High energy scattering in QCD vs. tiny black holes
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Abstract

We review the holographic conjecture which links the traosifrom
a dilute to a dense system of partons in DIS with the formadicimy
black holes in the gravitational collapse of a perfect flidd.small 't
Hooft coupling and large center-of-mass energies the wfasitar-
ity in the Yang-Mills side is interpreted as the formationaohorizon
due to nonlinear gravitational dynamics in the higher disiemal bulk.
Recent progress in the study of critical behaviour presetita forma-
tion of closed trapped surfaces in the collision of graigtzl shock
waves is also presented.

1 Critical gravitational collapse of a massless scalar fieldnd a perfect fluid

In Ref. [1] it was remarked that the
critical exponent characterizing the
formation of a small black hole in GRHA - dim =

the gravitational collapse of a mass-’
less scalar field is quite similar to the |
critical exponent present in the satu-

ration line of DIS. This line marks.,|
the onset of saturation effects in
the evolution of parton distribution:2 |
functions at very small values™of

01, D = 158.92, Log Zg
Al(), D= 39.92, Log z
20,D = 1341, Log Zgp=-0.

Bjorken z. It should be indicated *[
that the calculation of the critical ex- |
ponent in the QCD side suffers from®

some intrinsic uncertainties even if, |
one stays in the leading logarithmic

approximation. If the calculation ofos - - .
the saturation line is performed us- Log z
ing an effective absorptive barrier
implemented in the integration over
transverse momenta [2] one obtains
a critical exponent- 2.44. Using other approaches where unitarity takes the form airdimear

Fig. 1: Solutions for different CSS backgrounds.
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term in the evolution equation [3, 4] this number changes t2.28 [5]. Nevertheless it is en-
couraging that these are pure numbers independent of the talten for the coupling and that
they are quite similar to each other. Higher order correstim the gauge theory side, such as
next-to-leading order terms, are suppressed if we assuethéhtin’t Hooft coupling is very small.
The calculation of the so-called Choptuik exponent in thavigy side is robust and a recent
study [6] has shown that its value for the scalar field in 5 digi@ns is~ 2.42.

There is a more serious com-
plication to map perturbative satu-
ration with the critical collapse of GRHA - dim=5
a scalar field. In this case the so-*
lutions to Einstein’s equations fomas
any scaleless quantity have a dig;, |
crete self-similarity. This means that
they reproduce themselves after &
simultaneous fixed discrete rescabos
ing in the time and radial comﬁo—ol06
nents. Such a discrete scaling, also
known as “echoing”, is not presento
in the Yang-Mills side. However,,,,
not everything is lost since it is well
known that DIS data for the total °[
cross section in the collision of a vir-oz - : : :

-5 0 5 10

tual photon with a proton manifests Log z
what is known as “geometric scal-
ing”. This behaviour appears for a
large range of values of the virtual-
ity of the photon,@?, when Bjorkenr ~ % /s is smaller than 0.01, with being the center-of-
mass energy in the process. In this region the HERA data isctifun only of the ratio 0f)?
over x to some power [7]. In this way we can consider this scalingaagicuous self-similar
(CSS) because the cross section is invariant under anyirslift, compensated by a similar one
in z. This CSS can be interpreted within perturbative QCD as aequrence of saturation effects
where the parton multiplicity is so large that a simple linealution cannot hold any longer and
recombination effects must be taken into account. Thesetsffire of non-perturbative origin,
in the sense that they are related to the dynamics of the fammaf a high density system, but
not related to confinement since the typical transverse soahe problem is set b@?, always
aboveAdqp.

