lightest supersymmetric particle: stable, best candidate for dark matter in the Universe

Properties of SUSY theories -- Unification

- Gauge coupling unification:
 - Running of gauge couplings:

$$\frac{1}{g^2(\mu^2)} = \frac{1}{g^2(\mu_0^2)} + \beta \ln\left(\frac{\mu^2}{\mu_0^2}\right)$$

--- coupling constant unification in MSSM for $M_{SUSY} \lesssim 1$ TeV

Unification of couplings at high scale <-> `Grand unified theories' (GUT)

- E.g. SO(10) GUTs, can naturally accommodate right-handed neutrinos

Hierarchy problem in SUSY

Symmetry between fermions and bosons

- Q | boson > = | fermion > and Q | fermion > = | boson >

- In other words: SM particles have SUSY partners (e.g. $f_{L,R} \rightarrow \tilde{f}_{L,R}$)

for
$$\Lambda \to \infty$$
: $\Sigma_{\tilde{f}}^{\phi\phi} \sim 2 N(\tilde{f}) \tilde{\lambda}_f \Lambda^2$

Hierarchy problem in SUSY

• Quadratic divergencies cancel for: $N(\tilde{f}_L) = N(\tilde{f}_R) = N(f)$ $\tilde{\lambda}_f = \lambda_f^2$

complete correction vanishes if furthermore: $m_{\tilde{f}} = m_f$ For $m_{\tilde{f}}^2 = m_f^2 + \Delta^2$, $\tilde{\lambda}_f = \lambda_f^2$, "soft SUSY breaking" $\Rightarrow \Sigma_{f+\tilde{f}}^{\phi\phi} \sim N(f) \ \lambda_f^2 \ \Delta^2 + \dots$

correction acceptable small if mass splitting is of weak scale

realized if mass scale of SUSY partners

 $M_{
m SUSY} \lesssim 1 \, {
m TeV}$

 SUSY at TeV scale provides attractive solution of hierarchy problem

Impact from LHC BSM limits

- SUSY: still strongly motivated and beautiful, but
 - so far, no hints of a signal, only rather high exclusion limits in the coloured sector
 - Constrained models (CMSSM,...) + Simpl. Models under tension!

But is this the full story? Which assumptions are made?

Soft SUSY Breaking

- Exact SUSY: $m_f = m_{\tilde{f}}$ -----> SUSY must be broken in nature!
- Only way for model of SUSY breaking:
 - spontaneous SUSY breaking

specific SUSY-breaking schemes yield effective Lagrangian at low energies, which is supersymmetric except for explicit soft breaking terms

- Soft SUSY-breaking terms: do not alter dimensionless couplings (i.e. dimension of coupling constants of soft SUSY-breaking terms > 0)
 - no quadratic divergences (in all orders of perturbation theory) scale of SUSY-breaking terms:

SUSY breaking schemes

- SUGRA: mediating interactions are gravitational
- GMSB: mediating interactions are ordinary electroweak and QCD gauge interactions
- AMSB: SUSY breaking happens on a different brane in a higher-dimensional theory
- Feature of schemes: lead to 'characteristic' mass spectra
- But these are strong assumptions.... !

Free Parameters in the MSSM

- mass matrices are 3 x 3 hermitian
 - \longrightarrow m_Q^2 , m_u^2 , m_d^2 , m_L^2 , m_e^2 : 45 parameters
- $\mathbf{\omega}$ gaugino masses $\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3$ are complex numbers: 6
- trilinear couplings a_u, a_d, a_g are 3 x 3 complex matrices: 54
- bilinear coupling b is 2 x 2 matrix: 4
- Higgs masses m²_{Hu}, m²_{Hd}: 2
 - altogether 111 parameter ???

Symmetries (lepton + baryon number, Peccei-Quinn, R symmetry) lead to'rotations':

-4 non-trivial field redifinitions

-2 in the Higgs sector (since minimal model only 2 parameters in the Higgs sector)

remain 105 free new parameters in the MSSM!

Relations between SUSY parameters

- Symmetry properties of MSSM Lagragian (SUSY, gauge invariance) give conditions to couplings and mass relations
 - -- z.B. gauge-boson-fermion coupling = gaugino-fermion-sfermion coupling for U(1), SU(2) and SU(3) gauge groups
 - --- In SM: all masses are free input parameters (except m_w--m_z interdependence)
 - MSSM:

relations between chargino and neutralino masses (soft breaking+ew breaking) sfermion mass relations (gauge invariance): $m_{e_L}^2 = m_{\nu_L}^2 - M_W^2 \cos(2\beta)$ upper bound on mass of lightest CP-even Higgs boson

All relations receive contributions from loop effects

experimental verification of relations is crucial test of SUSY

experimental tests of all quantum numbers required

Any further hints ?

- Low energy experiments, (g-2)_μ:
 - favours rather low SUSY masses in electroweak sector:

$$\delta \boldsymbol{a}_{\mu}(\mathrm{N.P.}) = \mathcal{O}(\boldsymbol{C}) \left(\frac{\boldsymbol{m}_{\mu}}{\boldsymbol{M}}\right)^{2}, \quad \boldsymbol{C} = \frac{\delta \boldsymbol{m}_{\mu}(\mathrm{N.P.})}{\boldsymbol{m}_{\mu}}$$

- C very model dependent, SUSY/ED ~ $O(\alpha/4\pi ...)$
- LHC results prefer rather heavy coloured sector in 1st +2nd generation
- Way out: rather simple
 - Decouple uncoloured and coloured sector and/or take hybrid models of SUSY breaking
 - Just leave out the constrained minimal models, that's all

Remember: Minimal SUSY contains 105 new parameter... why should nature be too simple ?

