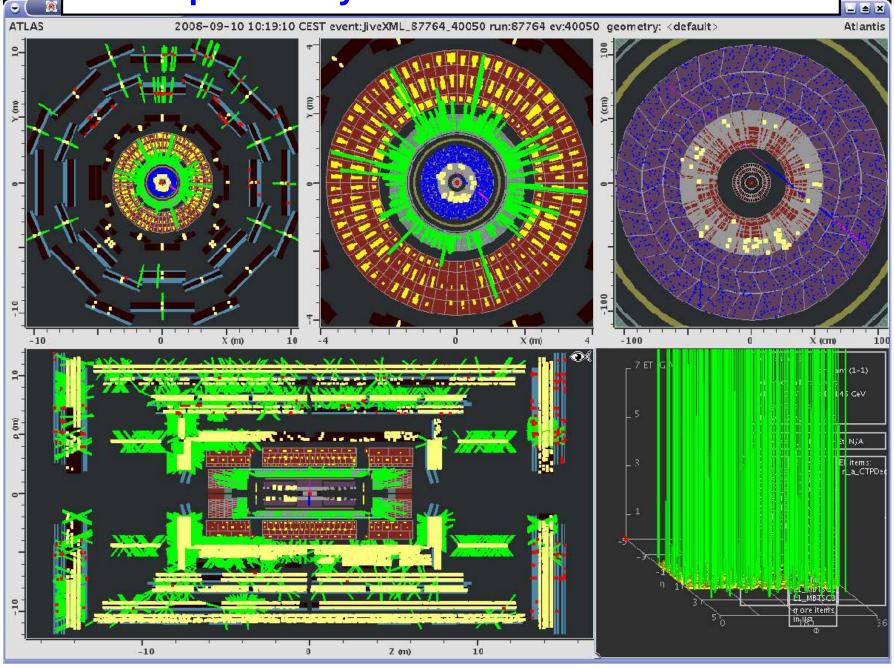
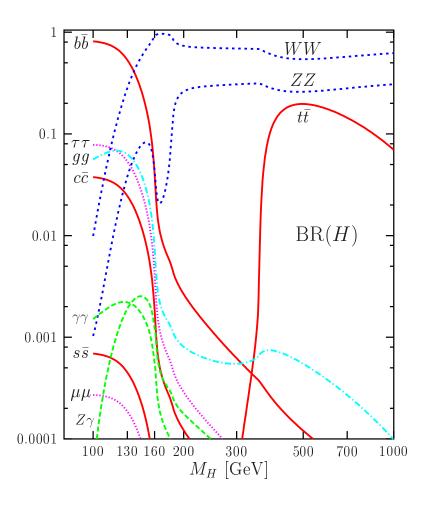
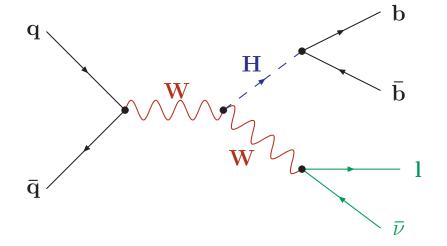
Theoretical predictions for the LHC


Sven-Olaf Moch

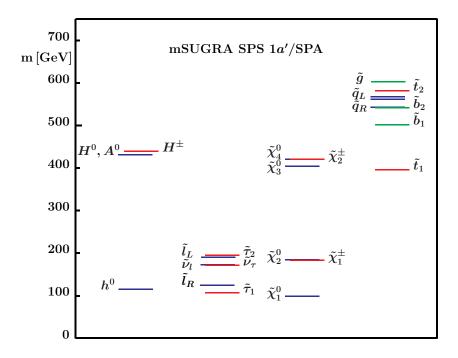
Sven-Olaf.Moch@desy.de

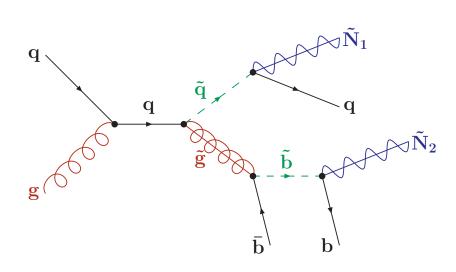

DESY, Zeuthen

Multi particle dynamics in first ATLAS event

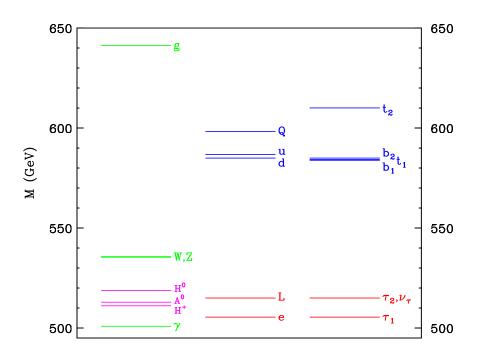


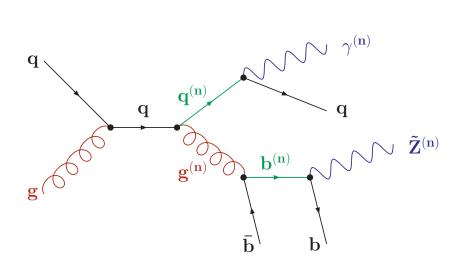
Higgs production at LHC


 Branching ratios for decay of Standard Model Higgs


- High-multiplicity final states
 - typical SM process is accompanied by radiation of multiple jets
- Example: Higgs-strahlung
 - channel $q\bar{q} \rightarrow W(Z)H$ (third largest rate at LHC)
 - dominant decay H o b ar b

