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Abstract
We review the holographic conjecture which links the transition from
a dilute to a dense system of partons in DIS with the formationof tiny
black holes in the gravitational collapse of a perfect fluid.At small ’t
Hooft coupling and large center-of-mass energies the onsetof unitar-
ity in the Yang-Mills side is interpreted as the formation ofa horizon
due to nonlinear gravitational dynamics in the higher dimensional bulk.
Recent progress in the study of critical behaviour present in the forma-
tion of closed trapped surfaces in the collision of gravitational shock
waves is also presented.

1 Critical gravitational collapse of a massless scalar fieldand a perfect fluid
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Fig. 1: Solutions for different CSS backgrounds.

In Ref. [1] it was remarked that the
critical exponent characterizing the
formation of a small black hole in
the gravitational collapse of a mass-
less scalar field is quite similar to the
critical exponent present in the satu-
ration line of DIS. This line marks
the onset of saturation effects in
the evolution of parton distribution
functions at very small values of
Bjorken x. It should be indicated
that the calculation of the critical ex-
ponent in the QCD side suffers from
some intrinsic uncertainties even if
one stays in the leading logarithmic
approximation. If the calculation of
the saturation line is performed us-
ing an effective absorptive barrier
implemented in the integration over
transverse momenta [2] one obtains
a critical exponent∼ 2.44. Using other approaches where unitarity takes the form of a nonlinear

†speaker



term in the evolution equation [3, 4] this number changes to∼ 2.28 [5]. Nevertheless it is en-
couraging that these are pure numbers independent of the value taken for the coupling and that
they are quite similar to each other. Higher order corrections in the gauge theory side, such as
next-to-leading order terms, are suppressed if we assume that the ’t Hooft coupling is very small.
The calculation of the so-called Choptuik exponent in the gravity side is robust and a recent
study [6] has shown that its value for the scalar field in 5 dimensions is∼ 2.42.
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Fig. 2: Liapunov perturbations for different CSS backgrounds.

There is a more serious com-
plication to map perturbative satu-
ration with the critical collapse of
a scalar field. In this case the so-
lutions to Einstein’s equations for
any scaleless quantity have a dis-
crete self-similarity. This means that
they reproduce themselves after a
simultaneous fixed discrete rescal-
ing in the time and radial compo-
nents. Such a discrete scaling, also
known as “echoing”, is not present
in the Yang-Mills side. However,
not everything is lost since it is well
known that DIS data for the total
cross section in the collision of a vir-
tual photon with a proton manifests
what is known as “geometric scal-
ing”. This behaviour appears for a
large range of values of the virtual-
ity of the photon,Q2, when Bjorkenx ≃ Q2/s is smaller than 0.01, withs being the center-of-
mass energy in the process. In this region the HERA data is a function only of the ratio ofQ2

over x to some power [7]. In this way we can consider this scaling as continuous self-similar
(CSS) because the cross section is invariant under any shiftin Q2, compensated by a similar one
in x. This CSS can be interpreted within perturbative QCD as a consequence of saturation effects
where the parton multiplicity is so large that a simple linear evolution cannot hold any longer and
recombination effects must be taken into account. These effects are of non-perturbative origin,
in the sense that they are related to the dynamics of the formation of a high density system, but
not related to confinement since the typical transverse scale in the problem is set byQ2, always
aboveΛ2

QCD.

The natural question now is whether there exists any gravitational system with CSS col-
lapse which is characterized by a similar critical exponentto that found in the case of the scalar
field. This question motivated us to study [8] the critical gravitational collapse of a perfect fluid
with barotropic equation of statep = kρ and spherical symmetry in arbitrary dimensions. In this
type of collapse black hole singularities are formed with a radius given by

rBH ∼ (p − p∗)γ ,



wherep parameterizes generic values of the initial radial densityof collapsing fluid.p∗ denotes
a critical region of densities for which, ifp is above but close top∗, a singularity appears. We
are particularly interested in this system because the critical solutions atp = p∗ are CSS and
can be directly calculated from Einstein equations sourcedby the perfect fluid imposing that they
depend only on the variablez = −r/t. For fine tuned values ofp∗ we numerically obtained these
background solutions at different values of the speed of sound

√
k in the fluid. An example of

our numerical results is shown in Fig. 1 where we plot the ratio of the fluid local density at the
point r over the global density up to that point. We show the behaviour of this function versus
the variablez for different values ofk in five dimensions. Note thatD, which is related top∗,
has to be fine tuned in order to cross the so-called “sonic point”, where the surfaces of constant
z move at a speed equal to

√
k. The main constraint to select the correct value ofD is to have

analyticity at this sonic point, indicated by a dot in the figure.

The critical exponentγ in the formula for the radius of the black hole can be found by
introducing a Lyapunov perturbation around the CSS critical line y(z) of the form

y(t, z) = y(z)
(

1 + ǫ (−t)−
1

γ y1(z)
)

.

To calculate the perturbationsy1(z) it is again crucial to have analyticity at the sonic point.
This condition fixes the value for the single unstable modeγ. The form of the perturbations can
be seen in Fig. 2 whereλ = 1/γ. The correspondingγ modes which we calculated for different
dimensions are shown in Table 1. The results for dimension four coincide with those found in
Ref. [9]. Thinking of a possible holographic interpretation we have also investigated how these
critical exponents vary with the dimension. To match the numbers obtained in QCD we would
be looking for a range ofγ ∈ (0.41, 0.44). Of course we now face the problem of selecting
the correctk. A possible candidate would be that corresponding to a conformal fluid of traceless
energy-momentum tensor for whichk = 1/(d−1). An heuristic motivation for this choice is that
in the linear growth of parton distributions and in the transition vertex from two reggeized gluons
to four reggeized gluons, which is a fundamental piece in theunitarization corrections, there is
an associatedSL(2, C) invariance [10]. We are currently investigating the extension of Table 1
up to dimension ten since it is possible that the holographicdual might live in aAdS5 × S5

geometry where all dimensions would be equally important since the critical black holes here
discussed can be arbitrarily small. Preliminary studies show thatγ is close to the QCD range of
results in the conformal limit of ten dimensions.