• Minimization of 1-loop Higgs Potential:

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -(m_{H_u}^2 + \Sigma_u^u) - \mu^2$$

• To keep EWFT ~ 3%:

- rather small µ (~200 GeV) required

Papucci,Ruderman,Weiler 2011 Baer,Barger,Huang, Tata, 2012

- 'naturalness'
- Several 'natural' scenarios, e.g. light higgsinos,...

Higgsino-like scenarios

- Can be embedded in hybrid gauge-gravity mediation
 - 'M' driven by gauge-mediation
 - 'µ' driven by gravity mediation
- Two examples as 'prototypes' under study

Bruemmer,List,GMP, Rolbiecki,Sert'13

- Higgsino masses: $m_{\chi_{0_1}} \sim 165 \text{ GeV}, m_{\chi_{0_2}} \sim 167 \text{ GeV}, m_{\chi_{1_1}} \sim 166 \text{ GeV}$
- Feature: Δm(_{x±1-x01})~770 MeV (1.6 GeV), Δm(_{x02-x01})~1.04 (2.7) GeV
 - Challenges: mass degeneration, many π 's, soft γ , E_{miss} from decay
 - How to resolve such scenarios? (pst, top secret, see Hale Serts's talk.....only remember ISR......!)

LC Physics School2013

What if nothing else than H is found now?

- Since m_H is free parameter in SM at tree level
 - Crucial relations exist, however, between m_{top} , m_W and $sin^2\theta_{eff}$
 - If nothing else appears in the electroweak sector, these relations have to be urgently checked in order to
 - a) distinguish between SM and Higgs in BSM models (remember $\Delta m_{\rm H} \sim m_{\rm top}^4$ in BSM!)
 - b) Close the SM picture ?
- Which strategy should one aim?
 - exploit precision observables and check whether the measured values fit together at quantum level
 - m_Z, m_W, α_{had}, sin²θ_{eff} und m_{top}
- Exploit `GigaZ' option: high lumi run at \sqrt{s} = 91 GeV

Pe-=80% and Pe+=60% required ! (If only Pe-=90% : precision ~factor 4 less!)

Higgs story has just started ... $\sqrt{s=91} G_{eV}$

LEP:

sin²θ_{eff}(A_{FB}^b)= 0.23221±0.00029 SLC:

sin²θ_{eff}(A_{LR})= 0.23098±0.00026

World average:

sin²θ_{eff} = 0.23153±0.00016

Goal GigaZ: Δsinθ=1.3 10⁻⁵

Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top},...
 Heinemeyer, Kraml, Porod, Weiglein

- Δm_z=2.1 MeV:
- Δα_{had}~10 (5 future) x 10⁻⁵:
- Δm_{top}~1 GeV (Tevatron/LHC):
- Δm_{top}~0.1 GeV (ILC):

Δsin²θ_{eff}^{para}~1.4x10⁻⁵

Δsin²θ_{eff}^{para}~3.6 (1.8 future)x10⁻⁵

 $\Delta sin^2 \theta_{eff}^{para} \sim 3x10^{-5}$

<mark>Δsin²θ_{eff}^{para}~0.3x10⁻⁵</mark>

Higgs story has just started ...

√s=91 GeV To close the story... GigaZ

Measure $\sin^2\theta_{eff}$ via A_{IR} with high precision: $\Delta \sin\theta = 1.3 \ 10^{-5}$ •

- Assume only Higgs@LHC but no hints for SUSY: Heinemeyer, Hollik, Weber, Weiglein
 - Really SM?
 - Help from $\sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity to reveal effects of NP!

SM_(M,m * M,m) ± 0' 0.23160.2315 ອື່ ເສັ 0.2314 $\text{SPS1a}'\pm\sigma^{\text{pere-BC}}$ 0.2313squarks & gluinos: $M_{0,0,0}=6 (M_{0,0,0})^{(PQ)}; \Lambda_{1,2}=6 (\Lambda_{1,2})^{(PQ)}; m_{\gamma}=6 (m_{\gamma})^{(PQ)}$ sleptons, neutralinos & charginos: M_{ce} -scale $(M_{ce})^{SM}$; A_e -scale $(A_e)^{SM}$; M_{ce} -scale $(M_{ce})^{SM}$ 0.2312superpotentiai: u = scale (u)²⁷ 500 400000 m_{et} [GeV]

- SM can not be complete
- Many models are on the market.....
 - A well defined candidate is SUSY and is not dead!
 - SUSY gets constraints from the measured Higgs mass
- Pinning down the underlying structure is challenging
- The LC provides a large variety of necessary tools:
 - High precision measurements
 - Beam polarization
 - Tunable, but precise energy
- My personal opinion: the LC is mandatory to really pin down the stucture of the 'new' and being prepared for the 'Unexpected' !

Be prepared for the 'Unexpected'...

the LC is mandatory......!

LC Physics School2013