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Introduction

SUSY

You’ve heard about the theoretical aspects of SUSY in Gudi’s talk
before the break. What are the experimental problems to face ?

Generically:

e+e− →X̃ ¯̃X → XX̄Ỹ ¯̃Y
Ỹ might be stable, or further decay,
Ỹ → Y Ũ.
Finally, one ends up with SM particles, and a
lightest SUSY particle, the LSP.

If R-parity (RP) is conserved, the LSP is stable. From cosmology
and cosmic rays, this particle must be neutral and un-coloured.
Ie.: Experimentally, it’s like a heavy neutrino.
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Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

Therefore:
Conserved RP : Missing energy from the LSP, particle id of the
SM products.
Violated RP (RPV) : LSP can be charged and/or coloured, as the
cosmological arguments evaporates. Odd signatures either a
log-lived LSP, or an LSP that decays in the detector. Won’t talk
about this.

Furthermore:
Amount of missing energy very important.
Depends on the mass-difference between the last SUSY particle
in the chain and the LSP.
There is always an NLSP (Next to Lightest SUSY Particle), which
is special:

It can only decay to it’s SM-partner and the LSP.
It can be pair-produced.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 4 / 43



Introduction

SUSY signatures

So, what we look for and like to measure is:
NLSP pairs⇔ Missing energy and momentum + pairs of the SM
partner (τ̃1 gives τ , ẽ gives e, t̃ gives t gives jet, ...)
Note:

Amount of missing stuff might span a wide range. Eg. small
mass-difference between heavy sparticles gives large missing E,
but little missing p.
If NLSP is a bosino, SM partner is a IVB, possibly far off-shell. At
small mass differences, the set of SM particles might be
non-obvious.

Cascade decays: Still Missing energy and momentum, but id of
SM particles can be mixed.
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Introduction

SUSY signatures

Background from SM:
Real missing energy + pair of SM-particles = di-boson production,
with neutrinos:

WW → `ν`ν
ZZ → f f̄νν

Fake missing energy + pair of SM-particles = γγ processes, ISR,
single IVB.

e+e− →e+e−γγ → e+e−f f̄ , with both e+e− un-detected.
e+e− →e+e− → f f̄γ, with γ un-detected.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 6 / 43



Introduction

SUSY signatures

Background from SM:
Real missing energy + pair of SM-particles = di-boson production,
with neutrinos:

WW → `ν`ν
ZZ → f f̄νν

Fake missing energy + pair of SM-particles = γγ processes, ISR,
single IVB.

e+e− →e+e−γγ → e+e−f f̄ , with both e+e− un-detected.
e+e− →e+e− → f f̄γ, with γ un-detected.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 6 / 43



Introduction

SUSY signatures

Background from SM:
Real missing energy + pair of SM-particles = di-boson production,
with neutrinos:

WW → `ν`ν
ZZ → f f̄νν

Fake missing energy + pair of SM-particles = γγ processes, ISR,
single IVB.

e+e− →e+e−γγ → e+e−f f̄ , with both e+e− un-detected.
e+e− →e+e− → f f̄γ, with γ un-detected.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 6 / 43



Introduction

SUSY signatures

Background from SM:
Real missing energy + pair of SM-particles = di-boson production,
with neutrinos:

WW → `ν`ν
ZZ → f f̄νν

Fake missing energy + pair of SM-particles = γγ processes, ISR,
single IVB.

e+e− →e+e−γγ → e+e−f f̄ , with both e+e− un-detected.
e+e− →e+e− → f f̄γ, with γ un-detected.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 6 / 43



Exclusion or Discovery ?

Exclusion or Discovery ?

So: We’re looking for events with missing energy and momentum, in
excess of what the SM predicts.
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Exclusion or Discovery ?

So: We’re looking for events with missing energy and momentum, in
excess of what the SM predicts.

First question:
IS there a signal for SUSY in the data?
One needs to make a firm statement about this: Either that the signal
is excluded, or discovered.
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So: We’re looking for events with missing energy and momentum, in
excess of what the SM predicts.

First question:
IS there a signal for SUSY in the data?
One needs to make a firm statement about this: Either that the signal
is excluded, or discovered.

What exactly is in these two statements ?
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Exclusion or Discovery ?

