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Outline

• QCD Pomeron as “metric fluctuations” in AdS space

• Graviton in AdS becomes a fixed Regge Cut: ( Conformal Invariance )

• Pomeron as a Reggeized Massive Graviton: (Confinement ) 

• Aspects of Analyticity, Unitarity and Confinement

•       Conformal Invariance and Transverse Space,

•       Phase of Eikonal, Saturation, Confinement. 

• Analyticity and Unitarity Constraints on Multi-gluon 
amplitudes



Issues:

Saturation:

Questions:  
Constraints due to Comformal Inv., Analyticity, Unitarity, 
Confinement, etc.

Eikonal Sum in AdS3:

Eikonal,               ,     , given by Pomeron Exchange in AdS.



I. Scale Dependence of  QCD 
and History of Hadron 

Scattering at High Energies



Asymptotic Freedom
perturbative

Confinement 

non-perturbative

Force at Long Distance--Constant    
Tension/Linear Potential, 
Coupling increasing, Quarks and 
Gluons strongly bound <==> 
“Stringy Behavior”



Test of Perturbative QCD-- Deep Inelastic 
Scattering (DIS)

Anomalous Dimension of 

Leading twist operator

DGLAP evolution



Regge Behavior and Regge 
Trajectory
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1 Formula

A ∼ sJ(t) = sα(0)+α′t (1)

2 Executive Summary: 9/16/06

Working in the j-plane, our kernel is K0(u, u′, j, t) = (1/2)
∫ ∞
−∞ dν ψ(ν,u)ψ∗(ν,u′)

j+ν2 , where nor-

malized wave-functions are ψ(ν, u) =
√

2/πqiνKiν(z0

√

|t|e−u)/Γ(iν). Kernel in coordinate
space, is defined by, with t = −$q2,

K̃0(u,$b, j, u′,$b′) =

∫

d2$q

2π
ei$q·($b−$b′)K0(u, u′, j, t). (2)

This can be done in two ways: (1) taking Fourier transform directly, or (2) expressing in
terms of transforms of the wave functions. [The j-dependence will be adjusted to take into
account of BFKL factor, j0, by changing j + ν2 to c(j − j0) + ν2, where c = 2

√
λ.] Here are

the results:

(1) Direct Fourier transform, (using G-R: 6.578.10), leads to, after ν-integration,

K̃(u,$b, j, u′,$b′) ≡ e−(u+u′)K̃0(u,$b, j, u′,$b′) =
e−η

√
c(j−j0)

4πz2
0 sinh η

(3)

where z = z0e−u, z′ = z0e−u′

, and cosh η = z2+z′2+($b−$b′)2

2zz′

(2) Using wave-function in coordinate space, ψ̃(ν, u,$b) =
[

√

2/π iν
2−iνz0e−u

][

z0e−u

|$b|2+(z0e−u)2

]1+iν
,

we arrive at

K̃(u,$b, j, u′,$b′) = e−(u+u′)

∫

d2$b0

8π2

∫ ∞

−∞
dν

ψ̃(ν, u,$b−$b0) ψ̃∗(ν, u′,$b′ −$b0)

c(j − j0) + ν2

=

∫

d2$b0

4π3

∫ ∞

−∞
dν (

ν2

c(j − j0) + ν2
)
[ e−u

|$b −$b0|2 + (z0e−u)2

]1+iν [ e−u′

|$b′ −$b0|2 + (z0e−u′)2

]1−iν
(4)

1



Total Cross Sections 

Figure 1: γγ, γp and p̄p(pp) total cross sections as a function of the center of mass
energy

√
s, which stands respectively for Wγγ ,

√
sγp and

√
spp. Note that we have used

three different units. The bottom curves were calculated in Ref.[17] and for the data
points (close circles for pp and triangles for p̄p) see Ref.[18]. The middle curve was
calculated in Ref.[16] and the higher energy data points are from Refs.[19, 20]. The
top curves are the impact-picture prediction compared to the LEP data, Ref.[1] (open
circles), Ref.[2](close circles, preliminary data), solid curve with AL = 8.5.10−6 and
Ref. [3] (stars, preliminary data) dotted curve with AO = 10−5.
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(IR) Pomeron as Closed String??