Supersymmetry


- Pair-production of supersymmetric particles (R-parity)
 - lightest supersymmetric particle (LSP) must be absolutely stable
- MSSM spectrum
 - typical signature: multiple jets, leptons and missing energy
- ullet Example: neutralino production $ilde{N}_{1,2}^0$
 - electric and color-neutral (dark matter candidate)



Large extra dimensions

- Spectrum of first Kaluza-Klein excitations
 - effective mass \simeq (compactification radius)⁻¹, $m^{(n)} \simeq 1/R$
- Pair-production of excited KK-modes in interactions
 - phenomenology: missing energy in subsequent chain decays

Theoretical predictions for the LHC

Challenge

Solve master equation

new physics = data - Standard Model

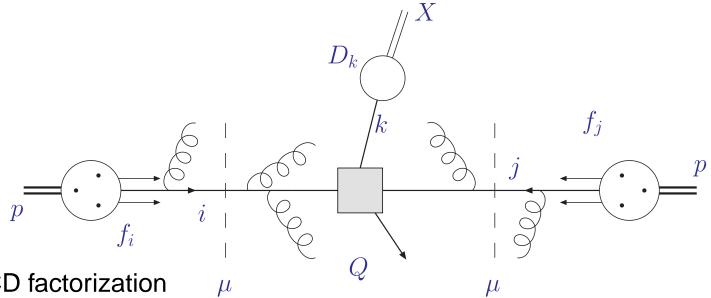
- New physics searches require understanding of SM background
- LHC explores the energy frontier
 - theory has to match or exceed accuracy of LHC data

Theoretical predictions for the LHC

Challenge

Solve master equation

new physics = data - Standard Model


- New physics searches require understanding of SM background
- LHC explores the energy frontier
 - theory has to match or exceed accuracy of LHC data

Tools

- LHC is a QCD machine
 - perturbative QCD is essential and established part of toolkit (we no longer "test" QCD)
- Electroweak corrections important for precision predictions

Perturbative QCD at colliders

- Hard hadron-hadron scattering
 - constituent partons from each incoming hadron interact at short

- QCD factorization
 - separate sensitivity to dynamics from different scales

$$\sigma_{pp\to X} = \sum_{ijk} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to k} \left(\alpha_s(\mu^2), Q^2, \mu^2\right) \otimes D_{k\to X}(\mu^2)$$

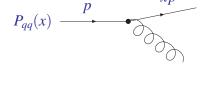
factorization scale μ , subprocess cross section $\hat{\sigma}_{ij\rightarrow k}$ for parton types i, j and hadronic final state XTheoretical predictions for the LHC - p.7

Hard scattering cross section

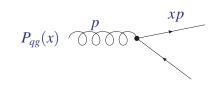
- Standard approach to uncertainties in theoretical predictions
 - variation of factorization scale μ : $\frac{d}{d \ln \mu^2} \sigma_{pp \to X} = \mathcal{O}(\alpha_s^{l+1})$

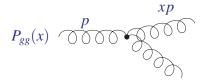
$$\sigma_{pp\to X} = \sum_{ijk} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to k} \left(\alpha_s(\mu^2), Q^2, \mu^2\right) \otimes D_{k\to X}(\mu^2)$$

- Parton cross section $\hat{\sigma}_{ij\to k}$ calculable pertubatively in powers of α_s
 - constituent partons from incoming protons interact at short distances of order $\mathcal{O}(1/Q)$
- Parton luminosity $f_i \otimes f_j$
 - proton: very complicated multi-particle bound state
 - colliders: wide-band beams of quarks and gluons
- Final state X: hadrons, mesons, jets, . . .
 - fragmentation function $D_{k\to X}(\mu^2)$ or jet algorithm
 - interface with showering algorithms (Monte Carlo)

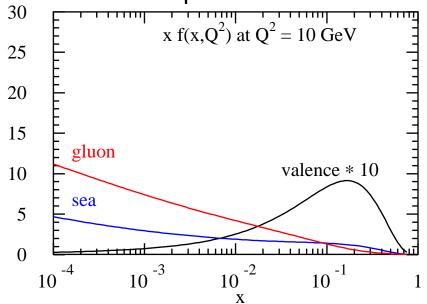


Parton distributions in proton

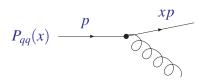

- Evolution equations for parton distributions f_i
 - splitting functions $P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$ (calculable in perturbative QCD)