Exclusion or Discovery ?
Two issues

1 What hypothesis H0 is tested against what alternative H1?
2 Which mistake is to be avoided?

H0: the signal is there, against
H1: only background.

H0: There is only background,
against H1: there is signal.

Avoid rejecting H0 if it is true
(ie. avoid Type I error). P(Type
I) = α, α is the significance of
the test.

Avoid not rejecting H0 if it is
false (ie. avoid Type II error).
P(Type II) = 1 - β, β is the
power of the test.

You want α to be small, and β to be
large !
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Exclusion or Discovery ?

Exclusion or Discovery ?

Which is which, and why ?
For discovery, you want to take a very small risk to claim it, if it’s
not true.
For exclusion, you want to take a moderately small risk both to
claim that it is excluded, while it actually is there, and not to claim
exclusion, if it is in fact not there.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 9 / 43



Exclusion or Discovery ?

Exclusion or Discovery ?

Which is which, and why ?
For discovery, you want to take a very small risk to claim it, if it’s
not true.
For exclusion, you want to take a moderately small risk both to
claim that it is excluded, while it actually is there, and not to claim
exclusion, if it is in fact not there.

In both cases:
H0 (the null hypothesis) should be what you don’t hope to claim, ie. :

Discovery: H0 : there is no signal.
Exclusion: H0 : there is signal.

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 9 / 43



Exclusion or Discovery ?

Exclusion or Discovery ?

Which is which, and why ?
For discovery, you want to take a very small risk to claim it, if it’s
not true.
For exclusion, you want to take a moderately small risk both to
claim that it is excluded, while it actually is there, and not to claim
exclusion, if it is in fact not there.

In both cases:
H0 (the null hypothesis) should be what you don’t hope to claim, ie. :

Discovery: H0 : there is no signal.
Exclusion: H0 : there is signal.

Then choose α and construct your test, making sure that P(Type I
error) = α. In the choice of α, don’t bother about power in the discovery
case, but keep it in mind for exclusion.
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Exclusion or Discovery ?

Exclusion

H0 : there is signal
Under H0, the number of selected events N ∈ Po(S+B). Assume
S+B large, so that N ≈ N(S+B,

√
S + B)

Choose α such that P(Type I error) is low enough.
Exclude H0 if observed number of events < c, where c is
determined by α and the knowledge of the distribution of N.
N ∈ N(S+B,

√
S + B)⇒ c = S+B – λα

√
S + B. λα is the

α-percentile of the Normal distribution.
Power: P(Type II error) = 1-β = P(Background only > c).
Background only ∈ N(B,

√
B)⇒ β = Φ((c − B)/

√
B)

So: Higher significance⇒ smaller α⇒ bigger λα ⇒ smaller c⇒
smaller β ⇒ lower power. Unavoidable dilemma !!!
Compromise: Take moderately small α = 0.05 (CL = (1-α)100 % =
95 %). λ5%=1.64 (called "2σ" ...)
Note that if S small, β small (=α if S = 0), If S big, β big. So, small
signal⇒ low power, big signal⇒ high power.
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Exclusion or Discovery ?

Discovery

H0 : there is no signal
Under H0, the number of selected events N ∈ Po(B). Assume B
large, so that N ≈ N(B,

√
B)

Choose α such that P(Type I error) is low enough.
Exclude H0 if observed number of events > c, where c is
determined by α and the knowledge of the distribution of N.
N ∈ N(B,

√
B)⇒ c = B + λα

√
B. λα is the α-percentile of the

Normal distribution.
Power: P(Type II error) = 1− β = P(Signal+Background < c).
Signal+Background ∈ N(S+B,

√
S + B)⇒

β = 1− Φ((c − (S + B))/
√

S + B)

So: Higher significance⇒ smaller α⇒ bigger λα ⇒ bigger c⇒
smaller β ⇒ lower power. Unavoidable dilemma !!!
But we don’t care about power: Take very small α = 0.00005 (CL =
(1-α)100 % = 99.99995 %). λα=5 ("5σ")
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Exclusion or Discovery ?

Exclusion or Discovery ?

Note the differences !!

Discovery

σ =
√

B
Critical region has upper limit.
Critical region is average plus
something.
High confidence.

