

BCM1F as an online luminometer for CMS Jessica Leonard DESY-Zeuthen

Fast Beam Condition Monitor BCM1F

Results of luminosity measurement with BCM1F in 2012

Changes to BCM1F for upgrade

Conclusions

8 single-crystal CVD diamonds positioned around the beam-pipe, 5 mm x 5 mm, radial distance 4.5 cm, 1.8 m from interaction point

Bunch-by-bunch information on flux of beam halo and collision products

- Monitor condition of beam
- Measure radiation dose received by detector components
- Calculate luminosity

BCM1F Electronics

Beam Arrival Times

Small geometric acceptance: only "see" small fraction of bunches

BCM1F as Online Luminometer

Demonstrated potential as online luminometer in 2012

- Validation of primary luminosity calculations (HF, pixel)
- Recover missing luminosity in case of glitch in primary calculation

Luminosity Calibration Results

Collision rate as function of beam separation during Van de Meer scan (July 2012)

Measured width gives calibration constant

Comparison to Other Subdetectors

Compare bunch-by-bunch measured beam width to that measured by other luminosity subdetectors

Agreement within 1% on average

Hit Probability

Single hit probability per bunch (only 1st bunch used: avoid inefficiencies due to front-end performance)

- Insensitive to pileup
- Linear extrapolation to higher (upgrade) luminosities reasonable

BCM1F Upgrade Concept

Current carriage

24 diamonds, 48 channels

Laser diodes on carriage arm (lower radiation)

Temperature sensor to account for optical response to temperature Luminosity 10^{34} cm⁻²s⁻¹ \rightarrow BCM1F charged particle flux ~3e7 cm⁻²s⁻¹

Improving Timing Performance

Frontend

- High-amplitude signal saturates front-end electronics (preamplifier) → "overshoot," inefficiency
- Long rise time (25 ns) and timeover-threshold (100 ns) → inefficiency
- New front-end ASIC designed to improve this behavior

Backend

- Fixed-threshold discriminator: "time walk" causes uncertainty, wide single-pulse resolution
- Upgrade to constant-fraction discriminator: eliminates time walk, better single-pulse resolution

Effects of Radiation: Frontend Electronics

Radiation damage of laser driver visible in decreasing signal amplitude

25% gain lost in BCM1F optical transmission after 23 fb⁻¹, fluence 6.73 e13 cm⁻²

Post-upgrade radiation environment will be even more challenging

Future improvements

- Test pulse of two amplitudes: check for linearity
- Move laser driver to lower-radiation field

Recording Histogramming Unit (RHU)

Developed as data acquisition system for BCM1F upgrade

Readout

- Full-orbit count rate histograms
- Post-mortem information

Characteristics

- No deadtime
- Bins of 6.25 ns (4/bunch bucket), 14256 bins/orbit
- Configurable sampling period

Prototype installed September 2012, validation during 2012-2013 running

Conclusions

BCM1F showed potential as online luminometer in 2012

- Beam width agreed with other subdetectors to within 1%
- Hit rate linear over range of luminosities, extrapolation to post-upgrade period reasonable
- Future improvements in the works to increase effectiveness in challenging post-LS1 radiation environment
 - Timing: new front-end ASIC to reduce "overshoot" inefficiency, constant fraction discriminators to improve resolution
 - Radiation damage: lower radiation for laser driver, multiamplitude test pulses
 - RHU developed for readout of bunch-by-bunch rate counts

BCM1F Diamonds

Sccvd from element six

FS

Improving Timing Performance: Front-End

High-amplitude signal saturates front-end electronics (preamplifier) \rightarrow "overshoot," inefficiency

Long rising time (25 ns) and signal time (100 ns) → inefficiency

New front-end ASIC designed to improve this behavior

Improving Timing Performance: Discrimination

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" ΔT ~12 ns

CFDs significantly improve on FTD time walk

- v812: better time resolution for trigger of single pulse
- CFD950: better resolution between consecutive pulses

Improving Timing Performance: Discrimination

Current discriminator: CAEN v258B fixed-threshold discriminator

- Does not discriminate pulses closer than ~12 ns: deadtime causes loss of consecutive signals
- Triggers pulses of different amplitudes at different times: "time walk" ΔT ~12 ns
- Tested two constant-fraction discriminators: CAEN v812, PSI CFD950
- Both CFDs significantly improve on FTD time walk
 - v812: better time resolution for trigger of single pulse
 - CFD950: better resolution between consecutive pulses

Effects of Radiation: Frontend Electronics

Radiation damage of laser driver visible in decreasing signal amplitude

- Test pulses: amplitude steadily decreasing with exposure to radiation
- Data signal height amplitude spectra: saturation at lower amplitude over time
- Improvements for upgrade
 - Test pulse of two amplitudes: check for linearity
 - Move laser driver to lower-radiation field

Recording Histogramming Unit (RHU)

- Readout of full-orbit histograms
- No deadtime
- 8 input channels
- Additional input signals: orbit trigger, bunch clock, beam abort
- Bins of 6.25 ns (4/bunch bucket), 14256 bins/orbit
- Configurable sampling period

BCM1F as Online Luminometer

Demonstrated potential as online luminometer in 2012

- Validation of primary luminosity calculations (HF, pixel)
- Recover missing luminosity for glitch in primary calculation

Effects of Radiation: Diamond Sensors

Polarization \rightarrow Inefficiency, changes with time

Change in response depends on HV, luminosity

Ongoing investigation

 Recent study: thinning diamond appeared to improve polarization, more study needed

Important to characterize systematic error on luminosity calibration

BCM1F Upgrade Concept

Carriage for upgrade

Carbon fiber carriage

- 24 diamonds, 48 channels
- Laser diodes on carriage arm (lower radiation)

Temperature sensor to account for optical response to temperature Luminosity 10^{34} cm⁻²s⁻¹ \rightarrow BCM1F charged particle flux ~3e7 cm⁻²s⁻¹

channels