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Abstract
We illustrate a particular “bottom-up” reconstruction of MSSM param-
eters at the LHC for both general and constrained MSSM, starting from
a limited set of particle mass measurements, using gluino/squark cas-
cade decays and the lightest Higgs boson mass. Our method gives
complementary information to more standard “top-down” reconstruc-
tion approaches and is not restricted to the LHC data properties.

1 Introduction

If new physics is seen at LHC a very first non trivial issue willbe to distinguish supersymmetry
from other beyond standard model (BSM) scenarios, like extra dimensions, little Higgs models
etc. If evidence for low energy supersymmetry is found, the next crucial step would be to mea-
sure Minimal Supersymmetric Standard Model (MSSM) [1] basic parameters accurately enough
to extract precisely the underlying SUSY-breaking mechanism. This may not be easy if only a
limited part of the predicted MSSM sparticles will be discovered and some of their properties
measured with the prospected LHC accuracies. Most reasonable scenarios assume that the light-
est Higgs scalarh could be discovered, and some of the squarks and the gluino are copiously
produced (if not too heavy) at the LHC due to their strong interactions. In addition some of the
neutralinos, including the lightest supersymmetric sparticle (LSP), could be identified and have
their masses extracted indirectly from detailed study of squark and gluino cascade decays (see
e.g. [2]). Various analysis have been conducted [3, 4] to reconstruct the basic MSSM parameter
space from the above assumed experimental measurements. A largely illustrated strategy, in a so-
called “top-down” approach, is to start from a given supersymmetry-breaking model at very high
grand unification (GUT) scale, predicting for given input parameter values of the superpartner
spectrum at experimentally accessible energy scales, and next fitting this spectrum (with other
observables like cross-sections etc) to the data to extractconstraints on the model parameters (see
e.g. [5] for recent elaborated fitting techniques). There ishowever a lively debate now on what
will be the most efficient approaches, either the above “top-down”, or some alternative bottom-
up reconstruction methods; or more “blind” analysis, etc. Among other things there has been
some concern raised about the “LHC inverse problem” i.e. thepossible occurence of discrete
ambiguities (potentially many) in reconstructing basic MSSM parameters [6].

Our aim here is to illustrate a recent alternative bottom-upreconstruction strategy [7],
based on a rather “minimal” set of identified sparticles, within different scenarios (e.g. with
GUT scale universality assumptions or not). Our approach isbased on inverse mapping relations
between measured masses and basic parameters. This has beeninvestigated in the past [8, 9]
but mainly at tree-level approximation and in the context ofthe ILC. One of the novelty here is



to incorporate radiative corrections into our framework atrealistic level, and very similarly to
the way in which radiative corrections are included in more conventional top-down calculations.
This allows to keep most advantages of the bottom-up approach. Our analysis is far from being
fully realistic concerning the LHC data simulations, not using sophisticated Monte Carlo tools
that are ultimately necessary. But the accent is on considering as much as possible realistic and
minimal LHC sparticle identifications, using a limited set of sparticle mass measurements.

2 Experimental assumptions and strategy

At the LHC, one expects to determine quite accurately some sparticle masses (see Table 1 for the
SPS1a benchmark study) from “kinematical endpoints” analysis of (2-body) cascade decays:

g̃ → q̃Lq → χ0

2qfq → l̃Rlqfq → χ0

1lf lqfq (1)

We assume in our analysis that the lightest Higgs massmh will be also measured with good
accuracy, mainly through itsγγ decay mode.

scenarios measured mass expected LHC decay or process
(+th assumptions) accuracy (GeV)

(minimal): mg̃, 7.2 g̃ cascade decay
S1(MSSM), mÑ1

, 3.7 ” ”
S2(universality) mÑ2

. 3.6 ” ”
S4, mq̃L

, 3.7 ” ”
S′

4 (universality) ml̃R
6.0 ” ”

S3 = S1 +: mÑ4
5.1 q̃L → χ̃0

4 + .. cascade
S5, mb̃1

, 7.5 g̃ cascade decay
S′

5
(universality) mb̃2

7.9 ” ”
S6 = S2 + S′

4 + S′

5 +: mh 0.25 (exp)–2 (th) h → γγ (mainly)

Table 1: Different scenariosSi on the amount of sparticle mass measurements at the LHC from gluino cascade and

other decays with different theoretical assumptions (see ref. [7] for more details). Mass accuracies correspond to

SPS1a benchmark studies, combined from refs. [2, 3].