Exclusion

σ =
√

S + B
Critical region has lower limit.
Critical region is average
minus something.
Modest confidence.

If S is large: The (unlikely) outcome that the signal is both
excluded and discovered is possible !
If S is small: The (not-so-unlikely) outcome that the signal is
neither excluded and discovered is possible !
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Exclusion or Discovery ?

Exclusion or Discovery: Graphical summery

Red: Background only, Blue: Backgrond+Signal. Exclude if observed
number in the “arrow” region !
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Observables

Observables

So, supose we have observed SUSY. What kind of numbers can we
extract from the data ?

Two-body decays: spectra w/ end-points
Function of the masses and ECMS.

Cross-section in continuum
Function of mass of produced sparticle , it’s mixing, and of ECMS
and beam polarisation.

Angular distribution of seen stuff
Function of sparticle spin, mass, s vs. t-channel and ECMS.

Cross-section with threshold scan
Function of mass of produced sparticle.

Branching ratios
Nature of sparticles.

Differential cross-section
Scalar vs fermion vs t-channel.
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Observables Observables: Pair-production, two-body decay

Observables: Pair-production, two-body decay

Let’s look in detail on pair-production of spartciles which then undergo
two-body decays:

Production, in lab-frame:
Assume pair-produced X : e+e− →XX
Energy conservation : EX + EX ′ = {X ′ = X} =2EX = ECMS
⇒ EX = ECMS/2 = EBeam
Momentum conservation : p̄X + p̄X ′ = 0̄⇒ p̄X = −p̄X ′

⇒ |p̄X | = |p̄X ′ | = pX
Put together: p2

X = E2
X −M2

X = E2
Beam −M2

X

⇒ pX =
√

E2
Beam −M2

X

Boost to (from) rest-frame:
γ = EX/MX ; γβ = +

(−) pX/Mx ; β = +
(−) pX/Ex

Ie: γ = EBeam/MX ; γβ = +
(−)

√
E2

Beam −M2
X/Mx ;

β = +
(−)

√
E2

Beam −M2
X/EBeam
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Observables Observables: Pair-production, two-body decay

Observables: Pair-production, two-body decay

Decay: X → YU
MX ,MY , and MU are parameters, one of which, say MY , is known
in the SM. U is invisible.
In rest-frame of X :

Energy conservation : EY + EU = EX = MX ⇒ EU = MX − EY
⇒ E2

U = M2
X − 2MX EY + E2

Y
Momentum conservation : p̄Y + p̄U = 0̄
⇒ p̄Y = −p̄U and pY = pU
E2

U = M2
U + p2

U = M2
U + p2

Y
p2

Y = E2
Y −M2

Y
⇒ E2

U = M2
U + E2

Y −M2
Y

Put together:
M2

U + E2
Y −M2

Y = M2
X − 2MX EY + E2

Y ⇒ 2MX EY = M2
X −M2

U + M2
Y

⇒ EY = (M2
X −M2

U + M2
Y )/2MX

And: p2
Y = 1

4M2
X

((M2
X −M2

U + M2
Y )2 − 4M2

X M2
Y )=

λ(M2
X ,M

2
Y ,M

2
U)/(2MX )2 (λ=Källén function)

If MY small : pY = (M2
X −M2

U)/2MX
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Observables: Pair-production, two-body decay
Lorentz-transform from rest-frame to lab-frame (’ system):

E ′Y = γEY + γβp//
p′// = γβEY + γp// with p// = p cos θ

Remember: γ = EBeam/MX ; γβ = +
(−)

√
E2

Beam −M2
X/Mx

Yields: E ′Y = EBeam
MX

EY +

√
E2

Beam−M2
X

MX
p cos θ
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X −M2
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Observables Observables: Pair-production, two-body decay

Observables: Pair-production, two-body decay

Distribution of E ′Y in lab-frame:
Only free variable is cos θ = angle wrt. boost in rest-frame.
Depends on spins of X ,Y and U.