$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right] (x)$$

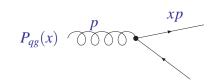
parton splitting in leading order

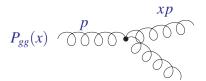


universality: predictions from fits to reference processes

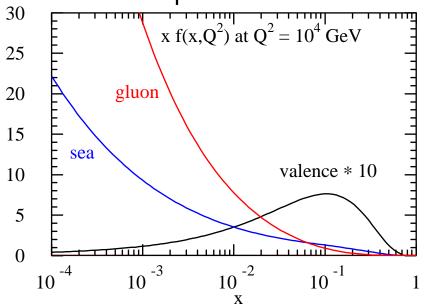


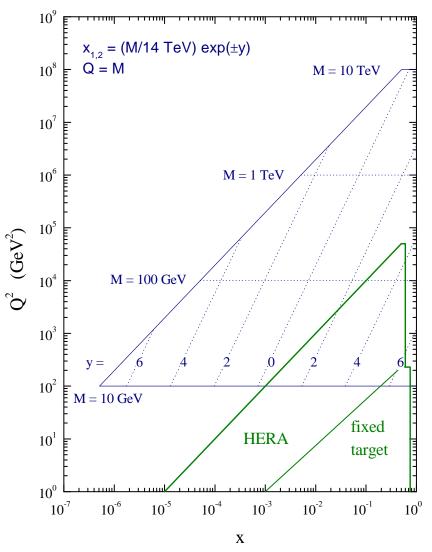
Parton distributions in proton


- Evolution equations for parton distributions f_i
 - splitting functions $P = \alpha_s P^{(0)} + \alpha_s^2 P^{(1)} + \alpha_s^3 P^{(2)} + \dots$ (calculable in perturbative QCD)

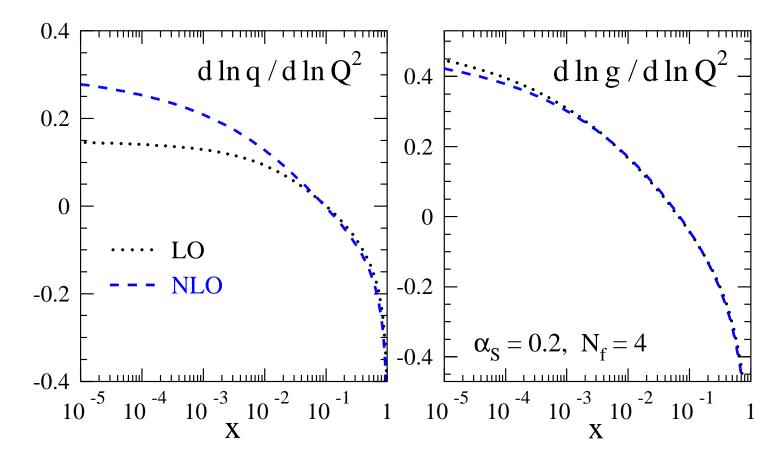

$$\frac{d}{d \ln \mu^2} f_i(x, \mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right] (x)$$

parton splitting in leading order

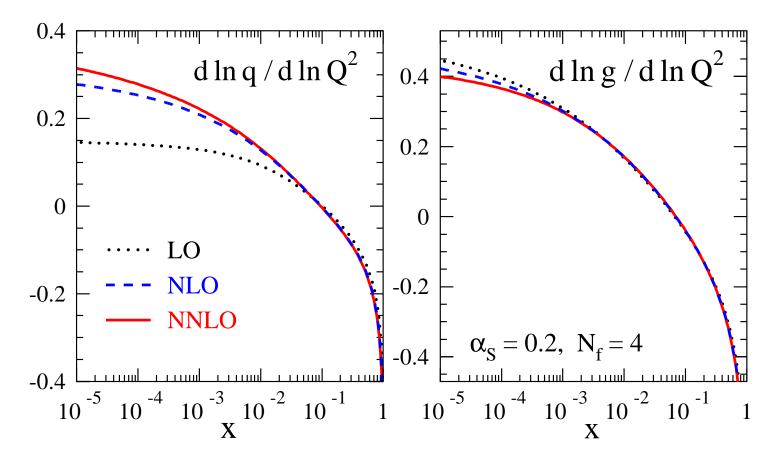



universality: predictions from fits to reference processes

Parton luminosity at LHC


- Precision HERA data on F₂ covers most of the LHC x-range
- Scale evolution of PDFs in Q over two to three orders
- Sensitivity at LHC
 - 100 GeV physics: small-x, sea partons
 - TeV scales: large-x
 - rapidity distributions probe extreme x-values
- Stable evolution in QCD
 - splitting functions to NNLO
 S.M. Vermaseren, Vogt '04

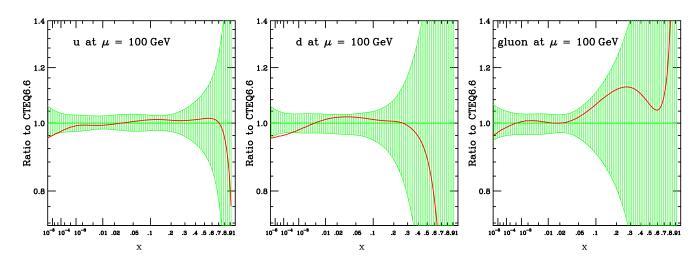
LHC parton kinematics


Perturbative stability of evolution

• Scale derivatives of quark and gluon distributions at $Q^2 \approx 30~{
m GeV}^2$