BFKL vs Soft Pomeron
• Perturbative QCD
• Short-Distance
•  αBFKL (0) ~ 1.4

• Increasing Virtuality
• No Shrinkage of elastic 

peak
• Fixed-cut in t
• Diffusion in Virtuality
•   

• Non-Perturbative
• Long-distance: 

Confinement
•  αP(0) ~ 1.08
• Fixed trans. Momenta
• Shrinkage of Elastic 

Peak:  <|t|> ~1/ log s
•  α’(0) ~ 0.3 Gev-2

• Diffusion in  impact 
space

UV Pomeron (BFKL):  Scale Invariance

IR Pomeron (Soft Pomeron): Confinement



The QCD Pomeron

We show that in gauge theories with string-
theoretical dual descriptions, the Pomeron 
emerges unambiguously.

Pomeron can be associated with a Reggeized 
Massive Graviton.

Both the IR (soft) Pomeron and the UV 
(BFKL) Pomeron are dealt in a unified single 
step.



Unification
• Soft Pomeron: Diffusion in Impact space,

Hard Pomeron: Diffusion in Virtuality,

• Heterotic Pomeron -- G. M. Levin and CIT  
(ISMD--1993)

• After nearly15 years, Unification through 
AdS/CFT Correspondence via AdS5

12
•  Pomeron is the Graviton in Curved Space (AdS)



Emergence of 5-dim AdS-Space
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Let    z=1/r,           0 < z <  z0,    where     z0 ~ 1/Λqcd       



II: Gauge/String Duality
QCD Pomeron as “metric fluctuations” in AdS

Strong <==> Weak duality

Scale Invariance: 

Confinement: 

Pomeron as Reggeized Massive Graviton



II-a. Gauge/String 
Duality

Degrees of freedom: metric tensor, 
Kolb-Ramond anti-sym. tensor, etc.



Scale Invariance and AdS



Cutoff AdS5

Large Sizes

String/Glueball

Add Confinement
IR wall!



Scale Invariance and AdS

Add Confining IR wall!

Cutoff AdS5

Large Sizes

z=1/r,



QCD Pomeron <===> Graviton (metric) in AdS
Flat-space String Confinement

Conformal Invariance Pomeron in AdS Geometry
Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te



Pomeron in QCD
Glueball



II-b. Spectrum
at strong coupling



4-Dim Massive Graviton 

0= E2 - (p1
2 + p2

2 + p3 2 + pr
2)

5-Dim Massless Mode:

If, due to Curvature in fifth-dim, pr
2 ≠ 0,

 E2 =  (p1
2 + p2

2 + p3
2) + M2

Four-Dimensional Mass:



QCD Pomeron <===> Graviton (metric) in AdS



Approx. Scale Invariance and the 5th dimension

r  ! 1r 
rmin

r-Δ

r-Δ

rΔ -4

Hadron Glueball Massive Onium CurrentΦ(r)

IR WALL

==> Hard Scattering (Polchinski-Strassler)



IIc: Pomeron as 
Diffusion in AdS 



⇐    Diffusion in Impact Space

Flat Space  String Scattering -- Regge Behavior



Regge in AdS5



Diffusion in u=log r: (Effective Hamiltonian at t=0)

Fixed cut in J-plane:

Weak coupling:
(BFKL)

Strong coupling:Te



Comparison of Diffusion in AdS and BFKL

BFKL:

Pomeron in AdS: 
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N = 4 Strong vs Weak BFKL 

2 4 6 8

0.5

1

1.5

2

j0

αN

Strong 

weak 1st 

weak 2nd 
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Main Lesson from AdS/CFT dual description of Diffraction 



The QCD Pomeron and AdS/CFT

•Have shown that in gauge theories with 
string-theoretical dual descriptions, the 
Pomeron emerges unambiguously.

•Pomeron can be identified as Reggeized 
Massive Graviton.

