
Introducing Saturation Effects into Event Generators

Emil Avsar
Institut de Physique Théorique de Saclay
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Abstract
We present the results of a numerical study on applying an absorptive
boundary on the BFKL equation mimicking the full BK equationso-
lution for k⊥ above the saturation momentum. It is explained how this
strategy can be used to introduce saturation effects into event genera-
tors based on the linear smallx dynamics.

During the past years there has been much progress in our understanding of the high en-
ergy, or small-x, region of QCD. The QCD analysis of the dynamics in this region suggest that
one reaches a new state of matter referred to as the Color Glass Condensate (CGC) [1] in which
the energy, orx, evolution of the relevant physical processes is highly nonlinear. Although the-
oretically well motivated, it is not really clear that the physics of the CGC has been observed
at present collider experiments. There are a few hints at saturation at HERA, but the problem
is that one has been looking for saturation effects mostly ininclusive observables such asF2,
for which the expected signatures of saturation, such as geometric scaling, can be mimicked by
the linear evolution as well. Besides, analytical estimates often involve many approximations
and large uncertainties. It should be emphasized that the question of whether or not saturation
effects are already important at colliders is not an academic one. If in fact the nonlinear physics
is important then the extraction of our PDFs, based on the linear collinear factorization, is wrong
and since the PDFs will be used for almost all the physics analyses in LHC, the problem could
potentially be very severe. It is therefore very important to estimate the size of the expected
nonlinear corrections.

Although the theory of the nonlinear dynamics is generally understood, detailed calcu-
lations are often very difficult. The small-x evolution of a hadron wavefunction in the CGC
formalism is governed by the JIMWLK equation which can be rewritten as a Langevin equation
which generates an infinite hierarchy of evolution equations for the scattering amplitudesT k.
Having a Langevin formulation, the JIMWLK evolution equation is amenable for a numerical
study. Although a numerical simulation of the JIMWLK equation exists, one is still quite far
from building an event generator from which properties of exclusive final states as observed in
experiments could be studied. At the present we therefore have to conclude that we are far from
building an event generator based on the full nonlinear dynamics1

In this talk we describe how one can introduce saturation effects into event generators
based on the linear evolution without knowing the full details of the nonlinear evolution. Al-
though the analytic ideas apply naturally to the BFKL and thenonlinear BK [5,6] equations, we
shall ultimately be interested in modifying the CASCADE [7]event generator which is based

1A possibility could be to use the much simpler dipole model. Investigations on this possibility have been reported
in a series of papers [2–4], but there is yet no final result.



on the CCFM [8] evolution equation. We will study the effectsof saturation fork⊥ above the
saturation momentumQs(x), where we can rely onk⊥-factorization on which both the CCFM
and BFKL evolutions are based. At first sight it might sound strange to look for the signatures
of saturation aboveQs, sinceQs is supposed to mark the border between the nonlinear and the
linear evolutions. It is, however, not true that saturationeffects abruptly set in belowQs while
being negligible above it. The nonlinear evolution which certainly dominates the physics below
Qs can still modify what happens atk⊥ above2 Qs, where one would naively think that the linear
evolution would be valid.

In discussing saturation, it is convenient to work with the unintegrated gluon density
φ(x, k⊥), which in light-cone gauge can be defined as the expectation value of the Fock space
number operator〈a†

kak〉. This gluon density is related to the scattering amplitudeT (x, r⊥) via
the relation

T (x, r⊥) = r2

⊥

∫

d2k⊥
(2π)2

e−ik⊥·r⊥φ(x, k⊥). (1)

Although the unintegrated gluon density which enters thek⊥-factorization is a different quantity,
the BFKL equation is identical in both definitions. For BK, the nonlinear term will look different
whether one usesφ or thek⊥-factorizable gluon density. However, our analysis will not give
a correct treatment of thek⊥ ≤ Qs(x) region anyhow, so it does therefore not matter which
quantity we choose. As the nonlinear term written forφ (see below) is much simpler, we shall
useφ as our unintegrated gluon density in what follows, which thus is not thek⊥-factorizable
density.

