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Abstract

Recent results on elastic vector meson production are mqexsand

compared to QCD based model predictions,, @2, ¢ provide a hard

scale. The processes can be described by dipole and 2—gicloarnge

models. Leading neutron and proton production data have inea-

sured and are compared to model predictions. Moreover thdi-co

tional structure functiorFQLN ) is derived from the neutron data.

1 Exclusive diffraction
1.1 Exclusive vector meson production — predictions

The production of vector mesons in the procgss— eV p according to the factorization theorem
can be described as a three step process, if a hard scale dkistphoton fluctuates intogg
pair, carrying the fractional longitudinal momenta z and tespectively. It is followed by the
interaction of the dipole with the proton parametrized b/ dipole cross sectiony;, and finally
the recombination into a vector meson. The amplitude foptibeess is given by the expression
A=Y, Q04 Q¥Yy. While U, is calculable in QEDYy is defined by models or parton—
hadron duality [1].

The dipole cross section is assumed to be universal in theedbat it permits to describe with
the same parameter set the procesges: ¢X,epX, eV p. For the latter proces§? = z(z —
1)(Q*+ M) provides a universal scale. While for longitudinal photegs pairs with fractional
longitudinal momenta ~ (1 — z) ~ % dominate, i.e. the extension of the dipoleris® ~
1(Q? + M), transverse photons contribute upzte= 0,1, hence reliable pQCD calculations
of Ar are only possible at high&p? [1]. Vertex factorization holds in the sense that at fixed t
elastic and inelastic diffraction display the sa@&and W dependence.

In pQCD, 04;, can be modelled in LO by the exchange of two gluons and as a déatnler in
LL % respectively [3, 4]. Hence the vector meson productionscsaestion depends on the gluon

distribution according tay; ~ [zg(x)]? ~ W9 sincez ~ I?/—z; Because of the steep rise of
g(x) for decreasing X is expected to increase for larg. At low Q2 the Regge model predicts
0~ 0.2.

1.2 Hard scales

The measured cross section for the procgss— Vp as a function of the total energy W is
shown in fig.1a. The’—,w— and$—meson cross sections increase with W with an exponent
o comparable with the total cross section, for the heavy qradmn states)(1S5),(2S) and

T (1S5) as predicted by pQCD [1] the increase is steeper. The dipol#ehrascribes the steeper
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Fig. 1: Photoproduction cross section of vector mesons mtifin of cms energy W (a) and fof (1.5) compared
with model predictions(b) [2]

rise of they(2S) cross section to the zero of the wave function and correspglyda smaller
dipole. In summary the mass of the heavy quarkonium stateddas a hard scale; indeed, as
demonstrated by fig.1b, pQCD models reproduce the W—depead¥s(yp — Y (15)p).

If flavour factors are taken into account [5], the cross secdibr the processp — eVp displays

an universal dependence @3 + M. This is predicted by the dipole model [1] since the cross
sections are expected to depend only on the dipole size. Hepéndence of the cross section
at low t can be parametrized by an exponer%?lrv exp(b - t), whereb is an universal function

of Q? + M2 (fig.2a); moreover the slope levels off fQ> + M2 ~ 5 GeV? as predicted by
the dipole model [1], wheré = bg;;, D byy; @andbg;, — 0 for large Q2. The point like photon
probes the gluon distribution of the proton which turns aubé smaller than the proton radius.
Measuring the W—-dependence of the production cross sefctiatifferent Q? intervals,§(Q?)

can be determined. It increases Wit (fig.2b) as expected for a hard process. The data are
compatible with predictions based on 2—gluon exchange lamdiipole model respectively [7].
Figs.1-2 demonstrate th@? + M provides an universal hard scale.

Moreover the momentum transfer t at the proton vertex sapg@lihard scale as shown in fig.3a,
where thet dependence ofi% for the processyp — pY is plotted. At larget the data are
described by a power law with a power characteristic for @ lpmocess [9]. This result can be
generalized, since factorization of the processes at thevéntices have been shown to hold for
a plethora of elastic and inelastic diffractive reactioBslp].

