Search for MSSM $H \rightarrow b\bar{b}$

I. Marfin

on behalf of the DESY Higgs analysis group

DESY

February 19, 2013

DESY

DESY CMS group meeting @ Zeuthen DPG 2013 rehearsal

Outline

- Introduction
- All-hadronic channel
 - All-hadronic signature
 - All-hadronic trigger and event selection
 - All-hadronic background
- Semileptonic channel

- Semileptonic signature
- Triggering events and event selection

- Results
- Conclusions

emileptonic channe

el Systematic uncertainties

Results Conclusions

Introduction

- Discovery of a new Boson was announced on the 4th of July
- Latest mass measurement $m_X = 125.8 \pm 0.4(stat.) \pm 0.4(syst.)$ GeV
- Consistent with a Higgs boson. But which the Higgs boson have we observed?
 - SM? MSSM? NMSSM?
- Higgs sector of MSSM
 - 5 scalars: 2 CP-even (h/H);
 1 CP-odd (A); 2 charged (H[±])
 - only two parameters: $tan\beta = v_u/v_d$; M_A

- Main channel of neutral MSSM Higgs boson production at LHC
 - b-quark radiation off: $gb \rightarrow b\Phi$
 - $\circ~$ gluon-gluon fuison: $gg
 ightarrow bb \Phi$
 - $\bullet \Phi = h, H, A$
- $tan^2\beta$ enhanced cross section
- Light *CP-even h* Higgs boson as 'SM' one at large *M*_A
- Degeneration of *A*, *H* states at large *M*_A
- The current analysis of
 - all-hadronic and semileptonic channels at
 - $\sqrt{s} = 7$ TeV data recorded in 2011 in CMS

All-hadronic channel

- Events with 3 leading (highest-p_T) jets to be b-tagged
- Signal as a peak in invariant mass distribution of the two leading jets (M₁₂)
- · Background mainly from multijet QCD composed of
 - events with 3(2) b- jets and 1 mistagged c/u/d/s/g- jet
- Contributions from $t\bar{t}, Z + jets \le 1\%$

• Signal yield from **2D** fit on *M*₁₂ versus *X*₁₂₃

All-hadronic trigger and event selection

Triggering events

- accept events with
 - $\circ~$ 2 leading jets with $|\eta|$ < 2.6 and p_T p_T > 46,38(60,53) GeV accordingly
 - **b-** tagging jets
 - 2 Higgs boson mass scenarios: Low(Medium)
 - \circ recorded integrated luminosity 2.7 fb⁻¹(4.0 fb⁻¹)

Selection of events

- at least 3 reconstructed jets with $|\eta|$ < 2.2, \textit{p}_{T} > 46,38,20(60,53,20) GeV
- with minimal separation $\Delta R > 1$ between two leading jets
- 3(2) leading jets pass tight **CombinedSecondaryVertex** btagging selection

Background model

- Modeling background in triple-btagged data sample
 - take selected double-btagged data events
 - bbX , bXb , Xbb with untagged X jet
 - weight event-by-event by b-tagging probability of the assumed X flavor
 - 2D templates M₁₂ versus X₁₂₃ to model background
 - X₁₂₃ based on Mass of reco Secondary Vertex (SV) to provide additional separation between *b*-, *c*and *udsg*- jets
 - 5 templates, after merging templates close in shape

Semileptonic channel

- Search of MSSM Higgs Signal in events
 - \circ with 3 leading (highest- p_T) jets to be **b-identified**
 - with at least one non-isolated muon
 - $\circ~$ as a peak in invariant mass distribution of the two leading jets (M_{12})
- Background
 - multijet QCD composed of events with 1 or 2 b-tagged jets
 - $\circ~$ contributions from $\textit{t\bar{t}},\textit{Z}+\textit{jets} \lesssim 1\%$
 - data-driven estimation based on double/single-btag-data sample in control region

- Triggering requires
 - \circ muon with $p_T > 12 \text{ GeV}$
 - $\circ~$ either 1 or 2 jets with $p_{T}>$ 20(30) GeV and $|\eta|<$ 2.6
 - 1 or 2 leading jets online b-tagged
 - total recorded integrated luminosity 4.8 fb⁻¹
- Offline selection
 - at least 3 reconstructed jets having

• $|\eta|$ < 2.6 , ho_T > 30, 30, 20 GeV

- $\circ~$ at least one muon with $p_T>$ 15 GeV. to be in one of 2 first leading jets
- $\circ~$ minimal separation ΔR > 1 for all pairs among 3 leading jets
- b- identification of 2(3) leading jets

Systematic uncertainties

- systematic uncertainties on the expected signal and background estimates
 - affect the cross section estimation
 - $\circ~$ consequently its interpretation within MSSM (*)

Source	All-hadronic	Semileptonic	Туре
Trigger efficiency	10%	3-5%	rate
Online b-tagging efficiency	32%	-	rate
Offline b-tagging efficiency	10–13% [†]	12%	shape/rate
b-tagging efficiency dependence on topology	6%	-	rate
Jet energy scale	1.4-6.8%	3.1%	shape/rate
Jet energy resolution	0.6–1.3%	1.9%	shape/rate
Muon momentum scale and resolution	-	1%	rate
Signal Monte Carlo statistics	1.1–2.6%		rate
Integrated luminosity	2.2%		rate
PDF and α_s uncertainties	3–6%*	2.7–4.7%*	rate
Factorization and renormalization QCD scale	6–28%*		rate
Underlying event and parton showering	4%*		rate