Eg. X sfermion (scalar), U LSP (fermion), Y SM-particle (fermion)⇒
decay isotropic = any solid angle equally probable⇒ p.d.f. of θ =
fθ(θ) = sin θ/2, and distribution Fθ(θ) = (1− cos θ)/2

Distribution of V = cos θ in the sfermion case:
FV (v)

df
=P(V ≤ v) = P(cos θ ≤ v) = P(θ > arccos v) = 1− P(θ ≤

arccos v)
df
=1−Fθ(arccos v) = 1−(1−cos (arccos v))/2) = (v−1)/2

Therefore: fV (v) = d
dv FV (v) = d

dv (v − 1)/2 = 1/2, ie. a constant.
So: The spectrum of E ′Y is the rectangular distribution
R[ EBeam

2

(
1− (MU/MX )2

)
(1− β) , EBeam

2

(
1− (MU/MX )2

)
(1 + β)].

Average is EBeam
2

(
1− (MU/MX )2

)
,

the width is EBeam

(
1− (MU/MX )2

)
β ;

the standard deviation is the width divided by
√

12.
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Observables: Pair-production, two-body decay

Graphically, for MX = 150 GeV, MU = 100 GeV.
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Observables Observables: Pair-production, two-body decay

Observables: Pair-production, two-body decay

So, there are two SUSY parameters, and two independent
observables in the spectrum.
Any pair of observables can be chosen, edges, average, standard
deviation, width, ...
Which choice is the best depends on the situation.
Just a bit of algebra to extract the two SUSY masses.
Note that if Ebeam >> MX , there is just one observable (low edge
becomes 0, width becomes average/2), so one should not operate
too far above threshold !
Note that there are two decays in each event: two measurements
per event.
Also note that there are not enough measurements to make a
constrained fit, even assuming that the two SUSY particles in the
two decays are the same: (2 × 4 unknown components of
4-momentum (=8)) - ( total E and p conservation (=4) + 2
equal-mass constraints) = 2 remaining unknowns.
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Observables: Pair-production, two-body decay

However:
If the masses are known from other measurements, there are
enough constraints.
Then the events can be completely reconstructed ...
... and the angular distributions both in production and decay can
be measured.
From this the spins can be determined, which is essential to
determine that what we are seeing is SUSY.

Furthermore:
Looking at more complicated decays, such as cascade decays,
there are enough constraints if some (but not all) masses are
known.
Allows to reconstruct eg. the slepton mass in χ̃0

2 → ˜̀̀ → ``χ̃0
1 if

chargino and LSP masses are known.
Order-of-magnitude better mass resolution.
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Observables More observables

Observables

But this is not all !
The cross-section in e+e− →XX close to threshold depends both
on coupling and kinematics.

Kinematics means β, and β is

√
1−

(
MX

EBeam

)2
, ie. depends on MX ,

but not on what X decays to, ie not on MY or MU .
In addition, how it depends on β is determined by the spin of X: β3

if X is a scalar, β1 if X is a fermion.
And, obviously, the beginning of production of X is for
β = 0⇔ MX = EBeam, so stepping EBeam close to threshold also
can be used to determine MX .

Furthermore:
The distribution of the angle between the two SM-particles
depends on β, in a complicated, but calculable way.
Once again, dependence on MX only.
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but not on what X decays to, ie not on MY or MU .
In addition, how it depends on β is determined by the spin of X: β3

if X is a scalar, β1 if X is a fermion.
And, obviously, the beginning of production of X is for
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Observables More observables

Observables

But this is still not all !
The cross-section is different for L and R SUSY particles.
Therefore, the cross-section also depends on the mixing between
L and R components. τ̃ , t̃ and b̃ are likely to be mixed, the bosinos
almost certainly are.
For a given state the cross-section is different for different
beam-polarisations.
So checking how much the cross-section changes when switching
beam-polarisations measures mixing.

Furthermore:
If one can measure the helicity of the SM particle, one gets a
handle of the properties of the particles in the decay, ie. in
addition to the produced X, also the invisible U.
In one case this is possible: In τ̃ → τ χ̃0

1 → Xντ χ̃0
1, the spectrum of

X gives information of the spin of the τ (since there is no such
thing as a right-handed ντ ).
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Observables Observables: Summary

Observables: Summary

For masses:
Measure energy and directions of SM particles.
Might mean leptons or jets or specific hadrons or IVB (on- or
off-shell). Separate W and Z !
Need to know ECMS

Try to keep spectrum shape under control. Both for end-points
and position.
Don’t be too far from threshold.
Specific problem: Low edge hidden in background ?