Measurements of the DVCS procegg — ~yp are less sensitive to model assumptions since
the final state is calculable. The measured value¥ @f) ~ 0.8 [11] are compatible with the

expectations for a hard process. The dimensionless vari6)?) = %Qp;l'b(q% allows
2 2y _ ImA(y*p—vyp) _ m-opycs-b(Q?) ;
the study of the)“—dependence anf(Q*) = AT — ap(rpaX) /110 provides

direct information on the general parton distributions @3 is the ratio of the real to imaginary
part of the DVCS scattering amplitude. Recent results [td]Jshown in fig.3b and compared to
model calculations based on GPD’s [12]. The expected skpeffect of 2—gluon exchange is
observed (fig. 3b).
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Fig. 2: (a) Slopé of the t-distribution for the procese — epV as function ofQ? [6] and (b)Q? dependence of
5(Q*) 7]

1.3 Helicity amplitudes

The analysis of the angular distribution for the procesges- ep’p, e®p allows to determine

15 spin density matrix elements (SDME) and 6 helicity anopliesT),_»,, respectively [13]. If
the helicity of the virtual photon is transfered to the veateeson, single as well as double
flip amplitudes should vanish and only 5 SDME should conébumMoreover pQCD predicts
Too > T11 > To1 > Tio,T1-1. Recent results are shown in fig.4 [6]. The five SDME expected
to be nonzero,if SCHC holds, are indeed so; they agree watlptadictions of a pQCD based
model [14]. Except for, ~ TngO, aII other spin—flip SDME are compatible with zero as
predicted by SCHC. The SDM#E, = 2L, whereoy, (o) are the total production cross section
for unpolarized and longitudinal photons respectivelyshewn in fig.4 (left upper corner) as
function of Q2. A leveling off is observed fo€)? ~ 10 GeV?2.
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Fig. 3: (a)t-distribution for the processp — pX [8] and (b) plot of dimensionless variables S and R as funatio
Q% [11]
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Fig. 4: Q*>—dependence of SDME [6] compared to pQCD predictions [14]

2 Leading baryonsinep — eNX

Studying this process allows a test of the applicability tahdard fragmentation models to the
semi-inclusive process; moreover the principle of lingtimagmentation [15], postulating the
factorization of the photon and proton vertex, can be chidikecomparing baryon production
in the processp — NX and~y*p — N X. The interpretation of the data in the spirit of Regge
exchange allows the—flux to be factorized from the inclusive scattering of thecéign on the
w—meson:df;{h = frjp(r,t) - oyer((1 — zL)W,Q%). Moreover the influence of absorption
and migration due to rescattering effects can be studiddg luf interest for models describing
the gap survival probability in diffractive processes atC H6].

In fig.5a data [18] for the proceg® — en X are compared with the prediction of different frag-
mentation models. None describes the data (see also figohly)the RAPGAP Monte Carlo
with m—exchange reproduces their shape [18]. As demonstrated.bip figmixture of DJANGO
and RAPGAP withr—exchange allows to reproduce the data. In the intéival< x; < 0.9
m—exchange dominates. Note, however, that the mﬂo% ~ 2 while for r—exchange
r= % is expected [18], hence the Regge model with isospin 1 exgghanly is not sufficient.

The cross sections for the processes — n + X are suppressed in comparison to those of
the reactiorep — enX (fig.5a), indicating absorption and migration. In the imtdrc;, > 0.5
absorption models [16, 17], based on multi-Pomeron exahaagscribe this suppression rea-
sonably, if one considers the different W-dependence optbeesses. Kaidalov et al. [16] have
shown that migration processes are of importance:fok 0.5.

Finally H1 [19] has derived the ratio of structure functidi&" ) (z, Q2, z1)/Fy (z, Q?) (fig.5¢).
This ratio turns out to be constant over a broad interval ofck@? for 0.37 < =1, < 0.82, which
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Fig. 5: (a) Ratio of normalized cross sections of photo— dadteproduction of leading neutrons as functioncef
[18], (b) conditional structure functiof, ¥ ® as function ofz;, [19] and (c) ratio ofFy V) (z, @, x1.) / Fa(z, Q%)
as function of the kinematical variables [19]

nourishes the hope that the structure functigi(z, Q) can be constrained by these data.
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