Perturbative stability of evolution

ullet Scale derivatives of quark and gluon distributions at $Q^2pprox 30~{
m GeV}^2$



■ Expansion very stable except for very small momenta $x \lesssim 10^{-4}$ S.M. Vermaseren, Vogt '04

Status of PDFs

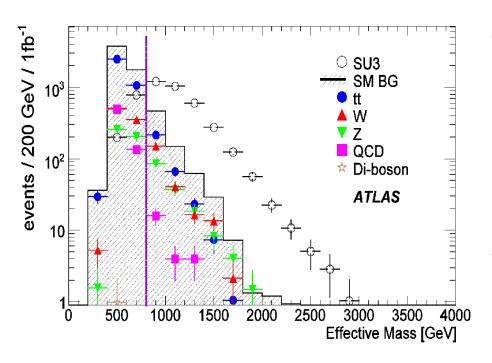
- Public codes for NNLO DGLAP evolution of PDFs PEGASUS Vogt '04; QCDNUM Botje '07; CANDIA Cafarella et al. '08; HOPPET Salam, Rojo '08
- Continuous updates of global fits Alekhin, CTEQ, MSTW collaborations
 - improved treatment of heavy quark (charm) threshold
 - systematic use of uncertainties/correlations
- New experimental data
 - neutrino-nucleon DIS for strange quark PDFs ($s \neq \bar{s}$)
 - HERA jets, Tevatron high- E_T jets (high-x gluon)
 - Tevatron lepton-asymmetry (u, d) flavor separation)

. . . .

Status of PDFs

- Public codes for NNLO DGLAP evolution of PDFs PEGASUS Vogt '04; QCDNUM Botje '07; CANDIA Cafarella et al. '08; HOPPET Salam, Rojo '08
- Continuous updates of global fits Alekhin, CTEQ, MSTW collaborations
 - improved treatment of heavy quark (charm) threshold
 - systematic use of uncertainties/correlations
- New experimental data
 - neutrino-nucleon DIS for strange quark PDFs ($s \neq \bar{s}$)
 - HERA jets, Tevatron high- E_T jets (high-x gluon)
 - Tevatron lepton-asymmetry (u, d) flavor separation)
 - **_**

Outlook


- PDFs are precision physics
 - determination of PDFs from LHC data requires very good control of experimental systematics, e.g. jet measurements, . . .

Parton cross sections

Accuracy of perturbative predictions for σ_{had}

- LO (leading order)
 - Automated tree level calculations in Standard Model, MSSM, ...
 (Madgraph, Sherpa, Alpgen, CompHEP, ...)
 - LO + parton shower
 - String inspired techniques
- NLO (next-to-leading order)
 - Analytical (or numerical) calculations of diagrams yield parton level Monte Carlos (NLOJET++, MCFM, ...)
 - NLO + parton shower (MC@NLO, VINCIA)
- NNLO (next-to-next-to-leading order)
 - selected results known (mostly inclusive kinematics)
- N³LO (next-to-next-to-leading order)
- very few ...

SUSY searches

- Typical selection cuts
 - Njet ≥ 4
 - $E_{T(1)} > 100 \text{GeV}$
 - $E_{T(2,3,4)} > 50$ GeV
 - $M_{\mathsf{eff}} = \mathsf{MET} + \sum_i E_{Ti}$
- Example: mSUGRA, point SU3
 - $m_0 = 100 \text{ GeV}, m_{1/2} = 300 \text{ GeV},$ $\tan \beta = 6, A_0 = -300, \mu > 0$
- ullet SM background in high-end tail of missing E_T
- SM processes at LO with large uncertainty
 - e.g. $pp \to Z(\to \nu \bar{\nu}) + 4 {
 m jets}$ is ${\cal O}(\alpha_s^4)$ and $\Delta(\alpha_s^{\rm LO}) \simeq 10\%$ gives $\Delta(\sigma^{\rm LO}) \simeq 40\%$
- Significance of potential disagreement between data and MadGraph/Sherpa/Algen/...?

Why are one-loop corrections difficult?

Outline of a generic NLO calculation

Real corrections Virtual corrections

- subtractions (IR-divergent) + subtractions (IR-divergent)

Cancellation of singularities

Finite partonic cross sections

Phase space integration

Convolution with PDFs

Monte Carlo

- All conceptual issues solved, but no general libraries available
- Speed and stability are the important criteria in practice

Why are one-loop corrections difficult?

