Analyticity, Unitarity, and Gauge-String Duality

Chung-I Tan Sept. 19, 2008, ISMD-2008, DESY

High Energy scattering after AdS/CFT, Conformal Invariance, Confinement, Saturation and Froissart bound.

References:

R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", hep-th/0603115;

R. Brower, M. Strassler, and C-I Tan, hep-th/0707.2408, hep-th/0710.4378;

R. Brower, H. Nastase, H. Schinitzer, and C-I Tan, arXiv: 0809.1632 (hep-th). Also: arXiv:0801.3891 (hep-th).

Outline

- QCD Pomeron as "metric fluctuations" in AdS space
 - Graviton in AdS becomes a fixed Regge Cut: (Conformal Invariance)
 - Pomeron as a Reggeized Massive Graviton: (Confinement)
- Aspects of Analyticity, Unitarity and Confinement
- Conformal Invariance and Transverse Space,
- Phase of Eikonal, Saturation, Confinement.
- Analyticity and Unitarity Constraints on Multi-gluon amplitudes

Issues:

Eikonal Sum in AdS3:

$$A_{2\to 2}(s,t) \simeq -2is \int d^2b \ e^{-ib^{\perp}q_{\perp}}$$

$$\times \int dz dz' P_{13}(z) P_{24}(z') \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right]$$

Eikonal, $\chi(s,b^{\perp},z,z')$, given by Pomeron Exchange in AdS.

Saturation:

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

Questions:

Constraints due to Comformal Inv., Analyticity, Unitarity, Confinement, etc.

I. Scale Dependence of QCD and History of Hadron

Scattering at High Energies

Asymptotic Freedom perturbative

$$lpha_{
m s}(q) \equiv rac{ar{g}(q)^2}{4\pi} = rac{c}{\ln(q/\Lambda)} + \ldots$$

Confinement

non-perturbative

r >> 1 fm

Force at Long Distance--Constant
Tension/Linear Potential,
Coupling increasing, Quarks and
Gluons strongly bound <==>
"Stringy Behavior"

Test of Perturbative QCD-- Deep Inelastic Scattering (DIS)

Anomalous Dimension of

Leading twist operator

DGLAP evolution

$$\operatorname{tr}(F_{+\mu}D_{+}^{j-2}F_{+}^{\ \mu})$$

Regge Behavior and Regge Trajectory

$$\mathcal{A} \sim s^{J(t)} = s^{\alpha(0) + \alpha' t}$$

Total Cross Sections

$$\mathcal{A} \sim s^{J(t)} = s^{\alpha(0) + \alpha' t}$$

$$\sigma_{total} \sim \mathcal{A}(s,0)/s \sim S^{J(0)-1} \sim s^{\alpha(0)-1}$$

$$\alpha(0) > 1$$

(IR) Pomeron as Closed String??

BFKL vs Soft Pomeron

- Perturbative QCD
- Short-Distance
- $\alpha_{BFKL}(0) \sim 1.4$
- Increasing Virtuality
- No Shrinkage of elastic peak
- Fixed-cut in t
- Diffusion in Virtuality

- Non-Perturbative
- Long-distance:
 Confinement
- $\alpha_{P}(0) \sim 1.08$
- Fixed trans. Momenta
- Shrinkage of Elastic Peak: <|t|> ~1/ log s
- $\alpha'(0) \sim 0.3 \text{ Gev}^{-2}$
- Diffusion in impact space

UV Pomeron (BFKL): Scale Invariance

IR Pomeron (Soft Pomeron): Confinement

The QCD Pomeron

We show that in gauge theories with stringtheoretical dual descriptions, the Pomeron emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both the IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step.