The natural question now is whether there exists any gtavit@ system with CSS col-
lapse which is characterized by a similar critical exporierthat found in the case of the scalar
field. This question motivated us to study [8] the criticahgtational collapse of a perfect fluid
with barotropic equation of staje= kp and spherical symmetry in arbitrary dimensions. In this
type of collapse black hole singularities are formed withdius given by

Fig. 2: Liapunov perturbations for different CSS backgmsin

TBH ~ (p - p*)n



wherep parameterizes generic values of the initial radial derdityollapsing fluid.p* denotes
a critical region of densities for which, {f is above but close tp*, a singularity appears. We
are particularly interested in this system because thearisolutions app = p* are CSS and
can be directly calculated from Einstein equations soubgettie perfect fluid imposing that they
depend only on the variable= —r/¢. For fine tuned values ¢@f* we numerically obtained these
background solutions at different values of the speed ofidadik in the fluid. An example of
our numerical results is shown in Fig. 1 where we plot theorafithe fluid local density at the
point r over the global density up to that point. We show the behaviduhis function versus
the variablez for different values of in five dimensions. Note thaD, which is related te*,
has to be fine tuned in order to cross the so-called “sonict’haimere the surfaces of constant
z move at a speed equal {dk. The main constraint to select the correct valudois to have
analyticity at this sonic point, indicated by a dot in the figu

The critical exponenty in the formula for the radius of the black hole can be found by
introducing a Lyapunov perturbation around the CSS ciitine y(z) of the form

y(t,2) = () (1+ e (=) 7 m(2)).

To calculate the perturbations(z) it is again crucial to have analyticity at the sonic point.
This condition fixes the value for the single unstable med&he form of the perturbations can
be seen in Fig. 2 wher® = 1/+. The corresponding modes which we calculated for different
dimensions are shown in Table 1. The results for dimensian doincide with those found in
Ref. [9]. Thinking of a possible holographic interpretative have also investigated how these
critical exponents vary with the dimension. To match the hara obtained in QCD we would
be looking for a range off € (0.41,0.44). Of course we now face the problem of selecting
the correctk. A possible candidate would be that corresponding to a cordbfluid of traceless
energy-momentum tensor for whigéh= 1/(d—1). An heuristic motivation for this choice is that
in the linear growth of parton distributions and in the titios vertex from two reggeized gluons
to four reggeized gluons, which is a fundamental piece iruthigarization corrections, there is
an associated L (2, C) invariance [10]. We are currently investigating the exien®f Table 1
up to dimension ten since it is possible that the holographial might live in aAdSs x S°
geometry where all dimensions would be equally importantesithe critical black holes here
discussed can be arbitrarily small. Preliminary studiesstinat+y is close to the QCD range of
results in the conformal limit of ten dimensions.

Although these investigations show encouraging resultarestill far from having a holo-
graphic picture of the problem at hand. There are many unamesir\questions and probably the
most pressing one is to find the geometry corresponding tpén@rbative hard pomeron. In
Ref. [11] this problem was addressed from the large 't Hooftgling perspective arguing that
the main features of the BFKL kernel cannot change too mudhértransition from weak to
strong coupling since it is protected by conformal invac&nOur research targets a more com-
plicated problem, not only because we handle perturbagiselts in the Yang-Mills side but also
because we are at the transition region from a single ponm@oture to a regime dominated by
multiple pomeron exchanges.



k Ya=4 | V=5 | V=6 | Va=7
0.01| 0.114| 0.225| 0.290| 0.330
0.02| 0.123| 0.233| 0.296| 0.336
0.03| 0.131] 0.241| 0.303| 0.342
0.04| 0.140| 0.248| 0.309| 0.348
0.05| 0.148| 0.256 | 0.316| 0.353
0.06| 0.156| 0.263| 0.322| 0.359
0.07| 0.164 | 0.270| 0.328| 0.364
0.08| 0.172| 0.277| 0.334| 0.369
0.09| 0.180| 0.284 | 0.340| 0.375
0.10| 0.187| 0.291 | 0.346| 0.380
0.11| 0.195]| 0.298| 0.352| 0.385
0.12| 0.203| 0.304 | 0.358| 0.390
0.13| 0.210| 0.311| 0.364 | 0.396
0.14| 0.218| 0.318| 0.369| 0.401
0.15| 0.225]| 0.324 | 0.375| 0.406
0.16| 0.232| 0.330| 0.381| 0.411
0.17| 0.240| 0.337| 0.386| 0.416
0.18| 0.247| 0.343| 0.392| 0.421
0.19| 0.254 | 0.347| 0.397| 0.426
0.20| 0.261| 0.356| 0.403| 0.431
0.21| 0.259| 0.362| 0.408| 0.435
0.22| 0.276| 0.368 | 0.414| 0.440
0.23| 0.283| 0.375| 0.419| 0.445
0.24| 0.290| 0.381| 0.425]| 0.450
0.25| 0.297| 0.387 | 0.430| 0.454