•Both the IR Pomeron and the UV Pomeron 
are dealt in a unified single step.

•Both conceptual and practical advantages.
•



Conformal limit: 

Confinement:

III. Conformal Invariance at 
HE and Graviton

* Reduction to AdS_3
* Conformal Invariance







Emergence of 5-dim AdS-Space
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Let    z=1/r,           0 < z <  z0,    where     z0 ~ 1/Λqcd       



Remarks on AdS3 Propagator:

37

  

•  Large λ  ⇒  j ~ 2.

• λ infinite, s large and fixed  ⇒  j=2, and Graviton exchange

•  λ and s infinite,                           ⇒     Pomeron exchange, in        
order to resolve “fine structure”, with  

• Conformal Invariance, a function of a single AdS3 invariant.



Strong Coupling Pomeron Propagator--
Conformal Limit

• AdS-3 propagator:

• BFKL kernel:

This is just a realization of the fact that boosts M+− commute with all the generators of SL(2, C)

in the conformal group. (IS THIS TRUE?) As a consequence the Euclidean AdS3 isometries, it

is not surprising that this converts the Regge problem into the wave equation for a propagator

in Euclidean AdS3. This connection will be exploited in detail below. (Need to state things

better.)

We note first that the eigenfunctions,

ψν(u, x⊥ − x′
⊥) =

iν

πz

[
z

z2 + (x⊥ − x′
⊥)2

]1+iν

(3.9)

for Hψ = Eφ, E = 4 + ν2, are, upto this rescaling by this factor e−u, the bulk to boundary

propagator for AdS3. To be precise, after conjugating Eq. (??) with e−u and eu, it leads to

a scalar wave equation in AdS3 with an AdS mass.3 It follows that the Pomeron propagator,

K(j, x⊥ − x′
⊥, z, z′), other than a scaling factor of 1/zz′, is the AdS3 scalar bulk-to-bulk Greens

function, 〈φ∆3(x⊥, z)φ∆3(x
′
⊥, z′)〉, with conformal dimension ∆3 = ∆+(j) − 1, where ∆+(j) is

the root of ∆(∆ − 4) = 2
√

λ(j − 2), with ∆+(j) > 2. The structure of this ∆ − j relation 4 is

illustrated in Fig. ??.

A standard analysis then leads to

K(j, x⊥ − x′
⊥, z, z′) =

1

4πzz′

[
y +

√
y2 − 1

](2−∆+(j))

√
y2 − 1

, (3.10)

where the cordal distances in AdS3 is

y ± 1 =
(z ∓ z′)2 + (x⊥ − x′

⊥)2

2zz′

With ∆+(j) > 2, this propagator satisfies Dirichlet boundary conditions, G → 0 when z → 0

and z → ∞. We note that ∆+(j) can also be written as ∆+(j) = 2+
√

c(j − j0), where c = 2
√

λ.

The BFKL singularity j0 corresponds to the minimum of the j(∆) at ∆ = 2.

3Note that a general scalar AdSd+1 bulk to boundary propagator, (D’Hoker and Freedman, hep-th/9811257),

is 〈φ∆(x, z)φ∆(x0, 0)〉 ≡ K∆(x, z; x0, 0) = C∆

h

z
z2+(!x−!x0)2

i∆
→ zd−∆δd(#x − #x0) as z → 0 with ∆ = d/2 ±

p

d2/4 + m2 and C∆ = Γ(∆)/(πd/2Γ(∆ − d/2)), m being the AdS mass. By examining Eq. (??), where j enters

formally as a part of AdS mass squared, we find that the Pomeron kernel satisfies the same scalar wave equation,

with d = 2 and ∆3 = 1+
√

1 + m2, m2 = 3− 2
√

λ(2− j) = −1 +2
√

λ(j − j0). Here j0 = 2− 2/
√

λ is the location

of the BFKL branch point in the strong coupling limit found in Ref. BPST.
4There is a more general relation between 4-dim conformal dimension ∆ and spin j. Here, we explore this

relation in the strong coupling in the region near j = 2. The deviation of ∆+(j) from the canonical dimension