For cross-section:
Need to know overall efficiency
... and background.

For mixing:
Need to know beam-polarisation.
τ̃ case: reconstruct τ decay.
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Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Measurement requirements

Precision: Measurement errors, Initial conditions uncertainty,
Background part of observables.
Accuracy: Systematic effects in method and conditions.
Usually too many unknowns for kinematic constraints⇒ For
leptons or far off-shell W or Z , uncertainty from beam-spectrum
larger than measurement errors.
NB: special cases (cascades with sleptons). Here momentum
measurement might be an issue (momentum resolution).
For fully hadronic W or Z , jet energy resolution is important.
To fight fake missing E and P from γγ and single IVB:s,
hermeticity is extremely important. Not only for e± and γ:s, but
also muons and hadrons.
For model testing, theoretical uncertainties important - not the
topic in this lecture!

Mikael Berggren (DESY) SUSY Precision Spectroscopy at the ILC LCSCHOOL, Oct 2013 25 / 43



Measurement

Machine issues

Cf. Nick’s talk this morning !
Beam-spectrum for e+ beam
(solid) and e− beam (dashed).
e− beam is wider due to
ondulator.
Beam-strahlung: Strong EM
fields of one beam acting on
the other one:

Syncrotron radiation.
Can back-scatter⇒ γ
component of beam.
Or pair-create⇒:
pairs-background.
Particles with “wrong”
charge gets kicked out of the
beam, and hits the forward
instrumentation.

1

10
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10 3

10 4

10 5

120 140 160 180 200 220 240
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Measurement

Detector issues (ILD)

Cf. Mark’s and Marcel’s talks this morning !

Tracking: VXD, SIT, TPC, VFT.
∆(1/p) ≈ 2× 10−5 GeV−1.
Good enough for SUSY.

Main Calorimetry: ECAL,
HCAL.

Pandora PFlow algorithm:
∆(Ejet )/Ejet ≈ 3%
W -Z separation.
Good enough for SUSY.

Hermeticity: LumiCal, LHCal,
BeamCal

Coverage down to 5 mRad.
High Pairs background.
Can/have to live with it...
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Example: SPS1a’/STC4

Example: SPS1a’/STC4

STC4-8
11 parameters.
Separate gluino
Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints (LHC, LEP, cosmology,
low energy).
At ECMS = 500 GeV:

All sleptons available.
No squarks.
Lighter bosinos, up to χ̃0

3 (in e+e− →χ̃0
1χ̃

0
3)

(For SPS1a’, see J. List, P. Bechtle, P. Schade, M.B., PRD 82,no5
(2010), arXiv:0908.0876)
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Example: SPS1a’/STC4

STC4 mass-spectrum
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Example: SPS1a’/STC4

Features of SPS1a’/STC4

In SPS1a’ and the STC points, the τ̃1 is the NLSP.
For τ̃1: Eτ,min = 2.6 GeV,Eτ,max = 42.5 GeV:
γγ − background ⇔ pairs − background .
For τ̃2: :Eτ,min = 35.0 GeV,Eτ,max = 152.2 GeV:
WW → lνlν − background ⇔ Polarisation.
τ̃ NLSP→ τ :s in most SUSY decays→ SUSY is background to
SUSY.
For pol=(-1,1): σ(χ̃0

2χ̃
0
2) and σ(χ̃+

1 χ̃
−
1 ) = several hundred fb and

BR(X→ τ̃) > 50 %. For pol=(1,-1): σ(χ̃0
2χ̃

0
2) and σ(χ̃+

1 χ̃
−
1 ) ≈ 0.

For pol=(-1,1): σ(ẽRẽR) = 1.3 pb !
For ẽRor µ̃R: :El,min = 6.6 GeV,El,max = 91.4 GeV: Neither γγ nor
WW → lνlν background severe.
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Example: SPS1a’/STC4 The τ̃ channel

Extracting the τ̃ properties

See Phys.Rev.D82:055016,2010

Use polarisation (0.8,-0.22) to reduce bosino background.