Outline of a generic NLO calculation

Real corrections Virtual corrections

- subtractions (IR-divergent) + subtractions (IR-divergent)

Cancellation of singularities

Finite partonic cross sections

Phase space integration

Convolution with PDFs

Monte Carlo

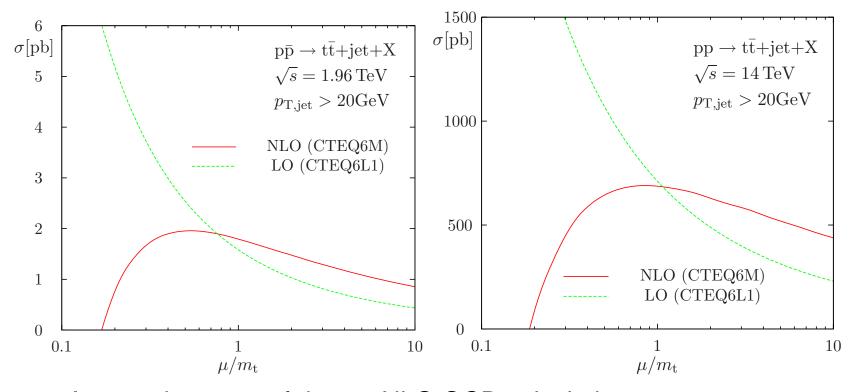
- All conceptual issues solved, but no general libraries available
- Speed and stability are the important criteria in practice

Recent progress

- Cancelation of divergences: automated subtraction Gleisberg, Krauss '07; Seymour, Tevlin '08; S.M., Hasegawa, Uwer '08; Gehrmann, Greiner, Frederix '08
- ✓ Virtual corrections: automated computation of n-point amplitudes Ellis, Giele, Kunszt, Melnikov '08; Giele, Zanderighi '08; Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre '08

NLO virtual amplitudes

- Straightforward in principle hard in practice with known bottlenecks
 - one-loop tensor integrals (standard Passarino-Veltman reduction)


$$I^{\mu_1,\mu_2,\dots}(k_1,\dots) = \int d^D p_1 \frac{p_1^{\mu_1} p_2^{\mu_2} \dots}{(p_1^2 - m_1^2)((p_1 - k_1)^2 - m_2^2) \dots}$$

- New recursive on-shell approach Bern, Dixon, Dunbar, Kosower '94; Britto, Cachazo, Feng '04; Ossola, Pittau, Papadopolous '06, . . .
 - sew tree level amplitudes together (on-shell with complex momenta)
 - algebraic extraction of coefficients of 4-, 3- , 2- and 1-point one-loop scalar integrals

$$\sum_{k=1}^{k-1} c_{4,i} + \sum_{j} c_{3,j} + \sum_{k} c_{2,k}$$

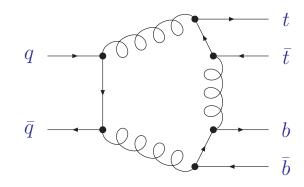
- Use also well-known methods
 - colour ordering; helicity amplitudes; supersymmetry; factorization properties of amplitudes

Example of NLO calculation: $t\bar{t}$ + jet production

- Impressive state-of-the-art NLO QCD calculation Dittmaier, Uwer, Weinzierl '07
- Much improved scale dependence at NLO
 - essential ingredient of NNLO tt-production
- Effect on A_{FB} at Tevatron large: now compatible with zero

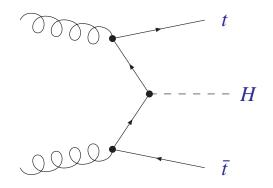
Complete NLO results

▶ NLO cross sections for $2 \rightarrow 3$ processes (e.g. for hadron colliders)


$$pp \rightarrow 3$$
jets, $\gamma\gamma +$ jet, $V + 2$ jets, $t\bar{t}H, b\bar{b}H, t\bar{b}H, b\bar{b}V, HHH, H + 2$ jets, $VV + 2$ jets (VBF)

Bern et al.; Kunszt et al.; Kilgore, Giele; Campbell et al.; Nagy; Del Duca et al.; Campbell, Ellis; Beenakker et al.; Dawson et al.; Dittmaier et al.; Peng et al.; Plehn, Rauch; Febres Cordero et al.; Jäger et al.; Ciccolini et al. '96-'07

- $pp \to t\bar{t} + {\sf jet}$ at NLO Dittmaier, Uwer, Weinzierl '07 $pp \to WW + {\sf jet}$ at NLO Dittmaier, Kallweit, Uwer '07; Campbell, Ellis, Zanderighi '07 $pp \to ZZZ$ at NLO Lazopoulos, Melnikov, Petriello '07 $pp \to WWZ$ at NLO Hankele, Zeppenfeld '07
- Full automation for NLO cross sections for 2 → 3 processes → still to lift off ground
- ightharpoonup 2
 ightharpoonup 4 processes (current frontier of technology)
 - ullet QCD corrections to $\gamma\gamma o tar t bar b$ Guo, Ma, Han, Zhang, Jing '07


Irreducible background

- New: NLO QCD corrections to $q \bar q \to t \bar t b \bar b$ Denner, Dittmaier, Pozzorini '08
 - extremely diffcult hexagon integrals with masses