∆(0) = 2 + j yields the anomalous dimension. Traditional weak coupling analysis can be understood as exploring

the structure of this curve either by perturbing around j = 1 (BFKL) or around ∆ = j + 2 (DGLAP). See

Ref. BPST for further discussion. Recently, the opposite limit of ∆ and j → ∞ has been studied intensively in

establishing AdS/CFT for N = 4 YM. Ref. XYZZYX.
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This simple result is related to the intuitive picture of scattering of two highly boosted objects

contracted in the longitudinal direction and follows essentially from the conformal algebraic

structure of AdS3. It is interesting to note that this structure is similar to the weak coupling

one loop n gluon BFKL spin chain operator, HBFKL =
∑n

i=1[H(J2
i,i+1) + H(J̄2

i,i+1)], where the

two body operator is a sum of holomorphic and anti-holomorphic function of the Casimir. To

be exact the operator is defined by its action on two body eigenstates,

H(J2
1,2)Φn,ν = [2ψ(1) − ψ(h) − ψ(1 − h)]Φn,ν (3.11)

with 5

Φn,ν(b1 − b0, b2 − b0) =
[ b1 − b2

(b1 − b0)(b2 − b0)

]iν+(1+n)/2 [ b̄1 − b̄2

(b̄1 − b̄0)(b̄2 − b̄0)

]iν+(1−n)/2
(3.12)

and weight h = iν +(n+1)/2. Here the impact parameters are complex numbers, bi = bi,x + bi,y

for each gluon in the chain.

Presumably the fact that the SL(2,C) representation in the leading strong coupling Hamiltonian

obeys J̄2 = J2 with eigenstates independent of n = h− h̄ reflects the nearly point-like property

of a string in this limit. In strong coupling one should visualize the Pomeron as a tight binding

(or mean field) description of the exchange of an infinite number of gluonic “string bits”. (Blaa

Blaa make this more precise in a future article?)

An important observation for the simplicity of Eq. (??) is the fact that the propagator vanishes

at large separation in impact parameter space as a power,

K(j, x⊥ − x′
⊥, z, z′) ∼ [(x⊥ − x′

⊥)2]1−∆+(j) (3.13)

where we have used the fact that ∆+(j) = 2 +
√

c(j − j0). As a function of j it contains a

branch point at j = j0, the BFKL singularity in the strong coupling limit. For j = j0,

K(j0, x⊥ − x′
⊥, z, z′) ∼ 1

(x⊥ − x′
⊥)2

, (3.14)

which simply reflects the dominance of a massless exchange at large impact separation.

The remarkable simplicity of Eq. (??) will be modified when confinement is taken into account.

In particular, it is often not possible to solve for the Pomeron kernel in closed analytic form.

Furthermore, we expect the feature of power behavior for large impact separation will change

dramatically when confinement is taken into account. This in turn would have important con-

sequence on saturating the Froissart bound. In order to explore methods amenable to the case

5As pointed out in Ref. BPST, in comparing with our strong coupling result, the convention used requires a

translation of ν → ν/2.
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h

z
z2+(!x−!x0)2

i∆
→ zd−∆δd(#x − #x0) as z → 0 with ∆ = d/2 ±

p

d2/4 + m2 and C∆ = Γ(∆)/(πd/2Γ(∆ − d/2)), m being the AdS mass. By examining Eq. (??), where j enters

formally as a part of AdS mass squared, we find that the Pomeron kernel satisfies the same scalar wave equation,

with d = 2 and ∆3 = 1+
√

1 + m2, m2 = 3− 2
√

λ(2− j) = −1 +2
√

λ(j − j0). Here j0 = 2− 2/
√

λ is the location

of the BFKL branch point in the strong coupling limit found in Ref. BPST.
4There is a more general relation between 4-dim conformal dimension ∆ and spin j. Here, we explore this

relation in the strong coupling in the region near j = 2. The deviation of ∆+(j) from the canonical dimension

