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Abstract

We present the results of a numerical study on applying aorptige
boundary on the BFKL equation mimicking the full BK equatisor
lution for k&, above the saturation momentum. It is explained how this
strategy can be used to introduce saturation effects ireateyenera-
tors based on the linear smalddynamics.

During the past years there has been much progress in ourstewiding of the high en-
ergy, or smallz, region of QCD. The QCD analysis of the dynamics in this regioggest that
one reaches a new state of matter referred to as the Colos Gtasdensate (CGC) [1] in which
the energy, or, evolution of the relevant physical processes is highlylinear. Although the-
oretically well motivated, it is not really clear that theysits of the CGC has been observed
at present collider experiments. There are a few hints ata#in at HERA, but the problem
is that one has been looking for saturation effects mostlydfusive observables such &3,
for which the expected signatures of saturation, such asiggir scaling, can be mimicked by
the linear evolution as well. Besides, analytical estimatften involve many approximations
and large uncertainties. It should be emphasized that tastign of whether or not saturation
effects are already important at colliders is not an academé. If in fact the nonlinear physics
is important then the extraction of our PDFs, based on tleatigollinear factorization, is wrong
and since the PDFs will be used for almost all the physicsyaralin LHC, the problem could
potentially be very severe. It is therefore very importamestimate the size of the expected
nonlinear corrections.

Although the theory of the nonlinear dynamics is generaligaerstood, detailed calcu-
lations are often very difficult. The smatl-evolution of a hadron wavefunction in the CGC
formalism is governed by the JIMWLK equation which can beren as a Langevin equation
which generates an infinite hierarchy of evolution equatitor the scattering amplitudeg®.
Having a Langevin formulation, the JIMWLK evolution equmtiis amenable for a numerical
study. Although a numerical simulation of the JIMWLK equoatiexists, one is still quite far
from building an event generator from which properties aflesive final states as observed in
experiments could be studied. At the present we therefore teaconclude that we are far from
building an event generator based on the full nonlinear ahycst

In this talk we describe how one can introduce saturatioacedfinto event generators
based on the linear evolution without knowing the full distaif the nonlinear evolution. Al-
though the analytic ideas apply naturally to the BFKL andrtbelinear BK [5, 6] equations, we
shall ultimately be interested in modifying the CASCADE Eent generator which is based

1A possibility could be to use the much simpler dipole modeVektigations on this possibility have been reported
in a series of papers [2—4], but there is yet no final result.



on the CCFM [8] evolution equation. We will study the effeofssaturation fork; above the
saturation momentur@;(x), where we can rely o& -factorization on which both the CCFM
and BFKL evolutions are based. At first sight it might soundrgge to look for the signatures

of saturation abové),, since(); is supposed to mark the border between the nonlinear and the
linear evolutions. It is, however, not true that saturagfiects abruptly set in belowW, while
being negligible above it. The nonlinear evolution whichtaimly dominates the physics below
Q, can still modify what happens at_ abové Q,, where one would naively think that the linear
evolution would be valid.

In discussing saturation, it is convenient to work with th@ntegrated gluon density
¢(z, k1), which in light-cone gauge can be defined as the expectatire \of the Fock space
number operato(aliam. This gluon density is related to the scattering amplitide, r | ) via
the relation
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Although the unintegrated gluon density which enterskthdactorization is a different quantity,
the BFKL equation is identical in both definitions. For BKethonlinear term will look different
whether one uses or the k| -factorizable gluon density. However, our analysis wilt gove

a correct treatment of the, < Q(x) region anyhow, so it does therefore not matter which
quantity we choose. As the nonlinear term written fofsee below) is much simpler, we shall
use¢ as our unintegrated gluon density in what follows, whichstiiginot thek , -factorizable
density.

