Application of Diamond Based Beam Loss Monitors

Maria Hempel DPG Frühjahrstagung Dresden, 4.-8. März 2013

Content

> Challenges of the LHC

- Beam Losses at the LHC
- Beam Losses Caused by UFOs
- Beam Loss Monitors
- Simulation of Beam Losses Caused by UFOs
 - Beam Loss Distribution
 - Comparison with Ionization Chambers
- > Diamond Measurements
 - UFO Observation with pCVD in IR7
 - Injection Beam Losses Measured with pCVD in IR7
 - Beam Losses in the Abort Gap Measured with sCVD in IR4
- Conclusion

Challenges of the LHC

- LHC accelerates protons with large energy
- > Operational proton particle momentum: 4TeV/c
- > Operational stored beam energy: 130MJ
- > Beam losses deposit energy in equipment
 - mJ/cm³ quench superconducting magnets
 - Larger beam losses can damage material
- Protection of equipment
- Interception of beam losses
- > Large beam losses \rightarrow beam dump

- Injection Losses
- Scattering Processes between residual gas particles and protons
- Scattering processes between dust particles and protons
- Particles with large betatron amplitude hit collimator and produce secondary shower
- > Collision products
- > Beam dump

Beam Losses Caused by UFOs

- Unidentified Falling Objects (UFOs) are dust particles with size of micrometer (10-100µm)
- Falling into the beam from above
- Scattering processes between UFO and proton
 - Inelastic scattering (localized showers)
 - Elastic scattering (over several turns)
- Losses profile is Gaussian
 - Several turns
- > UFOs lead to large losses
 - Beam dump

Beam Loss Monitors

Features	Ionization Chambers	Diamond Detectors
sensors	nitrogen gas	sCVD diamondpCVD diamond
size	50cm x 9cm	 5mm x 5mm (sCVD) cm² (pCVD)
time resolution	40µs (half LHC revolution)	Nanoseconds (bunch-by-bunch)
Measurement	Integration of beam losses	 Integration of beam losses (sCVD) Observation of beam losses with oscilloscope (pCVD)
function	included in the protection system	Bunch-by-bunch beam loss analysis

Ionization chamber

sCVD Diamond

Maria Hempel | Application of Diamond Based Beam Loss Monitors | 06.03.2013 | Page 6

Simulations of Beam Losses Caused by UFOs

- Simulation of UFO event at the injection region
 - Losses over threshold → beam dump
- FLUKA simulated the elastic scattering process between AI and 60k protons
 - Al was used due to the ceramic chambers at the injection
 - An angular distribution of protons was provided
- MadX tracked all protons around the LHC ring
 - Simulation of proton trajectory
 - Provides the loss location

Beam Loss Distribution

Loss locations:

- IR2: protons with large betatron amplitude
- IR3: protons with deviated amplitude in the horizontal plane
- IR6: protons smaller amplitude than in IR3
- IR7: collimators define the global aperture limitation

> Most losses in IR7 \rightarrow important location for beam loss observation

Comparison with Ionization Chambers

- Measurements from ionization chambers next to collimators
- Secondary showers are visible at the ionization chambers
 - Protons hit a collimator and produce a secondary shower
 - Not simulated by MadX (no simulation of interaction with matter)
- Same loss locations for ionization chambers and MadX simulation

Diamond Measurements

- Two types of diamond systems are installed
 - Based on pCVD (8 diamonds): readout with oscilloscope
 - Based on sCVD (14 diamonds) : readout with TDC, ADC, Scaler
- Different locations in the LHC tunnel
- Important location of pCVD: IR7
 - Observation of different beam loss types
 - Global aperture limitation
- Important location of sCVD: IR4
 - Measurement of abort gap population
 - No collimators in IR4

UFO Observation with pCVD in IR7

- Large UFO dumped the beam during increase of losses
- A clear bunch structure is visible
- > UFOs lead to beam losses in each bunch
 - Predicted by simulations
 - Proofed by the diamond measurements
- Losses during beam dump
 - Reason: unbunched beam

Injection Beam Losses Measured with pCVD in IR7

- > Beam losses during 12 injected bunches from pre-accelerator
- > Reason: injection oscillations
 - Injection of particles close to closed orbit
- > Unbunched beam in abort gap due to pilot beam (test beam)

Beam Losses in the Abort Gap Measured with sCVD in IR4

- > Abort gap monitor is BSRA (in IR4) that is based on synchrotron light
 - BSRA for B2 had a broken mirror => additional monitor is required

Proton run with 50ns

spacing 17.08.2012

18:21:40

60000

70000

80000

Arrival time [ns]

90000

h time 5

Entries 3597996

P4 Right

its/TDC bin

300

- Two sCVD are installed in IR4
 - Providing arrival time histograms filled over 10s
 - Rates of B2 are visible (large rates)
 - Rates of B1 are visible (small rates)
 - Particle free gate is visible

Beam Losses in the Abort Gap Measured with sCVD in IR4

- Abort gap monitoring with sCVD diamond and BSRA during gas injection
 - Higher beam loss rates
- Control sample of B2 during gas injection
 - good agreement with gas pressure
- Abort gap cleaning
 - BSRA rates decreases (85%)
 - Normalized diamond rates decrease (fit) (13%)
- Very low statistic for diamond

Conclusion

- Many UFO events appear in the LHC ring
- Simulation of beam loss pattern were done
 - Good agreement with measurements
 - Many losses in IR7
- Observation of bunch-by-bunch beam losses is possible with diamond detectors due to nanosecond time resolution
- > Analysis of different kind of beam loss were done
- > UFO observation
 - UFOs lead to beam losses in each bunch
- > Beam losses during injection
 - Unbunched beam lead to beam losses
- > Abort gap population
 - Small statistic