From decay kinematics:
Mτ̃ from Mχ̃0

1
and end-point of spectrum = Eτ,max .

Other end-point hidden in γγ background:Must get Mχ̃0
1

from other
sources. (µ̃ , ẽ, ...)

From cross-section:
στ̃ = A(θτ̃ ,Pbeam)× β3/s, so

Mτ̃ = Ebeam
√

1− (σs/A)2/3: no Mχ̃0
1

!

From decay spectra:
Pτ from exclusive decay-mode(s): handle on mixing angles θτ̃
and θ

χ̃0
1
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Example: SPS1a’/STC4 The τ̃ channel

Topology selection

τ̃ properties:
Only two τ :s in the final state.
Large missing energy and
momentum.
High Acolinearity, with little
correlation to the energy of the
τ decay-products.
Central production.
No forward-backward
asymmetry.

Select this by:
Exactly two jets.
Nch < 10
Vanishing total charge.
Charge of each jet = ± 1,
Mjet < 2.5 GeV/c2,
Evis < 300 GeV,
Mmiss > 250 GeVc2,
No particle with momentum
above 180 GeVc in the event.

+ anti γγ cuts
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Example: SPS1a’/STC4 The τ̃ channel

τ̃1and τ̃2further selections

τ̃1:
(Ejet1 + Ejet2) sin θacop < 30
GeV.

τ̃2:
Other side jet not e or µ
Most energetic jet not e or µ
Cut on Signal-SM LR of
f(qjet1 cos θjet1,qjet2 cos θjet2)

Efficiency 15 (22) %

 [GeV]
to 2nd jet

pt
0 10 20 30

 [G
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]
to

 1
st

 je
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pt

0

10

20

30
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Example: SPS1a’/STC4 The τ̃ channel

Fitting the τ̃ mass

Only the upper end-point is
relevant.
Background subtraction:

τ̃1: Important SUSY
background,but region
above 45 GeV is signal free.
Fit exponential and
extrapolate.
τ̃2: ∼ no SUSY background
above 45 GeV. Take
background from SM-only
simulation and fit
exponential.

Fit line to (data-background
fit).
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Example: SPS1a’/STC4 µ̃ channels

µ̃ channels

Use “normal” polarisation (-0.8,0.22).
µ̃Lµ̃L → µµχ̃0
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Example: SPS1a’/STC4 µ̃ channels

µ̃Lµ̃L

Selections
θmissingp ∈ [0.1π; 0.9π]

Emiss ∈ [200,430]GeV

Mµµ /∈ [80.100]GeV and > 30
GeV/c2

Masses from edges. Beam-energy
spread dominates error.

∆(Mχ̃0
1
) = 920MeV/c2

∆(Mµ̃L
) = 100MeV/c2

 / ndf =  8.39 / 142χ
Amplitude(A)  3.51± 43.97 

Edge (E)  0.2± 151.5 

Slope (S)  0.1233± 0.3775 

Background (B)  1.53± 15.17 
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B+A/(1+exp((x-E)/S))

Signal

 / ndf 2χ  29.73 / 26

Amplitude(A)  2.94± 48.92 

Edge (E)  0.04± 32.25 

Slope (S)  1.10605± 0.03249 

Background (B)  1.65± 38.21 
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Example: SPS1a’/STC4 µ̃ channels

χ̃0
1 χ̃0

2

Selections
θmissingp ∈ [0.2π; 0.8π]

pTmiss > 40GeV/c
β of µ system > 0.6.
Emiss ∈ [355,395]GeV

Masses from edges. Beam-energy
spread dominates error.

∆(Mχ̃0
2
) = 1.38GeV/c2
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Width (S)  0.402± 1.747 
Signal Amplitude (A)  5.8±  47.1 

Signal Tail (T)  0.0785± 0.2713 

Background Exp (BE)  0.0647± 0.9554 

Background Slope (BS)  5.61± -79.82 
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Example: SPS1a’/STC4 µ̃ channels

µ̃R threshold scan

From these spectra, we can
estimate MẽR

, Mµ̃R
and Mχ̃0

1
to <

1 GeV.

So: Next step is Mµ̃R
from

threshold:
10 points, 10 fb−1/point.
Luminousity ∝ ECMS, so this is
⇔ 170 fb−1 @ ECMS=500 GeV.