The BK equation is written in terms gf as
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where as usud” = In1/x anda, = 22 Here we have introduced a running which should
be seen as a phenomenological modification of the leadirgr egliation for whiclw; is fixed.
The linear part of this equation is the BFKL equation. Whatshall do below is to solve the
BFKL and BK equations numerically. We will also solve the BEKquation in the presence
of an absorptive boundary which mimics the full BK equatitioee ;. We now describe this
procedure.

A few years ago it was suggested by Mueller and Triantafglldps [9] that one could
obtain the correct” dependence af), and also the correct form far (Y, r), aboveQ (for r
this means: < Q; ') by simply studying the linear evolution in the presence m&asorptive
boundary. The fact that the essential information of thelinear evolution can be obtained
without knowing the details of it is suggested (for fixeg by a correspondence between small-
QCD and statistical physics. However, one should also beeathat this formal correspondence
is of limited relevance for phenomenology since the usualescforY and k, involved are

2How far up ink_ the effects of saturation are visible for a givetis of course not entirely clear. The numerical
analysis is therefore important.



typically much beyond what is studied at colliders. We sdatuss phenomenological issues
more below. The idea of the absorptive boundary can be edtlas follows.

To control the approach towards the saturation region ondrc8FKL follow the evo-
lution along lines of constant amplitutié’. In particular wheril” is close to, but strictly below
unity, the line of constant amplitude can be identifed with A saddle point approximation then
determines the anomalous dimension which determines thavimeir of 7' near the saturation
boundary. However, even though one follows lines of constamplitude withT" strictly below
unity, one has to be careful since the diffusive nature oBRKL solution means that there may
be "paths” contributing to the solution and which pass thiothe saturation region. For such
paths the BFKL equation does not give the correct treatm&he idea is therefore to endow
BFKL with an absorptive boundary such that all those patlescat out from the solution. As
one is throwing out some of the contributions to the BFKL $aghwint solution, the definition of
the lines of constant amplitude are also modified. It thensuut that)), behaves as (for fixed

as)

InY 3)
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whereC' is some constant (depending ar) andc = 4.9 and~s ~ 0.63. If one had just studied
the lines of constant amplitude for the original BFKL sabutione would instead of the term
%InY getz%slnY. The difference between these two terms represents thdipaidin due to
the nonlinear physics.

More specifically the absorptive boundary is applied agtaedl. Pick first a line of constant
amplitudeQ.(Y) so thatT' (Y, Q-1 (Y)) = const where the constant can be any number much
less than unity (actually). is chosen such tha becomes a constaafter the boundary has
been applied). Then the BFKL saddle point solution is fortedanish at some poing =
In1/(Ar)? = p. — A wherep. = In(Q./A)%. The form of the BFKL solution is such that
T will increase from the poinp = p. down to somep = p, after which it will decrease to
zero atp = p. — A. The point of the maximumy,, can then be identified with the saturation
momenturfi . The parametef can in turn be determined by requiring the consistency caimst
that7'(Y, ps) = b, for someb < 1. This procedure giveg, as written above.

In the numerical simulation we shall proceed in the same Whys we define some critical
valuec, corresponding t@(Y, k.) = c such that is forced to vanish for alk? < k2-exp(—A).
The valuep(Y, k) = 0 is, however, not a fixed point for the BFKL evolution which isntocal
in & as can be seen from (2), and we therefore do not allow poingsevhhas been set to zero
to evolve again. One should notice that neither the analytior the numerical procedure with
the absorptive boundary gives the correct treatment of yinardics below);. The numerical
simulation is important for a detailed analysis, and eglgcfor phenomenology as lowér
values, which are the ones important for phenomenologynareompletely controlled by the
analytical treatment.

%In [9] the analysis was done in coordinate spacelfoHowever, the corresponding analysis in momentum space
for ¢ is basicly the same so in the end we shall apply the boundathédinear part of equation (2).