Table 1: Values of the Choptuik exponent with precisioi 001 as a function ok ford =4, 5, 6 and 7.



2 Closed trapped surfaces in shock wave collisions

Some light might be shed on these issues if we focus our @iteah a related problem which
shares some features with the physics of saturation. In[R2f.a gravity dual of a boosted
Woods-Saxon nuclear energy density for heavy ions was pegpd-or example, if we consider
gold with a typical sizeL and energyE the corresponding energy momentum tensor on the
gauge theory side]),,, is associated with a bulk gravitational source of the fortm;, z) ~
Eé(z;)6(z — L), wherez; are the transverse coordinates arttie holographic direction in &3
space. The?*! boundary lies at = 0. The solution to the Einstein equations in this space

(I]H3 - %) O (zi,2) = d(u)p(x;, 2)

can be used to construct a five dimensional AdS shock wavegadietry with metric

L2
ds?® = — (—dudv + Zdw? +d2? + %‘I’(xu z)é(u)du2> :
z -

It is very interesting that in [12]
when head-on collisions of heavy
ions, which correspond to the grav- T adS case Bma
itational collision of two shockof——_ s
waves, are considered, a closed
trapped surface is formed. The
area of the trapped surface is ®f
the order of the entropy generatec
in the collision, which is itself Fe— |
lated to the number of genergtec
charged tracks. The total energy in
the system can be written d8 ~ s}
Ju, p(xi, 2). If @ O(3) symmetry
in the H3 plane is assumed then the
source can be written as a functidh|
of the chordal coordinatg(z;, z) = | — . : : - p
(327 + (2 — L)?) /(4zL). In this w
coordinate the trapped surface ISFlg 3: Size of the trapped surface versus the diluting paetar.
characterized by a density function

p(q) describing the strong gravity
collision region such thak' ~ [ p(¢) with the horizon defined by the surfage= q..

It would be important to see if a similar set up could be usedescribe DIS in the sat-
uration region with the onset of nonlinear effects beingitesd to the formation of a trapped
surface. Indeed, we have found that in the formulation of fl@ritical phenomena resembling
that found by Choptuik is present. In order to see this it isdegl to smear the energy den-
sity in the chordal variable using, for example, a Gaussiatmibution with width parametrized
by a variablew. With an AdS metric in different dimensions we have solved the equation t
form a close trapped surface of sigeas a function ofv. The results are plotted in Fig. 3.
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We observe that in dimensions larger than five it is alwaysiptes to form an arbitrary small
trapped surface by simply diluting the initial energy dénsiThis is done by increasing
while keeping the total energy constant. No critical bebawiis found in these dimensions.
However, the situation is more inter-
esting atd = 4,5 since criticality
kicks in. In both cases there exists

Flatcase Dim=4 —

a maximak = w. beyond which it | g:: |
is not possible to form a trapped sur- 8-
face and in the region close to thig 1
point the relation .1 ]
Ge = q: + (wc - w)’y S ! Foooe R
(@)] T el B

o ol

holds with ¢* being different from |
zero ind = 4 and canceling for: | T T T
d = 5. The critical exponenty |
islind = 5and 0.5 ind = 4. 1
When considering the same physies
in a flat background we have found ‘
an equivalent behaviour, shown in° 2 4 6 8 10 2 14
Fig. 4. The only difference is that
now the critical exponent is 0.5 in

both dimensions 4 and 5. Further
details on these results can be found in Ref. [13].

o

Fig. 4: Size of the trapped surface versus the diluting patarw.
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