Error on Mµ̃R
= 197 Mev
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fit to data : δMµ̃ = 197 MeV

Mµ̃ =  135.4 ± 0.2 GeV

Mµ̃ =  135.28 GeV
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Example: SPS1a’/STC4 Polarisation and Near Degenerate ẽ

Polarisation and Near Degenerate ẽ

Super-symmetry associates scalars to chiral (anti)fermions

e−L,R ↔ ẽ−L,R and e+
L,R ↔ ẽ+

R,L. (1)

What if MẽL≈ MẽR , so that thresholds can’t separate e+e− →ẽLẽL, ẽRẽR
and ẽRẽL?
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Example: SPS1a’/STC4 Polarisation and Near Degenerate ẽ

Polarisation and Near Degenerate ẽ

Model: SPS1a’ like, but:

MẽL= 200 GeVand MẽR= 195 GeV. Both decay 100 % to χ̃0
1 e.

Even with Pe− ≥ +90%, one can’t disentangle the pairs ẽ+
L ẽ−R and

ẽ+
R ẽ−R ’: Ratio of the cross sections ≈ constant.
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Polarisation and Near Degenerate ẽ

Model: SPS1a’ like, but:

MẽL= 200 GeVand MẽR= 195 GeV. Both decay 100 % to χ̃0
1 e.

Even with Pe− ≥ +90%, one can’t disentangle the pairs ẽ+
L ẽ−R and

ẽ+
R ẽ−R ’: Ratio of the cross sections ≈ constant.

Polarised positrons a must !
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Example: SPS1a’/STC4 Polarisation and Near Degenerate ẽ

Polarisation and Near Degenerate ẽ

The handle:
Opposite polarisation beams produces ẽ:s in both s- and t-channel.
Same polarisation produces ẽ:s in t-channel only⇒

Modification of Θ distribution with changed positron polarisation

However, the effect is small since t-channel always dominates ! ẽ:s are
heavy (and are scalars)⇒ t- and s- channel kinematic distributions of
the electrons are not very different.
Need to reconstruct the ẽ direction:

8 Unknown χ̃0
1 momentum components

Assume Mẽ and Mχ̃0
1

known→
8 constraints (E and p conservation, 4 mass-relations)
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Example: SPS1a’/STC4 Polarisation and Near Degenerate ẽ

Polarisation and Near Degenerate ẽ

Analyse assuming 100 fb−1 for each of the polarisations
configurations.

For P(e− )= ± 80 % P(e+ ) = 0
and then ..
... for P(e− )= +80 % and
P(e+) = ± 22 % or ...
P(e+ ) = ± 30 % or ...
P(e+ ) = ± 60 % .
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Polarisation and Near Degenerate ẽ
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Example: SPS1a’/STC4 Polarisation and Near Degenerate ẽ

Polarisation and Near Degenerate ẽ

Analyse assuming 100 fb−1 for each of the polarisations
configurations.

For P(e− )= ± 80 % P(e+ ) = 0
and then ..
... for P(e− )= +80 % and
P(e+) = ± 22 % or ...
P(e+ ) = ± 30 % or ...
P(e+ ) = ± 60 % .

|P(e+ )| significance Title
(%) of shift(σ) of paper
22 2.4 "Limit on ..."
30 3.5 "Evidence for ..."
60 6.6 "Observation of ..."
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Conclusions

Conclusions

If indeed SUSY is kinematically accessible, the ILC is the ideal place to
study it.

Lepton-collider: Initial state is known.
Production is EW⇒

Small theoretical uncertainties.
No “underpaying event”.
Low cross-sections also for background.
Trigger-less operation, so that even very soft stuff will be on tape.

Many observables accessible: Spectra, angular distributions, total
and differential cross-sections, branching ratios, ...
Often measurable to permil level.
I’ve shown as an example what can be measured in the STC4
bench-mark. Please check out other cases presented this week:

Hale Sert (Thursday 16:30): Very low ∆(M) higgsino production.
Madalina Chera (Friday 11:30): Bosinos decaying to on-shell IVB.
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What to do with all that ?
This Philip just told you all about !!!
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