Unification

- <u>Soft Pomeron</u>: Diffusion in Impact space,
 <u>Hard Pomeron</u>: Diffusion in Virtuality,
- Heterotic Pomeron -- G. M. Levin and CIT (ISMD--1993)
- After nearly15 years, <u>Unification</u> through AdS/CFT Correspondence via AdS₅
 - Pomeron is the Graviton in Curved Space (AdS)

Emergence of 5-dim AdS-Space

Let
$$z=1/r$$
, $0 < z < z_0$, where $z0 \sim 1/\Lambda_{qcd}$

"Fifth" co-ordinate is size z / z' of proj/target

5 kinematical Parameters:

2-d Longitudinal $p^{\pm} = p^0 \pm p^3 \simeq \exp[\pm \log(s/\Lambda_{acd})]$

2-d Transverse space: x'_{\perp} - x_{\perp} = b_{\perp}

1-d Resolution: z = 1/Q (or z' = 1/Q')

II: Gauge/String Duality

QCD Pomeron as "metric fluctuations" in AdS

- Strong <==> Weak duality
- Scale Invariance:
- @ Confinement:
- @ Pomeron as Reggeized Massive Graviton

II-a. Gauge/String Duality

Degrees of freedom: metric tensor, Kolb-Ramond anti-sym. tensor, etc.

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $AdS_5 \times X$ space

$$ds^{2} = r^{2} dx_{\mu} dx^{\mu} + \frac{dr^{2}}{r^{2}} + ds_{X}^{2}$$

Captures QCD's approximate UV conformal invariance

$$x \to \zeta x \; , \; r \to \frac{r}{\zeta}$$
 (recall $r \sim \mu$)

Confinement: IR (small r) is cut off in some way

$$r \sim \mu > r_{min} \sim \Lambda_{QCD}$$

For Pomeron: $string\ theory\ on\ cut-off\ AdS_5\ (X\ plays\ no\ role)$

Cutoff AdS₅

Large Sizes

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $AdS_5 \times X$ space

$$ds^{2} = r^{2} dx_{\mu} dx^{\mu} + \frac{dr^{2}}{r^{2}} + ds_{X}^{2}$$

 $Captures\ QCD's\ approximate\ UV\ conformal\ invariance$

$$x \to \zeta x \; , \; r \to \frac{r}{\zeta}$$
 (recall $r \sim \mu$)

Confinement: IR (small r) is cut off in some way

$$r \sim \mu > r_{min} \sim \Lambda_{QCD}$$

For Pomeron: string theory on cut-off AdS_5 (X plays no role)

QCD Pomeron <===> Graviton (metric) in AdS

Flat-space String

Conformal Invariance

Fixed cut in J-plane:

 j_0

Weak coupling: (BFKL)

$$j_0 = 1 + \frac{4\ln 2}{\pi}\alpha N$$

Strong coupling:

$$j_0 = 2 - \frac{2}{\sqrt{\lambda}}$$

Confinement

Pomeron in AdS Geometry

Pomeron in QCD

II-b. Spectrum at strong coupling

4-Dim Massive Graviton

5-Dim Massless Mode:

$$0 = E^2 - (p_1^2 + p_2^2 + p_3^2 + p_r^2)$$

If, due to Curvature in fifth-dim, $p_r^2 \neq 0$,

Four-Dimensional Mass:

$$E^2 = (p_1^2 + p_2^2 + p_3^2) + M^2$$

QCD Pomeron <===> Graviton (metric) in AdS

Approx. Scale Invariance and the 5th dimension

IIc: Pomeron as Diffusion in AdS

Flat Space String Scattering -- Regge Behavior

$$\mathrm{Im}\mathcal{A}\sim\sum_{i}s^{J_{i}(t)}$$

$$J(t) = \alpha(t) = \alpha_0 + \alpha' t$$

$$t \leftrightarrow \nabla_b^2$$

$$G(s; \vec{b}, \vec{b}') \iff \langle \vec{b} \mid s^{2+\alpha'\nabla_b^2/2} \mid \vec{b}' \rangle$$

$$\sim s^{\alpha_0} \frac{\exp\left[-|\vec{x}|^2/\alpha' \ln s\right]}{\sqrt{\ln s}}$$

 \leftarrow

Diffusion in Impact Space

Regge in AdS₅

$$\mathrm{Im}\mathcal{A} \sim s^{J(t)} = s^{2+\alpha'\nabla_b^2/2}$$
 (flat space)

$$G(s; \vec{b}, \vec{b}') \longleftrightarrow \langle \vec{b} \mid s^{2+\alpha' \nabla_b^2/2} \mid \vec{b}' \rangle$$