3 Analytic inverse mapping from masses to basic parameters

In the unconstrained MSSM there are three naturally separated sectors (at tree level):
- the gauginos/Higgsinos sector involving the basic MSSM parametersM1, M2, µ, andtan β;
- the squarks/slepton sector involvingµ, tan β, and soft scalar terms̃mqL

, m̃qR
, m̃eL

,...;
- the Higgs sector involvingµ, tan β, MHu

, MHd
, MA.

In each sector one can derive simple analytic inversions (attree-level), i.e. linear or quadratic
equations [7] that express basic MSSM parameters as function of sparticle masses. Our precise
strategy evidently depends on the available input masses (as it is also the case in a top-down
approach). We proceed step by step in the three sectors rather than doing “all at once” fits.



3.1 Incorporating radiative corrections

Radiative corrections (RC) to sparticle masses evidently spoil the above simple inverse mapping
picture, by introducing highly non-linear dependence on all parameters, so that “brute force”
inversion is untractable. However to very good approximation, RC keep a tree-level form, e.g. in
ino sector:µ → µ + ∆µ, M1 → M1 + ∆M1,.. (where∆µ, ∆M1, ∆M2 depend on other sector:
squarks, sleptons, etc), such that it preserves analytic inversion. Moreover the leading RC for
g̃ involve q̃ of cascade (and reciprocally), thus depending on already known parameters. Once
some of the MSSM parameters are determined, one can eventually assume universality (SUGRA)
relationswithin loops as a reasonable approximation in many cases. In our analysis we solve the
analytical (tree-level) inversion equations for various input/output choices, after incorporating
leading RC relating pole to running masses in the above manner. We then vary mass input within
errors (with uniform “flat prior” or Gaussian distributions) to determine constraints on output
basic MSSM parameters within different asumptions on e.g. soft term universality at high scale.

3.2 Gaugino/Higgsino sector from Neutralino masses

Brute inversion of the neutralino mass matrix would be cumbersome and need all four neutralino
mass input. More interestingly, one can extract two relations [7,8] involving only the two relevant
neutralino mass input, to be used differently depending on input/output choice:

P 2

12 +(µ2 +m2

Z −M1M2 +(M1 +M2)S12 −S2

12)P12 +µm2

ZM12 sin 2β−µ2M1M2 = 0 (2)

(M1 + M2 − Sij)P
2
12 + (µ2(M1 + M2) + m2

ZM12 − µ sin 2β))P12

+µ(m2

ZM12 sin 2β − µM1M2)S12 = 0 (3)

with M12 ≡ c2

W M1+s2

W M2, S12 ≡ m̃N1
+m̃N2

, P12 ≡ m̃N1
m̃N2

. In unconstrained MSSM this
determinesM1,M2 for givenµ, tan β mÑ1

,mÑ2
input [7], up to a possible twofold ambiguity,

M1 < M2 or M1 > M2, due to the use of only mass input. If a third neutralino massmÑ4
can

be measured, it gives a simple analytic determination ofµ independently oftan β, again with
discrete ambiguities on theM1,M2, |µ| relative ordering in unconstrained MSSM. Resulting
bounds onM1,M2, |µ| for input accuracies of Table 1 are illustrated in Table 2. Inaddition
one can check specific SUSY-breaking models by comparing these bounds with theM1,M2

determination fromM3, e.g. from mSUGRA GUT universality or differentMi relations in other
models. Alternatively for anyMi relations assumed, one can determineµ andtan β from the very
same Eqs. (2),(3): the corresponding constraints for universalMi(QGUT ) are given in Table 2.

4 Squark, slepton parameter (first two generations)

From the expression of sfermion masses in unconstrained MSSM, e.g for ũ1, ẽ2:

m2

ũ1
= m2

ũL
+ (

1

2
−

2

3
s2

W )m2

Zcos 2β (4)

m2

ẽ2
= m2

ẽR
− s2

W m2

Zcos 2β

we can take linear combinations to eliminate thetan β dependence, obtaining in this way con-
straints on the relevant soft scalar terms independently oftan β. Moreover the RG evolution in



this sector only depends (at one-loop) on gauginoMi and gauge couplings, so that to good ap-
proximation and without further assumptions than the available input from (1) we can determine
mq,l