∆(0) = 2 + j yields the anomalous dimension. Traditional weak coupling analysis can be understood as exploring

the structure of this curve either by perturbing around j = 1 (BFKL) or around ∆ = j + 2 (DGLAP). See

Ref. BPST for further discussion. Recently, the opposite limit of ∆ and j → ∞ has been studied intensively in

establishing AdS/CFT for N = 4 YM. Ref. XYZZYX.
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One Graviton in Momentum 
Representation at High Energy

J = 2,   Δ = 4

Figure 9: The t-channel exchange graph

As in the past, we simplify the integral by using translation invariance to translate x1 to
0, and then performing an inversion. As a result,

A(w, x1, x3) = |x13|−2∆3I(w′ − x′
13) , I(w) =

∫

H

d5z

z5
0

G∆(w, z)
z∆1+∆3
0

z2∆3
(7.32)

We now use the fact that G∆ is a Green function and satisfies ( w +∆(∆−d))G∆(w, z) =
δ(w, z), so that

( w + ∆(∆ − d))I(w) =
w∆1+∆3

0

w2∆3
(7.33)

In terms of the scale invariant combination ζ = w2
0/w

2, we have I(w) = w∆13
0 fS(ζ), ∆13 =

∆1 − ∆3 and the function fS now satisfies the following differential equation

4ζ2(ζ − 1)f ′′
S + 4ζ [(∆13 + 1)ζ − ∆13 + d/2 − 1]f ′

S (7.34)

+(∆ − ∆13)(∆ + ∆13 − d)fS = ζ∆3

Making the change of variables σ = 1/ζ , we find that the new differential equation is
manifestly of the hypergeometric type and is solved by

fS(ζ) = F
(

∆ − ∆13

2
,
d − ∆ − ∆13

2
;
d

2
; 1 − 1

ζ

)
(7.35)

The other linearly independent solution to the hypergeometric equation is singular as
ζ → 1, which is unacceptable since the original integral was perfectly regular in this limit
(which corresponds to $w → 0).

It is easier, however, to find the solutions in terms of a power series, fS(ζ) =
∑

k fSkζk.
Upon substitution into (7.34), we find solutions that truncate to a finite number of terms
in ζ , provided ∆1 +∆3−∆ is a positive integer. Notice that k need not take integer values,
rather k −∆3 must be integer. The series truncates from above at kmax = ∆3 − 1, so that
fSk = 0 when k ≥ ∆3, and

fSk =
Γ(k)Γ(k + ∆13)Γ(1

2{∆1 + ∆3 − ∆})Γ(1
2{∆ + ∆1 + ∆3 − d})

4Γ(∆1)Γ(∆3)Γ(k + 1 + 1
2{∆13 − ∆})Γ(k + 1 + 1

2{∆13 + ∆ − d})
(7.36)

Still under the assumption that ∆1 +∆3 −∆ is a positive integer, the series also truncates
from below at kmin = 1

2(∆ − ∆13).
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1 Introduction

Paper I: AdS5 Witten Diagrams at high energy. Effective Lagragian. Remark on BPST

Pomeron paper. Eikonal anzats.

Paper I: Box diagram and Shock wave eikonal sum

Here we reformulate the computaiton of Witten diagrams in AdS5 space with and without a IR

cut-off suitable for the study of hight energy scattering. This provides a framework for going

beyond the leading large N limit studied in BPST Regge limit in the extreme super gravity

approximaiton.

2 Basics

p1 + p2 → p3 + p4 (2.1)

S =

∫

dz
√

g
{

∂Mφ(z)gMN∂Nφ(z) + ∆(∆ − d)φ2(z)
}

(2.2)

where d = 4, and the AdS5 background metric is

d2z =
1

z2
0

{

dxµdxµ + d2z0

}

(2.3)

Scalar propagator:

〈φ∆(z)φ∆(w)〉 = G(5)
∆ (z,w) (2.4)

satisfies
{

−
1
√

g
∂M

√
ggMN∂N + ∆(∆ − d)

}

G(5)
∆ (z,w) = δ5(z − w) (2.5)