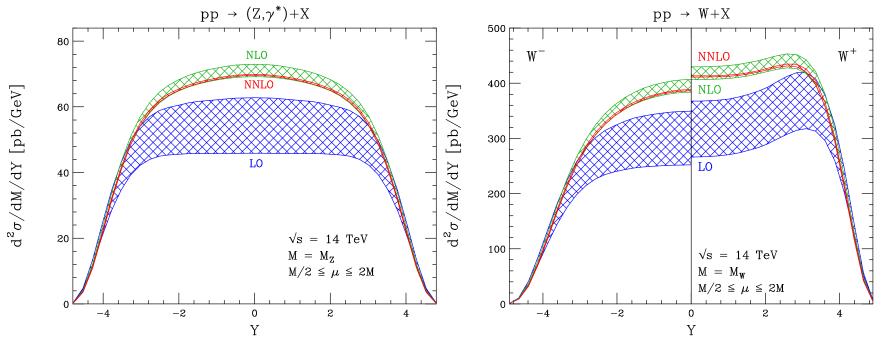
Signal

- Channel $pp \to t\bar{t}H$
 - discovery channel in low mass region $M_H \lesssim 130~{
 m GeV}$
 - driven by gluon luminosity, but large SM background $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$

- ullet Main backgrounds for pp o t ar t H
 - combinatorial background from signal (4 b-quarks in final state)
 - $t\bar{t} + 2$ jets, $t\bar{t}b\bar{b}$, $t\bar{t}Z$ (complex final states)

Case for NNLO

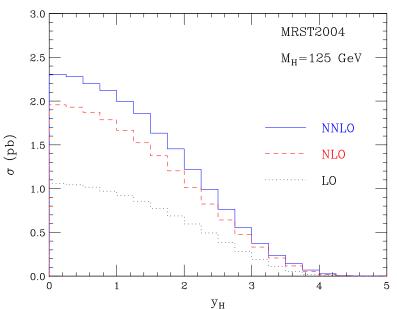
- ullet Hadronic di-jets: large statistics even with high- p_T cuts
 - ullet gluon jets constrain gluon PDF at medium/large x
 - searches for quark sub-structure (di-jet angular correlations)
- NNLO for di-jets important for scale uncertainty, PDF determination, modelling of jets, ...

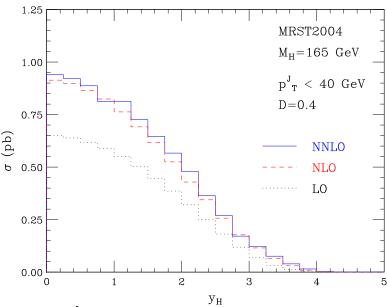

- Calculation of NNLO cross sections
 - cancellation of infrared divergencies highly non-trivial
 - (two-loop) virtual amplitudes

 Anastasiou, Bern, v.d.Bij, De Freitas, Dixon, Ghinculov, Glover, Oleari, Schmidt,
 Tejeda-Yeomans, Wong '01-'04 and Garland, Gehrmann, Glover, Koukoutsakis,
 Remiddi, '02; S.M., Uwer, Weinzierl '02
 - numerical phase space integration very difficult Anastasiou, Del Duca, Frixione, Gehrmann, Gehrmann-De Ridder, Glover, Grazzini, Heinrich, Kilgore, Melnikov, Petriello, Somogyi, Trócsányi, Weinzierl '03-'08
 - major milestone $e^+e^- \rightarrow 3$ jets complete
 Gehrmann, Gehrmann-De Ridder, Glover, Heinrich '07; Weinzierl '08

Gauge boson production at NNLO

• W^{\pm},Z -boson rapidity distribution (scale variation $rac{m_{W,Z}}{2} \leq \mu \leq 2m_{W,Z}$)


Anastasiou, Petriello, Melnikov '05



- NNLO QCD theoretical uncertainties (renormalization / factorization scale) at level of 1% Dissertori et al. '05
- "Standard candle" process for parton luminosity
 - large statistics even in early LHC data

Higgs production in gluon fusion at NNLO

- **Proof.** Bin-integrated Higgs rapidity distribution including decay $H \to \gamma \gamma$
 - QCD corrections up to NNLO Anastasiou, Melnikov, Petriello '05; Catani, Grazzini '07

- Kinematical cuts reduce higher order corrections
 - left: Higgs mass $M_h = 125$ GeV, no cuts on p_t of jets
 - right: Higgs mass $M_h = 165$ GeV and veto on jets with $p_t > 40$ GeV (k_t algorithm for jet reconstruction with jet size D = 0.4)
- Soft gluon resummation reduces scale dependence
 - complete N³LO soft corrections S.M., Vogt '05

Top-quark pair-production

NLO (plain vanilla) QCD corrections known since long Nason, Dawson, Ellis '88; Beenakker, Smith, van Neerven '89; Mangano, Nason, Ridolfi '92; Bernreuther, Brandenburg, Si, Uwer '04; . . .