0
at GUT scale (upon assuming now squark-slepton universality):

86 GeV<
∼ mq,l

0
<
∼ 112 GeV (5)

5 Third generation squark and Higgs sectors with universality assumptions

We can determine the sbottom parametersmQ3L
,mbR

with quite good accuracy both from sbot-
tom masses and/or from (5) if assuming scalar universality (see Table 2). For the Higgs parame-
ters reconstruction, in unconstrained MSSM the prospects at LHC are not optimistic if assuming
solely the input from Table 1. In contrast universality assumptions relatemq,l

0
to scalar terms

mHd
,mHu

, thus predictingmA value:

m̄2

A(m0) = m2

Hd
+ m2

Hu
+ 2µ2 =

m̄2

h(m2

Z − m̄2

h)

m2

Z cos2 2β − m̄2

h

+ RC(mt,Xt, · · ·) (6)

where the second equality is a naive (tree-level) relation definingmA from mh: this is clearly un-
realistic since very important RC enter this relation, sketchily denoted here asRC(mt,Xt, · · ·).
Those RC involve essentially running-to-polemh,mA mass corrections and as is well-known
depend strongly on the top mass and stop parameters (withXt ≡ At − µ/ tan β), among other
MSSM parameters. The naive Eq. (6) nevertheless defines our strategy: Formh accuracy from
Table 1 andmA determined from squark/slepton with universality assumptions, Eq. (5), we can
put some constraints on e.g.RC(mt,Xt) and/ortan β. For the Higgs sector RC we use actu-
ally (elaborated) approximations of one- and two-loop expressions [10] which differ from the full
one-loop + leading two-loop results [11] by 1-2 GeV, i.e. of the order of theoretical uncertainties.

Finally, once the parameters are determined at low scale, weevolve them to GUT scale
with bottom-up renormalization group evolution (RGE)1, studying error propagation from low
to high energy, which can be important for some parameters notably in the scalar sector.

6 Conclusion

We presented a quite simple-minded bottom-up approach essentially based on analytic inverse
mapping from sparticle masses to basic MSSM parameters. It incorporates radiative corrections
at realistic level but is certainly not yet very elaborated as compared to the state-of-the art in
more standard top-down simulation tools. From assumptionsin Table 1, not surprisingly the
constraints (summarized in Table 2) are quite good for the gaugino/Higgsino and squark/slepton
soft terms, even for unconstrained MSSM, while the determination of other parameters liketan β
notably is much less accurate. Those results compare reasonably well with more standard top-
down fitting results [5], but this bottom-up approach also provides complementary information
with a clear handle e.g on discrete reconstruction amibiguities, or other possible obstacles. This
could hopefully suggest new strategies, helping to distinguish from other BSM scenarios since
it exhibits theoretical constraints (e.g. correlations) specific to MSSM and not automatically
foreseen by “global” fit approaches.

1An appropriate bottom-up RGE option is publically available for the SuSpect [12] code versions≥ 2.40.



Table 2: Combined constraints on some MSSM basic parametersfrom bottom-up reconstruction.⋆ indicates discrete

reconstruction amibiguities.

Assumptions Parameter Constraint (GeV) SPS1a
gen. MSSM, M1(QEWSB)⋆ ∼95–115 101.5

mg̃,mÑ1
,mÑ2

. M2(QEWSB)⋆ ∼175–220 191.6
M3(QEWSB) ∼580–595 586.6
µ(QEWSB) ∼280–750 357

+ mN4
µ(QEWSB)⋆ ∼350–372 357

q̃, l̃-universality mq,l
0

(QGUT ) ∼90–112 100
Mi-universality Mi(QGUT ) ∼ 245–255 250

b̃1, b̃2 +universality tan β(QEWSB) ∼3–28 9.74
mQ3L

(QEWSB) ∼490–506 497
mbR

(QEWSB) ∼512–530 522
mSUGRA m0 ∼90-112 100

m1/2 ∼245–255 250
−A0 ∼ -100-350 100

tan β(mZ) ∼ 5.5–28 10

Whatever the approach, the parameter determination will beclearly improved if using
the most sophisticated analysis, both experimental and theoretical. This probably involves new
developments in calculating parameter-to-mass relations(as well as all possible signals) at higher
order accuracy, using new observables, but also exploitingall possible low energy constraints and
the crucial interplay with dark matter observables.
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