Im $\mathcal{A} \to s^{2+\alpha'\nabla^2/2}$ (curved space)

$$G(s; \vec{b}_2, z_2, \vec{b}_1, z_1) \longleftrightarrow \langle \vec{b}_2, z_2 \mid s^{2+\alpha'\nabla^2/2} \mid \vec{b}_1, z_1 \rangle$$

$$\longleftrightarrow$$
 $\langle \vec{b}_2, z_2 \mid e^{-\mathcal{H} \tau} \mid \vec{b}_1, z_1 \rangle$

$$\mathcal{H} \longleftrightarrow -2 - \alpha' \nabla^2 / 2$$
 $\tau \longleftrightarrow \log s$

$$\tau \longleftrightarrow \log s$$

$$u = \log r$$

$$-\nabla^2 = -\frac{1}{r^2} \nabla_{3+1} - \nabla_{\mathbf{r}}^2 + 0 = -\partial_u^2 + (4 - e^{-2u}t/t_0)$$

Diffusion in u=log r: (Effective Hamiltonian at t=0)

where $\tau \propto \ln s$ is again a diffusion time, and for t = 0,

$$H \propto -\nabla^2 = -\frac{1}{r^2} \nabla_{3+1} - \nabla_{\mathbf{r}}^2 + 0 = -\partial_u^2 + 4$$

where $u = \ln r$

A Schrödinger operator with potential V(u;t)=4

$$\mathcal{A} \sim s^2 e^{-H\tau} \sim s^{j_0} e^{-\mathcal{D}\tau[-\partial_u^2]} \ , \quad j_0 = 2 - \frac{2}{\sqrt{\lambda}} \ , \ \mathcal{D} = \frac{1}{2\sqrt{\lambda}}$$

Fixed cut in J-plane:

 j_0

Weak coupling:

(BFKL)

$$j_0 = 1 + \frac{4\ln 2}{\pi}\alpha N$$

Strong coupling:
$$j_0 = 2 - \frac{2}{\sqrt{\lambda}}$$

Comparison of Diffusion in AdS and BFKL

BFKL:

$$\mathcal{A} = \int \frac{dk_{\perp}}{k_{\perp}} \int \frac{dk'_{\perp}}{k'_{\perp}} \Phi_1(k_{\perp}) \quad s^{j_0} \frac{e^{-\left[(\ln[k'_{\perp}/k_{\perp}])^2/4\mathcal{D}\ln s\right]}}{\sqrt{4\pi\mathcal{D}\ln s}} \quad \Phi_2(k'_{\perp})$$

$$j_0 = 1 + \frac{4 \ln 2}{\pi} \alpha N$$
, $\mathcal{D} = \frac{7\zeta(3)}{\pi} \alpha N$.

Pomeron in AdS:

$$\mathcal{A} \sim \int \frac{dr}{r} \int \frac{dr'}{r'} \Phi_1(r) \ s^{j_0} \frac{e^{-\left[(\ln[r'/r])^2/4\mathcal{D}\ln s\right]}}{\sqrt{4\pi\mathcal{D}\ln s}} \ \Phi_2(u')$$

$$j_0 = 2 - \frac{2}{\sqrt{\lambda}}$$
, $\mathcal{D} = \frac{1}{2\sqrt{\lambda}}$

$\mathcal{N} = 4$ Strong vs Weak BFKL

Main Lesson from AdS/CFT dual description of Diffraction

Here $\lambda \equiv R^4/\alpha'^2 = g_{YM}^2 N = 4\pi\alpha N$ in $\mathcal{N}=4$ supersymmetric Yang-Mills theory — the numerical coefficient can differ in other theories but the proportionality always holds — so large λ is large 't Hooft coupling.

The identification of r and k_{\perp} has its source in the UV/IR correspondence and has been suggested in numerous contexts, but here appears as a nontrivial and precise match. The effective diffusion time, $\ln s$, holds for both the BFKL and the Regge diffusions, at both large and small λ .