Kinematical limits

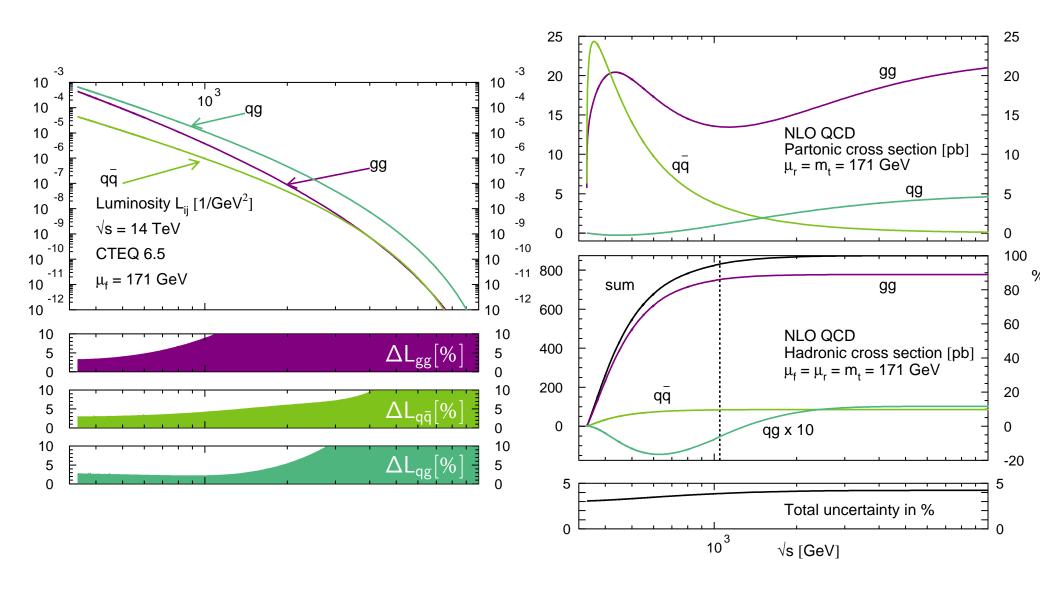
- Exact results partially available
 - ullet full mass dependence for two-loop virtual ${
 m q} ar{
 m q}
 ightarrow {
 m t} ar{
 m t}$ Czakon '08
 - analytic two-loop fermionic corrections for $q\bar{q}\to t\bar{t}$ Bonciani, Ferroglia, Gehrmann, Maitre, Studerus '08
- ullet Small-mass limit $m^2\ll s,t,u$ for two-loop virtual corrections to ${
 m q}ar{
 m q} o {
 m t}ar{
 m t}$ and ${
 m gg} o {
 m t}ar{
 m t}$ S.M., Czakon, Mitov '07
 - based on simple multiplicative relation between massive $\mathcal{M}^{(m)}$ and massless $\mathcal{M}^{(m=0)}$ amplitudes to all orders S.M., Mitov '06
- Threshold at $s \simeq 4m^2$
 - parton cross section exhibit Sudakov-type logarithms $\ln(\beta)$ with velocity of heavy quark $\beta = \sqrt{1 4m^2/s}$ (Sudakov resummation)

$$\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$$

Results

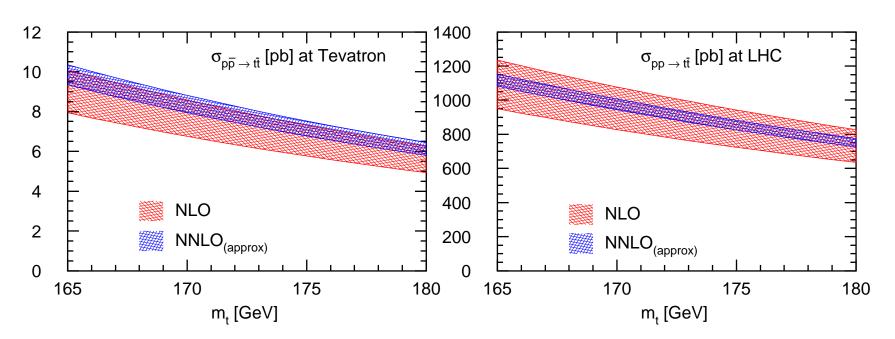
- NNLO cross section for heavy-quark hadro-production near threshold (all powers of $\ln \beta$ and Coulomb corrections) S.M., Uwer '08
 - e.g. gg-fusion for $n_f = 5$ light flavors at $\mu = m$

$$\hat{\sigma}_{gg \to t\bar{t}}^{(1)} = \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 96 \ln^2 \beta - 9.5165 \ln \beta + 35.322 + 5.1698 \frac{1}{\beta} \right\}$$


$$\hat{\sigma}_{gg \to t\bar{t}}^{(2)} = \hat{\sigma}_{gg \to t\bar{t}}^{(0)} \left\{ 4608 \ln^4 \beta - 1894.9 \ln^3 \beta + \left(-3.4811 + 496.30 \frac{1}{\beta} \right) \ln^2 \beta + \left(3144.4 + 321.17 \frac{1}{\beta} \right) \ln \beta + 68.547 \frac{1}{\beta^2} - 196.93 \frac{1}{\beta} + C_{gg}^{(2)} \right\}$$

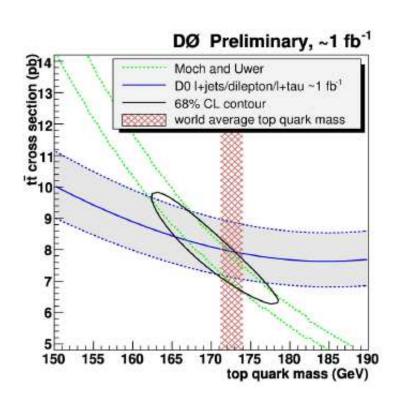
- Add all scale dependent terms
 - $\ln(\mu/m)$ -terms exactly known from renormalization group methods