Results

Results. Signal extraction

- All-hadronic channel
- Signal estimation from a fit of $N_{bbb}(f_{sig}T_{sig} + \sum_i f_{bgd}^i T_{bgd}^i)$
- $T_{sig(bgd)}$ corresponded 2D templates in M_{12} and X_{123} space
- The fit results for low-mass scenario

No significant deviation from background

Results. Upper level 95% CL limit on $\sigma \times Br$

- · combination of all-hadronic and semileptonic channels
 - all-hadronic case: remove common to semileptonic events
- CL_s criterion to determine 95%CL limit on signal contribution
 - using RooStats package

• observed upper limit ranges from 312 pb at $M_A = 90$ GeV to 4 pb at $M_A = 350$ GeV

18

18

Results

Results. MSSM interpretation

- MSSM m^{max}_h benchmark scenario.
 - $\circ \ M_{SUSY} = 1 \ TeV, \ X_{t(b)} = 2M_{SUSY}, \ \mu = \pm 200 \ GeV, \ M_{\tilde{g}} = 800 \ GeV, \ M_2 = 200 \ GeV, \ M_3 = 800 \ GeV$
- Results as functions of the MSSM parameters M_A and $tan\beta$
 - Combination of all-hadronic and semileptonic channels
 - @ $\mu = +200 \, GeV$
 - @ $\mu = -200 \, GeV$ with limits set by Tevatron and LEP
 - \circ The 95% CL bound on *tan* β varies from 18 to 42

MSSM limits from the analysis supersede Tevatron results

Summary and conclusions

- Search for a Higgs boson decaying into pair of b quarks produced in association with one or more additional b-jets
 - First time at LHC
 - Highest sensitivity for MSSM bounds in $(tan\beta, M_A)$ space
- Total integrated luminosity of 2.7 4.8 fb⁻¹ collected in 2011 at $\sqrt{s} = 7 \text{ TeV}$ in CMS
- No observed signal above SM expectation
- Upper level 95% CL limit on $pp \rightarrow b\Phi + X, \ \Phi \rightarrow b\bar{b} \ \sigma \times Br$ in 90-350 GeV range
- MSSM interpretation in m_h^{max} scenario in terms of bound in the space of M_A and $tan\beta$
- Excluding a region of parameter space previously unexplored for this final state

Backup slides

Backup slides

Event reconstruction

- The CMS particle-flow event reconstruction
 - o optimized reconstruction and identification of particles in the event
- Reconstructed primary vertex
 - the largest $\sum p_T^2$ of associated tracks
- Reconstructed jets
 - anti- k_T algorithm with R = 0.5
 - Pileup subtraction
- Reconstructed muons
 - o a global track fit
 - track-candidates from
 - inner silicon tracker
 - outer muon system
- Identification of b- quark
 - Combined secondary vertex (CSV) algorithm
 - Likelihood discriminant based on track impact parameter and secondary verices in a jet
 - *CSV* > 0.89

EventBtag

- EventBtag
 - based on Mass of reco Secondary Vertex(SV)
 - provide additional separation between *b*-, *c*- and *udsg*- jets
- SV distributions divided in 3 bins
 - $M_{SV=}[0,1)$; [1,2); [2,∞)
 - Defined variables
 - T₁₂ for 1st and 2nd leading jets
 - T₃ for 3rd leading jet

Background estimation for semileptonic channel

- Background determination
 - two data-driven methods: Matrix method and Nearest-neighbor method on exlusive data regions
 - requires control region (CR) of background enriched data obtained with
 - + two Likelihood discriminators in mass scenarios: $M_{\Phi} \leq$ 180 GeV and $M_{\Phi} >$ 180 GeV
 - Matrix method
 - uses double-b-tag (bbj) control data-sample region
 - weights M₁₂ event-by-event with probability of 3rd jet to be b-tagged:

 $P_3 = \varepsilon_b \cdot f_b + \varepsilon_c \cdot f_c + \varepsilon_q \cdot (1 - f_b - f_c)$

 quark fractions *f* from the fit of 2 templates in CR

- Nearest-neighbor method
- uses single-b-tag (bjj) and triple-b-tag (bbb) CR(train)/SR(test) of data-sample
- parametrizes event kinematics by variables x_i with probabilities w_i to pass selection
- weights M_{12} event-by-event with $P_{bbb} = \frac{N_{bbb}}{N_{blj} \cdot D^2}$, $D^2 = \sum_i w_i^2 (x_i^{test} - x_i^{train})^2$

Results

Results. Signal extraction in semileptonic channel

- Semileptonic channel
- Signal extracted as M^{sig}₁₂ = M^{data}₁₂ M^{bgd}₁₂
- The predicted background with an expacted signal for two Higgs boson masses $M_{\Phi} = 120, 180$

GeV at $tan\beta = 30$ for medium-mass scenario

No significat deviation from background

¹⁸/18