General form depends on Conformal Symmetry.

The QCD Pomeron and AdS/CFT

- Have shown that in gauge theories with string-theoretical dual descriptions, the Pomeron emerges unambiguously.
- Pomeron can be identified as <u>Reggeized</u>
 Massive Graviton.
- •Both the <u>IR Pomeron</u> and the <u>UV Pomeron</u> are dealt in a unified single step.
- •Both conceptual and practical advantages.

III. Conformal Invariance at HE and Graviton

- * Reduction to AdS_3
- * Conformal Invariance
 - @ Conformal limit:
 - @ Confinement:

full O(4,2) conformal group as isometries of AdS_5

15 generators: $P_{\mu}, M_{\mu\nu}, D, K_{\mu}$

collinear group $SL_L(2,R) \times SL_R(2,R)$ used in DGLAP.

generators: $D \pm M_{+-}$, P_{\pm} , K_{\mp}

Möbius invariance SL(2, C)

generators: $iD \pm M_{12}$, $P_1 \pm iP_2$, $K_1 \mp iK_2$

isometries of the Euclidean (transverse) AdS_3 subspace of AdS_5

Lorentz boost, $\exp[-yM_{+-}]$

$$ds^2 = R^2[dz^2 + dwd\bar{w}]/z^2$$

 AdS_3 is the hyperbolic space H_3 . Indeed SL(2,C) is the subgroup generated by all elements of the conformal group that commute with the boost operator, M_{+-} and as such plays the same role as the little group which commutes with the energy operator P_0 .

$$J_{0} = w\partial_{w} + \frac{1}{2}z\partial_{z} , \quad J_{-} = -\partial_{w} , \quad J_{+} = w^{2}\partial_{w} + wz\partial_{z} - z^{2}\partial_{\bar{w}}$$

$$\bar{J}_{0} = \bar{w}\partial_{\bar{w}} + \frac{1}{2}z\partial_{z} , \quad \bar{J}_{-} = -\partial_{\bar{w}} , \quad \bar{J}_{+} = \bar{w}^{2}\partial_{\bar{w}} + \bar{w}z\partial_{z} - z^{2}\partial_{w}$$

$$M_{+-} = 2 - H_{+-}/(2\sqrt{\lambda}) + O(1/\lambda)$$
 $H_{+-} = -z^3 \partial_z z^{-1} \partial_z - z^2 \nabla_{x+}^2 + 3$

$$H_{+-} = -z^3 \partial_z z^{-1} \partial_z - z^2 \nabla_{x_{\perp}}^2 + 3$$

$$[H_{+-} + 2\sqrt{\lambda}(j-2)]G_3(j,v) = z^3\delta(z-z')\delta^2(x_{\perp} - x'_{\perp})$$

$$v = \frac{(x_{\perp} - x_{\perp}')^2 + (z - z')^2}{2zz'}$$

Emergence of 5-dim AdS-Space

Let
$$z=1/r$$
, $0 < z < z_0$, where $z0 \sim 1/\Lambda_{qcd}$

"Fifth" co-ordinate is size z / z' of proj/target

5 kinematical Parameters:

2-d Longitudinal $p^{\pm} = p^0 \pm p^3 \simeq \exp[\pm \log(s/\Lambda_{acd})]$

2-d Transverse space: x'_{\perp} - x_{\perp} = b_{\perp}

1-d Resolution: z = 1/Q (or z' = 1/Q')

Remarks on AdS3 Propagator:

$$G_3(j; x^{\perp} - x'^{\perp}, z, z') \sim \langle x^{\perp}, z \mid \frac{1}{2\sqrt{\lambda}(j-2) + H_{+,-}} \mid x'^{\perp}, z' \rangle$$

Conformal Invariance, a function of a single AdS₃ invariant.