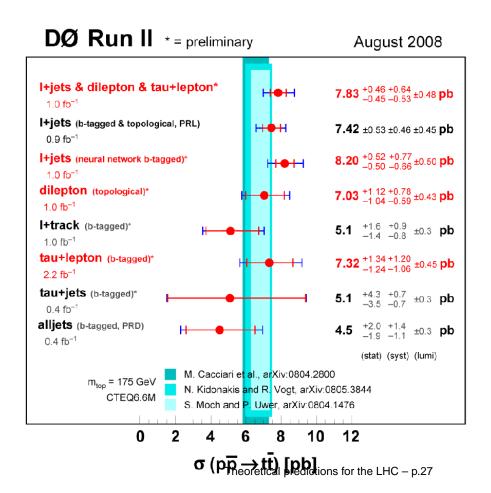
Upshot


Best approximation to complete NNLO

Total cross section at LHC

Top-quark pair-production at NNLO


- NLO (with MRST2006 PDF set)
 - scale uncertainty $\mathcal{O}(10\%) \oplus \mathsf{PDF}$ uncertainty $\mathcal{O}(5\%)$
- NNLO_{approx} (with MRST2006 PDF set)
 - scale uncertainty $\mathcal{O}(3\%) \oplus \mathsf{PDF}$ uncertainty $\mathcal{O}(2\%)$



• Theory at NNLO matches anticipated experimental precision $\mathcal{O}(10\%)$

Tevatron analyses

- Total cross section and different channels of Tevatron analyses (theory uncertainty band from scale variation)
- NNLO allows for precision determinations of m_t from total cross section (slope $d\sigma/dm_t$)

Summary

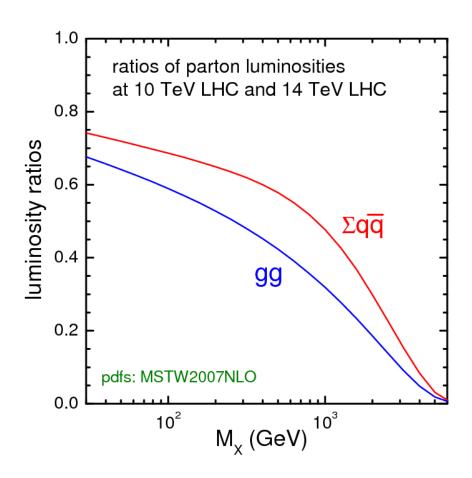
Theory status at the start of LHC

- Perturbative QCD predictions most important
- Parton luminosity at hadron colliders
- Hard parton cross section
 - cross sections for multi-particle production at NLO
 - W^{\pm}/Z -boson production
 - hadro-production of top quarks
- Hadronic final state
 - jet algorithms and fragmentation of (heavy) quarks
 - parton shower Monte Carlo simulation
- Higgs production

→ talk by Anastasiou

Outlook

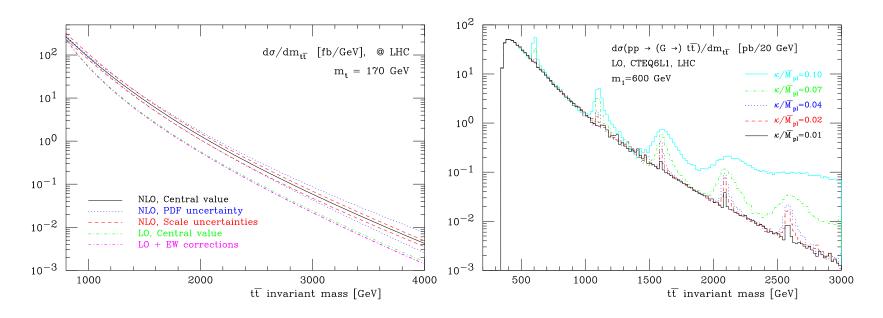
- QCD tool box ready for LHC challenges
 - however, still much dedicated work to do


Literature

- Review
 - Expectations at LHC from hard QCD
 - J. Phys. G: Nucl. Part. Phys. 35, 073001 (2008) [arXiv:0803.0457] [hep-ph].

Back-up Slides

Initial LHC run at 10 TeV


- Cross section estimates through ratio of parton luminosities Stirling at DIS 2008
 - less phase space for production of high mass objects at 10 TeV

- Cross section is reduced by $\mathcal{O}(50)\%$ for masses below ~ 200 GeV (dependent on process)
 - e.g. production of $t\bar{t}$ -pairs reduced by factor of $\mathcal{O}(2)$
- Stronger reduction for scales of $\mathcal{O}(2-3)$ TeV

Invariant mass distribution

ullet Differential distribution in top-quark pair invariant mass $M_{tar t}$

- Left: the $t\bar{t}$ invariant mass spectrum at LHC with NLO electroweak corrections
- Right: s-channel graviton exchange in $t\bar{t}$ invariant mass spectrum at LHC Frederix, Maltoni '07
 - Kaluza-Klein resonances in an extra dimensions model