Although these investigations show encouraging results weare still far from having a holo-
graphic picture of the problem at hand. There are many unanswered questions and probably the
most pressing one is to find the geometry corresponding to theperturbative hard pomeron. In
Ref. [11] this problem was addressed from the large ’t Hooft coupling perspective arguing that
the main features of the BFKL kernel cannot change too much inthe transition from weak to
strong coupling since it is protected by conformal invariance. Our research targets a more com-
plicated problem, not only because we handle perturbative results in the Yang-Mills side but also
because we are at the transition region from a single pomeronpicture to a regime dominated by
multiple pomeron exchanges.



k γd=4 γd=5 γd=6 γd=7

0.01 0.114 0.225 0.290 0.330
0.02 0.123 0.233 0.296 0.336
0.03 0.131 0.241 0.303 0.342
0.04 0.140 0.248 0.309 0.348
0.05 0.148 0.256 0.316 0.353
0.06 0.156 0.263 0.322 0.359
0.07 0.164 0.270 0.328 0.364
0.08 0.172 0.277 0.334 0.369
0.09 0.180 0.284 0.340 0.375
0.10 0.187 0.291 0.346 0.380
0.11 0.195 0.298 0.352 0.385
0.12 0.203 0.304 0.358 0.390
0.13 0.210 0.311 0.364 0.396
0.14 0.218 0.318 0.369 0.401
0.15 0.225 0.324 0.375 0.406
0.16 0.232 0.330 0.381 0.411
0.17 0.240 0.337 0.386 0.416
0.18 0.247 0.343 0.392 0.421
0.19 0.254 0.347 0.397 0.426
0.20 0.261 0.356 0.403 0.431
0.21 0.259 0.362 0.408 0.435
0.22 0.276 0.368 0.414 0.440
0.23 0.283 0.375 0.419 0.445
0.24 0.290 0.381 0.425 0.450
0.25 0.297 0.387 0.430 0.454

Table 1: Values of the Choptuik exponent with precision±0.001 as a function ofk for d = 4, 5, 6 and 7.



2 Closed trapped surfaces in shock wave collisions

Some light might be shed on these issues if we focus our attention on a related problem which
shares some features with the physics of saturation. In Ref.[12] a gravity dual of a boosted
Woods-Saxon nuclear energy density for heavy ions was proposed. For example, if we consider
gold with a typical sizeL and energyE the corresponding energy momentum tensor on the
gauge theory side,Tµν , is associated with a bulk gravitational source of the formρ(xi, z) ∼
Eδ(xi)δ(z −L), wherexi are the transverse coordinates andz the holographic direction in aH3

space. TheR3,1 boundary lies atz = 0. The solution to the Einstein equations in this space
(

⊔⊓H3
−

3

L2

)

Φ(xi, z) = δ(u)ρ(xi, z)

can be used to construct a five dimensional AdS shock wave bulkgeometry with metric

ds2 =
L2

z2

(

−dudv +
∑

i

dx2
i + dz2 +

z

L
Φ(xi, z)δ(u)du2

)

.
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Fig. 3: Size of the trapped surface versus the diluting parameterω.

It is very interesting that in [12]
when head-on collisions of heavy
ions, which correspond to the grav-
itational collision of two shock
waves, are considered, a closed
trapped surface is formed. The
area of the trapped surface is of
the order of the entropy generated
in the collision, which is itself re-
lated to the number of generated
charged tracks. The total energy in
the system can be written asE ∼
∫

H3
ρ(xi, z). If a O(3) symmetry

in theH3 plane is assumed then the
source can be written as a function
of the chordal coordinateq(xi, z) =
(
∑

i x
2
i + (z − L)2

)

/(4zL). In this
coordinate the trapped surface is
characterized by a density function
ρ(q) describing the strong gravity
collision region such thatE ∼

∫ qc

0 ρ(q) with the horizon defined by the surfaceq = qc.

It would be important to see if a similar set up could be used todescribe DIS in the sat-
uration region with the onset of nonlinear effects being related to the formation of a trapped
surface. Indeed, we have found that in the formulation of [12] a critical phenomena resembling
that found by Choptuik is present. In order to see this it is needed to smear the energy den-
sity in the chordal variable using, for example, a Gaussian distribution with width parametrized
by a variableω. With anAdS metric in different dimensions we have solved the equation to
form a close trapped surface of sizeqc as a function ofω. The results are plotted in Fig. 3.



We observe that in dimensions larger than five it is always possible to form an arbitrary small
trapped surface by simply diluting the initial energy density. This is done by increasingω
while keeping the total energy constant. No critical behaviour is found in these dimensions.
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Fig. 4: Size of the trapped surface versus the diluting parameterω.

However, the situation is more inter-
esting atd = 4, 5 since criticality
kicks in. In both cases there exists
a maximalω = ωc beyond which it
is not possible to form a trapped sur-
face and in the region close to this
point the relation

qc ≃ q∗c + (ωc − ω)γ

holds with q∗c being different from
zero in d = 4 and canceling for
d = 5. The critical exponentγ
is 1 in d = 5 and 0.5 ind = 4.
When considering the same physics
in a flat background we have found
an equivalent behaviour, shown in
Fig. 4. The only difference is that
now the critical exponentγ is 0.5 in
both dimensions 4 and 5. Further
details on these results can be found in Ref. [13].
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