$$v = \frac{(x_{\perp} - x_{\perp}')^2 + (z - z')^2}{2zz'}$$

- Large $\lambda \Rightarrow j \sim 2$.
- λ infinite, s large and fixed \Rightarrow j=2, and Graviton exchange
- <u> λ and s infinite</u>, $\log s = O(\sqrt{\lambda})$ \Rightarrow Pomeron exchange, in order to resolve "fine structure", with

$$j \simeq j_0 = 2 - \frac{2}{\sqrt{\lambda}}$$

Strong Coupling Pomeron Propagator --Conformal Limit

· Ad5-3 propagator:

$$\mathcal{K}(j, x_{\perp} - x'_{\perp}, z, z') = \frac{1}{4\pi z z'} \frac{\left[y + \sqrt{y^2 - 1}\right]^{(2 - \Delta_{+}(j))}}{\sqrt{y^2 - 1}},$$

$$y \pm 1 = \frac{(z \mp z')^2 + (x_{\perp} - x'_{\perp})^2}{2zz'}$$

BFKL kernel:

$$\Phi_{n,\nu}(b_1 - b_0, b_2 - b_0) = \left[\frac{b_1 - b_2}{(b_1 - b_0)(b_2 - b_0)}\right]^{i\nu + (1+n)/2} \left[\frac{\bar{b}_1 - \bar{b}_2}{(\bar{b}_1 - \bar{b}_0)(\bar{b}_2 - \bar{b}_0)}\right]^{i\nu + (1-n)/2}$$

One Graviton in Momentum Representation at High Energy

$$J=2, \Delta=4$$

$$T^{(1)}(p_1, p_2, p_3, p_4) = g_s^2 \int \frac{dz}{z^5} \int \frac{dz'}{z'^5} \,\tilde{\Phi}_{\Delta}(p_1^2, z) \tilde{\Phi}_{\Delta}(p_3^2, z) \mathcal{T}^{(1)}(p_i, z, z') \tilde{\Phi}_{\Delta}(p_2^2, z') \tilde{\Phi}_{\Delta}(p_4^2, z')$$

$$p_1 + p_2 \rightarrow p_3 + p_4$$

$$\mathcal{T}^{(1)}(p_i, z, z') = (z^2 z'^2 s)^2 G_{++, --}(q, z, z') = (z z' s)^2 G_{\Delta=4}^{(5)}(q, z, z')$$

Pomeron Propagator--Conformal Limit

- Spin 2 ----> J by Using Complex angular momentum representation
- · Reduction to Ad5-3

· Use J-dependent Dimension

$$\Delta: \quad 4 \to \Delta(J) = 2 + [2\sqrt{\lambda}(J - J_0)]^{1/2} = 2 + \sqrt{\bar{j}}$$

· BFKL-cut:

$$J_0 = 2 - \frac{2}{\sqrt{\lambda}}$$

Spin-Dimension Curve

(4,2) and (0,2) have zero anomalous dimension

inversion symmetry: $\Delta \rightarrow 4 - \Delta$

All coupling form: $\Delta(j)$ in DGLAP vs BFKL

inversion symmetry: $\Delta \rightarrow 4 - \Delta$

Complex j-Plane:

$$\mathcal{T}^{(1)}(p_i, z, z') = \int \frac{dj}{2\pi i} \, \frac{(1 + e^{-i\pi j})}{\sin \pi j} \, (\tilde{s})^j \, G^{(5)}(j, q, z, z')$$

Integration Contour for Mellin Transform

$$\{2\sqrt{\lambda}(j-2) - z^5\partial_z z^{-3}\partial_z - z^2 t\}G_{\Delta(j)}^{(5)}(j,q,z,z') = z^5\delta(z-z')$$

Reduction to AdS-3:

$$G_{\Delta}^{(5)}(j, q^{\pm} = 0, q^{\perp}, z, z') \to (zz')G_{(\Delta-1)}^{(3)}(j, q_{\perp}, z, z')$$

IV. Beyond Pomeron:

- @ Eikonal Summation:
 - Summing "Reggeized Witten Diagrams"
 - @ Black Disk Picture