The BK equation is written in terms ofφ as

∂Y φ(Y, k) =

∫

dk′2

k′2
ᾱs(max(k2, k′2))

{

k′2φ(Y, k′) − k2φ(Y, k)

|k2 − k′2| +
k2φ(Y, k)√
4k′4 + k4

}

−

−ᾱs(k
2)φ2(Y, k) (2)

where as usualY ≡ ln1/x andᾱs ≡ Ncαs

π
. Here we have introduced a runningαs which should

be seen as a phenomenological modification of the leading order equation for whichαs is fixed.
The linear part of this equation is the BFKL equation. What weshall do below is to solve the
BFKL and BK equations numerically. We will also solve the BFKL equation in the presence
of an absorptive boundary which mimics the full BK equation aboveQs. We now describe this
procedure.

A few years ago it was suggested by Mueller and Triantafyllopoulos [9] that one could
obtain the correctY dependence ofQs, and also the correct form forT (Y, r), aboveQs (for r
this meansr ≤ Q−1

s ) by simply studying the linear evolution in the presence of an absorptive
boundary. The fact that the essential information of the nonlinear evolution can be obtained
without knowing the details of it is suggested (for fixedαs) by a correspondence between small-x
QCD and statistical physics. However, one should also be aware that this formal correspondence
is of limited relevance for phenomenology since the usual scales forY and k⊥ involved are

2How far up ink⊥ the effects of saturation are visible for a givenx is of course not entirely clear. The numerical
analysis is therefore important.



typically much beyond what is studied at colliders. We shalldiscuss phenomenological issues
more below. The idea of the absorptive boundary can be outlined as follows.

To control the approach towards the saturation region one can in BFKL follow the evo-
lution along lines of constant amplitude3 T . In particular whenT is close to, but strictly below
unity, the line of constant amplitude can be identifed withQs. A saddle point approximation then
determines the anomalous dimension which determines the behaviour ofT near the saturation
boundary. However, even though one follows lines of constant amplitude withT strictly below
unity, one has to be careful since the diffusive nature of theBFKL solution means that there may
be ”paths” contributing to the solution and which pass through the saturation region. For such
paths the BFKL equation does not give the correct treatment.The idea is therefore to endow
BFKL with an absorptive boundary such that all those paths are cut out from the solution. As
one is throwing out some of the contributions to the BFKL saddle point solution, the definition of
the lines of constant amplitude are also modified. It then turns out thatQs behaves as (for fixed
αs)

lnQ2

s = C + cY − 3

2γs

lnY (3)

whereC is some constant (depending onαs) andc ≈ 4.9 andγs ≈ 0.63. If one had just studied
the lines of constant amplitude for the original BFKL solution one would instead of the term
3

2γs

lnY get 1

2γs

lnY . The difference between these two terms represents the modification due to
the nonlinear physics.

More specifically the absorptive boundary is applied as follows. Pick first a line of constant
amplitudeQc(Y ) so thatT (Y,Q−1

c (Y )) = const where the constant can be any number much
less than unity (actuallyQc is chosen such thatT becomes a constantafter the boundary has
been applied). Then the BFKL saddle point solution is forcedto vanish at some pointρ ≡
ln1/(Λr)2 = ρc − ∆ whereρc ≡ ln(Qc/Λ)2. The form of the BFKL solution is such that
T will increase from the pointρ = ρc down to someρ = ρs after which it will decrease to
zero atρ = ρc − ∆. The point of the maximum,ρs, can then be identified with the saturation
momentum4 . The parameter∆ can in turn be determined by requiring the consistency constraint
thatT (Y, ρs) = b, for someb < 1. This procedure givesQs as written above.

In the numerical simulation we shall proceed in the same way.Thus we define some critical
valuec, corresponding toφ(Y, kc) = c such thatφ is forced to vanish for allk2 ≤ k2

c ·exp(−∆).
The valueφ(Y, k) = 0 is, however, not a fixed point for the BFKL evolution which is nonlocal
in k as can be seen from (2), and we therefore do not allow points whereφ has been set to zero
to evolve again. One should notice that neither the analytical nor the numerical procedure with
the absorptive boundary gives the correct treatment of the dynamics belowQs. The numerical
simulation is important for a detailed analysis, and especially for phenomenology as lowerY
values, which are the ones important for phenomenology, arenot completely controlled by the
analytical treatment.

3In [9] the analysis was done in coordinate space forT . However, the corresponding analysis in momentum space
for φ is basicly the same so in the end we shall apply the boundary for the linear part of equation (2).