Conformal Invariance leads to Isometries of ADS5, G(5)
∆ is a function of

u =
(x − y)2 + (z0 − w0)2

2z0w0
(2.6)

spin S field,

(−∂z0
z−(d−1−2S)
0 ∂z0

+ q2 z−(d+1−2S)
0 + z−(d−1−2S)

0 m2)φ(u) = 0 (2.7)
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Pomeron Propagator--Conformal Limit 

• Use J-dependent Dimension

• BFKL-cut: 

∆ : 4 → ∆(J) = 2 + [2
√

λ(J − J0)]
1/2 = 2 +

√

j̄ (2.8)

J0 = 2 −
2√
λ

(2.9)

3 One graviton Exchange

We begin by considering the one gravition exchange Witten diagram in Fig. for scalar sources

on the boundary of AdS at xi. The bluk co-ordiantes are written wM = (wµ, w0) where we

reserve µ, ν, .. for the standard 4-d Minkowski or Euclidean co-ordinates after Wick rotation.

Freedman et al., (hep − th/9903196), give the following expression for this diagram,

Igrav(x1, x2, x3, x4)

=
g2
s

4

∫

dz
√

g

∫

dw
√

g TMN (x1, x3, z)GMNM ′N ′(z,w)TM ′N ′
(x2, x4, w) (3.1)

where the bulk to bulk graviton propagator is given by

GMNM ′N ′(z,w) = (∂M∂M ′ u ∂N∂N ′ u + ∂M∂N ′ u ∂N∂M ′ u)G(u) + gMNgM ′N ′H(u) (3.2)

gs is the string coupling, G(u) is the scalar propagator, and H(u) a linear function of G(u). By

symmetry arguments they depend only on the geodisic distance for z = (zµ, z0) to w = (wµ, w0):

u =
(z − w)µ(z − w)µ + (z0 − w0)2

2z0w0
(3.3)

TMN (x, x′, z) is the energy momenut tensor for a scalar particle from x to x′ on the boundary

(see figure).

We find it more convenient to write Feynam rules in momentum space for the 4 flat co-ordinates,

(2π)4δ4(p1 + p2 + p3 + p4)T
(1)
4 (p1, p2, p3, p4) =

∫

Πid
4xie

−ipixiIgrav(x1, x2, x3, x4) (3.4)

Here the superscript for T (1)
4 reminds us that this is the one-graviton exchange contribution to the

four-point amplitude. Since
√

g depends only on the AdS radial variable, e.g., at z,
√

g = z−(d+1)
0 ,

one can carry out the Fourier transform, arriving at a simple “mixed-representation”,

T (1)
4 (p1, p2, p3, p4) =

1

4

∫

dz0
√

g

∫

dw0
√

g T̃MN (p1, p3, z0)G̃MNM ′N ′(q, z0, w0)T̃
M ′N ′

(p2, p4, w0)

(3.5)

3

• Spin 2 ------->  J by Using Complex 
angular momentum representation

• Reduction to AdS-3 



Spin-Dimension Curve

λ = 0 Anomalous 
Dim=0  

λ = 0, BFKL

(4,2) and (0,2) have zero anomalous dimension

inversion symmetry:  Δ  4 - Δ 
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All coupling form: Δ(j)  in DGLAP
 vs BFKL

λ = 0 Anomalous Dim=0 λ = 0, BFKL

(4,2) and (0,2) have zero anomalous dimension

inversion symmetry:  Δ  4 - Δ 



. . . . . . . . . . . .

J-Plane
J0

Integration Contour for Mellin Transform

. .

α (t)

.

Complex j-Plane:

Reduction to AdS-3:



IV. Beyond Pomeron:



IV. Beyond Pomeron:   Saturation, etc. 
•  Sum over Pomeron Exchanges (string perturbative)

•  Eikonal Sum in AdS3: (derived both via Cheng-Wu and by Shock-wave method)

• Condition for Saturation:



Unitarity:

•With J ~ 2, eikonal predominantly real:

•Local Scattering in AdS3 of  “String Bits” or “Partons”



• “Parton-Hadron Duality”: Local parton scattering in AdS3 
is equiv to Multi-Channel eikonal for hadrons in 2-dim 
Impact Space

• For real eikonal, quasi-elastic scattering only, and no 
scattering into “long-string” states.