- @ Froissart Bound
 - Only follows from confinement

IV. Beyond Pomeron: Saturation, etc.

- Sum over Pomeron Exchanges (string perturbative)
- Eikonal Sum in AdS3: (derived both via Cheng-Wu and by Shock-wave method)

$$A_{2\to 2}(s,t) \simeq -2is \int d^2b \ e^{-ib^{\perp}q_{\perp}} \int dz dz' P_{13}(z) P_{24}(z') \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right]$$

$$P_{13}(z) = (z/R)^2 \sqrt{g(z)} \Phi_1(z) \Phi_3(z)$$
 $P_{24}(z) = (z'/R)^2 \sqrt{g(z')} \Phi_2(z') \Phi_4(z')$

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = \frac{g_0^2 R^4}{2(zz')^2 s} \mathcal{K}(s, x^{\perp} - x'^{\perp}, z, z')$$

Condition for Saturation:

$$\chi(s, x^{\perp} - x'^{\perp}, z, z') = O(1)$$

Unitarity:

Local Scattering in AdS3 of "String Bits" or "Partons"

$$A_{2\to 2}(s,t) \simeq \int d^2b \ e^{-ib^{\perp}q_{\perp}} \int dz dz' P_{13}(z) P_{24}(z') \widetilde{A}(s,b^{\perp},z,z')$$
$$\widetilde{A}(s,b^{\perp},z,z') = -2is \left[e^{i\chi(s,b^{\perp},z,z')} - 1 \right]$$

Im
$$\widetilde{A}(s, b^{\perp}, z, z') \ge (1/4s) |\widetilde{A}(s, b^{\perp}, z, z')|^2$$
.

•With J ~ 2, eikonal predominantly real:

$$|\operatorname{Re}[\chi]| \le |\operatorname{Im}[\chi]|, \quad 1 \le J_0 \le 1.5$$

$$|\operatorname{Re}[\chi]| \ge |\operatorname{Im}[\chi]|, \quad 1.5 \le J_0 \le 2$$

 "Parton-Hadron Duality": Local parton scattering in AdS3 is equiv to Multi-Channel eikonal for hadrons in 2-dim Impact Space

$$A_{n_4,n_3 \leftarrow n_2,n_1}(s,t) = -2is \int d^2b e^{-ibq_{\perp}} \left[e^{i\widehat{\chi}(s,b)} - 1 \right]_{n_4,n_3;n_2,n_1}$$

$$\chi_{n_4n_3;n_2n_1}(s,b) = \int \ dz \ dz' \ P_{n_3n_1}(z) P_{n_4n_2}(z') \chi(s,b,z,z')$$

 For real eikonal, quasi-elastic scattering only, and no scattering into "long-string" states.

Im
$$A_{n_4n_3;n_2n_1}(s,b^{\perp}) = (1/4s) \sum_{n,m} A^{\dagger}(s,b^{\perp})_{n_4n_3;nm} A(s,b^{\perp})_{nm;n_2n_1}$$

•Inelastic Production

Generalized Cutting Rules

$$\cos(j_0\pi)|\chi|^2 = \left[1 - 2\sin^2(j_0\pi/2) - 2\sin^2(j_0\pi/2) + 2\sin^2(j_0\pi/2)\right]|\chi|^2$$

$$j_0 = 1.0$$
: $-1 = 1 - 2 - 2 + 2$
 $j_0 = 1.5$: $0 = 1 - 1 - 1 + 1$
 $j_0 = 2.0$: $1 = 1 - 0 - 0 + 0$

•Real World: $j_0 \sim 1.5$ and $\lambda \sim O(1)$

Analyticity:

• Amplitude is <u>crossing even</u>.

$$\mathcal{K}(s, b^{\perp}, z, z') = -(zz'/R^4)G_3(j_0, v)$$

$$\times \widehat{s}^{j_0} \int_{-\infty}^{j_0} \frac{dj}{\pi} \, \frac{(1 + e^{-i\pi j})}{\sin \pi j} \, \widehat{s}^{(j-j_0)} \, \sin \left[\xi(v) \sqrt{2\sqrt{\lambda}(j_0 - j)} \, \right]$$

$$\cosh \xi = v + 1$$
 $e^{\xi} = 1 + v + \sqrt{v(2 + v)}$

- With λ large, the Amplitude has a Large Real Part. Purely real at $\lambda \to \infty$.
- Need to know both Re [K] and Im [K] for all s>0.
- Im [K] can be found more easily. Re [K] can be found by <u>Derivative Dispersion Relation</u>.