4This is just a convention. Any line of constant amplitude will give a valid definition. It turns out thatρs − ρc is
just a constant, which appears as the constantC in (3). The overall normalization ofQs cannot be determined from
theory.
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In figure 1 we show the solutions to BK, BFKL and BFKL with absorptive boundary con-
dition (BFKLab) respectively. In the left plot we have the valuesY = 2, 4, 6 and8 respectively
while in the right plot we haveY = 10, 20, 30 and40. The results for BFKLab have been ob-
tained for a specific set of values of the parameters∆ and c. Generally we see that we have
to choose the critical valuec to be around 0.1-0.5 to match the full BK solution. It turns out
that larger critical values match more smoothly with equations whose nonlinear term are cubic,
quartic and so on, as opposed to BK which has a quadratic nonlinear term.

We thus see that the BFKLab solution mimics the full BK solution very well, and not only
for high values forY , but also for small values where the analytic arguments are much more
uncertain. A very important consequence of the saturation mechanism, which has been known
for some time, is that the evolution with a runningαs becomes much more stable and sensible.
Note that for the completely linear case the solution is veryunstable and we see that at around
Y = 20 the linear curve is nowhere close to the nonlinear one, even at very highk⊥. Here
we have regulated the singularity in the runningαs by replacing the argumentk2 with k2 + k2

0
.

For the BFKL solution we usedk2
0

= 2 GeV2 while for BK and BFKLab we havek2
0

= 0.5
GeV2. If for BFKL we choose this lower cutoff then the solution is even more unstable and
deviates earlier from the nonlinear solutions. Thus the result depends very sensitively on the
nonperturbative cutoff. For BFKLab the solution is completely stable and we have checked that
there is essentially no dependence at all onk0. This is in strong contrast to BFKL, and is an
important consequence of the nonlinear physics. This problem appears also for CCFM which
like BFKL shows a diffusive behaviour ink⊥. In event generators based on the linear physics
one has therefore a quite strong dependence on the soft cut.

We have just described how one can economically introduce saturation effects into the
linear small-x evolution. This method is very suitable for use in a Monte Carlo (MC) event
generator. The only issue we face now is to go from BFKL to CCFMas there are no event
generators based on BFKL. The CCFM formalism is suitable forthe study of exclusive final
states and is implemented in the CASCADE event generator. Although BFKL and CCFM are
different formalisms there are nevertheless great similarities between the two. We have here no
space to enter a detailed discussion on CCFM. As one of the most important similarities we shall
however mention the following two points.



Numerical studies [10] have shown that CCFM, just like BFKL,shows a broadening of
k⊥. Infact this should come as no surprise. Denoting the momenta of the emitted real gluons by
q⊥ and that of thet-channel propagators byk⊥, one is in CCFM free to go up and down ink⊥
with the standardd2q⊥/q2

⊥
bremstrahlung spectrum. In CCFM we also have angular ordering

which prevents real gluons with very low momentaq⊥ to be emitted, but this does not put much
constraint on the virtual propagatorsk⊥ which can again perform a random walk. The second
point is that the CCFM gluon density grows as exp(λY ) where to leading orderλ ≈ 0.5 just
like in BFKL. Therefore the problem of unitarity is still there for CCFM, and in particular this
shows thatQs extracted from CCFM should be very similar to that extractedfrom BFKL. We
are currently investigating a numerical solution of the CCFM equation.

In the MC program (for an early application see the talk by K. Kutak), the gluon distribu-
tion is first constructed by the standard forward evolution.The gluon ladder is then constructed
via the backward evolution approach, starting from the hardscattering process. The unitarity
constraint can be applied to the first step using the same strategy. This will give us ak⊥ dis-
tribution which is cut belowQs (which can be determined once the distribution is known). In
the backward evolution one should then also make sure for consistency that no real gluon with
q⊥ < Qs is emitted, as such gluons would have undergone saturation effects (basicly multiple
scatterings).

In the application to event generators, the scales involvedare not as large as the ones
showed in figure 1, neither fork⊥ nor forY . In fact fork⊥ the phenomenologically relevant part
occupies a very small window in the figure. Here it can potentially be difficult to see any deviation
from the linear physics, especially after full energy-momentum conservation is introduced. The
precise choice ofc and∆ can also be important in such a small window. We will come backto
these issues in a lengthier paper.
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[3] E. Avsar, G. Gustafson and L. Lönnblad JHEP01, 012 (2007).
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