“This is just a convention. Any line of constant amplitudel @iVe a valid definition. It turns out that, — p. is
just a constant, which appears as the congtairt (3). The overall normalization af)s cannot be determined from
theory.
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In figure 1 we show the solutions to BK, BFKL and BFKL with absire boundary con-
dition (BFKLab) respectively. In the left plot we have thdugsY = 2,4, 6 and8 respectively
while in the right plot we havé” = 10, 20,30 and40. The results for BFKLab have been ob-
tained for a specific set of values of the paramettrand c. Generally we see that we have
to choose the critical value to be around 0.1-0.5 to maitch the full BK solution. It turnd ou
that larger critical values match more smoothly with equagiwhose nonlinear term are cubic,
guartic and so on, as opposed to BK which has a quadraticneamlierm.

We thus see that the BFKLab solution mimics the full BK salatvery well, and not only
for high values forY’, but also for small values where the analytic arguments arehnmore
uncertain. A very important consequence of the saturatienh@anism, which has been known
for some time, is that the evolution with a running becomes much more stable and sensible.
Note that for the completely linear case the solution is wargtable and we see that at around
Y = 20 the linear curve is nowhere close to the nonlinear one, eveerg highk,. Here
we have regulated the singularity in the runnimgby replacing the argumenf with k2 + k2.

For the BFKL solution we use#i = 2 GeV? while for BK and BFKLab we havé3 = 0.5
GeV2. If for BFKL we choose this lower cutoff then the solution ige@ more unstable and
deviates earlier from the nonlinear solutions. Thus theltefepends very sensitively on the
nonperturbative cutoff. For BFKLab the solution is comelgtstable and we have checked that
there is essentially no dependence at allkgn This is in strong contrast to BFKL, and is an
important consequence of the nonlinear physics. This pmoldppears also for CCFM which
like BFKL shows a diffusive behaviour ik, . In event generators based on the linear physics
one has therefore a quite strong dependence on the soft cut.

We have just described how one can economically introduteaten effects into the
linear smallz evolution. This method is very suitable for use in a Montel€éMC) event
generator. The only issue we face now is to go from BFKL to CC&vthere are no event
generators based on BFKL. The CCFM formalism is suitabletlierstudy of exclusive final
states and is implemented in the CASCADE event generatdhodgh BFKL and CCFM are
different formalisms there are nevertheless great simdarbetween the two. We have here no
space to enter a detailed discussion on CCFM. As one of theimpsrtant similarities we shall
however mention the following two points.



Numerical studies [10] have shown that CCFM, just like BFkshpws a broadening of
k1 . Infact this should come as no surprise. Denoting the moaneinthe emitted real gluons by
¢, and that of the-channel propagators By, , one is in CCFM free to go up and down in
with the standardiqu/qi bremstrahlung spectrum. In CCFM we also have angular aorgleri
which prevents real gluons with very low momepgtato be emitted, but this does not put much
constraint on the virtual propagatats which can again perform a random walk. The second
point is that the CCFM gluon density grows as €Xp) where to leading ordek ~ 0.5 just
like in BFKL. Therefore the problem of unitarity is still theefor CCFM, and in particular this
shows that); extracted from CCFM should be very similar to that extradtedh BFKL. We
are currently investigating a numerical solution of the GC&qguation.

In the MC program (for an early application see the talk by kitdk), the gluon distribu-
tion is first constructed by the standard forward evolutibhe gluon ladder is then constructed
via the backward evolution approach, starting from the rsmattering process. The unitarity
constraint can be applied to the first step using the samegyraThis will give us & dis-
tribution which is cut belowQ, (which can be determined once the distribution is known). In
the backward evolution one should then also make sure faist@ncy that no real gluon with
q1 < Qs is emitted, as such gluons would have undergone saturdfiectse (basicly multiple
scatterings).

In the application to event generators, the scales involvednot as large as the ones
showed in figure 1, neither fdr, nor forY'. In fact for k, the phenomenologically relevant part
occupies a very small window in the figure. Here it can pogdigtbe difficult to see any deviation
from the linear physics, especially after full energy-momoen conservation is introduced. The
precise choice of and A can also be important in such a small window. We will come Kack
these issues in a lengthier paper.
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