•Generalized Cutting Rules

•Real World:   j0 ~ 1.5  and λ ~ O(1)

•Inelastic Production



Analyticity:

•  Amplitude is crossing even.

• With λ large, the Amplitude has a Large Real Part.  
Purely real at λ →∞.

•  Need to know both Re [K] and Im [K] for all s>0. 

• Im [K] can be found more easily.   Re [K] can be found 
by Derivative Dispersion Relation.



• Im [K] can be evaluated analytically, exhibiting 
Diffusion in AdS3, with diffusion time,  τ ~ log s .

• With λ large, derivative dispersion relation simplifies,

• Re [K] can again be expressed simply as



51



52



log(b) 

AdS BFKL 

AdS Gravity 

log(s) 

Theory Parameters: Nc &   g2 Nc 



Unitarity, Confinement and Froissart Bound

Use the condition:

Scattering in Conformal Limit:

No Froissart

Elastic Ring:

Inner Absorptive Disc:

Inner Core:  “black hole” production ?



• discrete spectrum 

With Confinement

Eq. (3.26) must be modified if there exists solutions to the homogeneous equations satisfying

both boundary conditions at z = 0 and at z = z0. For the case of hard-wall, it has been shown

in Ref. BPST that such discrete state does not exist for t < 0 since the confining potential is

repulsive. This corresponds to the fact that, for t < 0, the j-plane singularity consists of nothing

but a branch point at j = j0. However, for t > 0, the confining potential turns attractive,

discrete solutions can emerge through the BFKL branch cut as t increases and positive. These

features are illustrated in Fig. 6. At sufficiently large value of t, there exist a sequence of parallel

j!2

t

Figure 6: The analytic behavior of Regge trajectories in the hard-wall model, showing the

location of the bound-state poles at j = 2 and the continuum cut at j = j0 = 2 − 2/
√

λ into

which the Regge trajectories disappear. The lowest Regge trajectory intersects the cut at a small

positive value of t. At sufficiently large t each trajectory attains a fixed slope, corresponding to

the tension of the model’s confining flux tubes.

Regge trajectories. Denote tcr as the value of t when the leading trajectory crosses the value

j = j0. The j-plane singularity structure is illustrated in Fig. XXX, for −∞ < t < tcr, and

for two values of t where tcr < t < ∞. The spectral properties in j has been fully explored in

Ref. BPST, and a spectral presentation analogous to Eq. (8.7) for the case of hard-wall was

also obtained. For completeness, it is summarized here in Appendix C.

An important change in dealing with confined background can be gleamed from Fig. 6. At

fiex j > j0, the propagator G(j, t, z, z′), as a function of t, consists of an infinite set poles, with

locations, (t1(j), t2(j), · · · ), determined by each trajectory crossing a particular value of j. In

particular, all poles will lie to the right of tcr, the value when the leading Regge trajectory

crosses the BFKL cut. Furthermore, G no longer has a singularity at t = 0, as is the case in the
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Kernel for hardwall at  z =1 

Khw/Kconf 

z (z’ = 0.01) 
b? 



Born Term for Hard Wall model 
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Confinement and Froissart Bound

Mass of the lightest Glueball provides scale

Elastic Ring:

Absorptive Disc:

Inner Core:



Saturation of Froissart Bound 

•! The hardwall gives a cut-off so that 
exponential fall off for b > log(s/s0) 

•! But there is shell of width ¢ b  of 
O(log(s/s0)) that is nearly conformal. 

•! Therefore Froissart is respected and  

saturated. 
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V. Summary and Outlook

Provide meaning for Pomeron Pole non-
perturbatively from first principles.

Realization of conformal invariance beyond 
perturbative QCD

New starting point for unitarization, 
saturation, etc.

Phenomenological consequences.
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