• Im [K] can be evaluated analytically, exhibiting Diffusion in AdS3, with diffusion time, $\tau \sim \log s$.

Im[
$$\mathcal{K}$$
] = $(zz'/R^4)G_3(j_0,v)(\sqrt{\lambda}/2\pi)^{1/2}\xi e^{j_0\tau} \frac{e^{-\sqrt{\lambda}\xi^2/2\tau}}{\tau^{3/2}}$

• With λ large, derivative dispersion relation simplifies,

$$\partial_{\tau}[e^{-2\tau}\mathrm{Re}[\mathcal{K}]] = -(2/\pi)e^{-2\tau}\mathrm{Im}[\mathcal{K}]$$

• Re [K] can again be expressed simply as

$$\begin{aligned} \operatorname{Re}[\mathcal{K}] &\to & (\sqrt{\lambda}/\pi) \operatorname{Im}[\mathcal{K}] \sim e^{j_0 \tau} \, \frac{e^{-\sqrt{\lambda} \xi^2 / 2\tau}}{\tau^{3/2}} \,, & & \text{if} & \log \widetilde{s} \, > (\sqrt{\lambda}/2) \, \xi \\ &\to & \frac{2}{\pi} \widehat{s}^2 \, \left(\frac{zz'}{R^4} \right) \, G_3(2,v) + O(e^{j_0 \tau}) \,, & & \text{if} & \log \widetilde{s} \, < (\sqrt{\lambda}/2) \, \xi \end{aligned}$$

Absorption & Saturation?

Expected at low x and high Q², as number of partons grows, and they overlap

Pomeron > Pomeranchukon > Pomeranchuk singularity

I.Ya. Pomeranchuk

Theory Parameters: N_c & g² N_c

Unitarity, Confinement and Froissart Bound

Use the condition: $\chi(s, x^{\perp} - {x'}^{\perp}, z, z') = O(1)$

Scattering in Conformal Limit:

No Froissart

Elastic Ring:

$$b_{\rm diff} \sim \sqrt{zz'} \ (zz's/N^2)^{1/6}$$

Inner Absorptive Disc:

$$b_{
m black} \sim \sqrt{zz'} \;\; rac{(zz's)^{(j_0-1)/2}}{\lambda^{1/4}N} \qquad b_{
m black} \sim \sqrt{zz'} \;\; \left(rac{(zz's)^{j_0-1}}{\lambda^{1/4}N}
ight)^{1/\sqrt{2\sqrt{\lambda}(j_0-1)/2}}$$

Inner Core: "black hole" production?

With Confinement

discrete spectrum

Kernel for hardwall at z = 1

$$K_{hw}(x_{\perp}, zz') \sim \frac{k_5^2 s^2}{zz'} \sum_n \frac{2}{J_2^2(m_n)} J_2(m_n z) K_0(m_n |x_{\perp}|) J_2(m_n z')$$

$$\lim_{\Lambda \to 0} K_{hw}(x_{\perp}/\Lambda, z/\Lambda, z'/\Lambda) \sim \frac{\kappa_5^2 s^2}{zz'} \sum_n \frac{2}{y + \sqrt{y^2 - 1}} 4\pi \sqrt{y^2 - 1}$$

Born Term for Hard Wall model

 $K_{hw}(z,z,x_?)/K_{conf}(z,z,x_?)$

$$K_{conf}(z,z,x_?)$$
 - $K_{hw}(z,z,x_?)$

$$K_{Hardwall}(z, w, x_{\perp}) = \sum_{n=1}^{\infty} \frac{2}{J_2^2(m_n)} J_2(m_n z) K_0(m_n |x_{\perp}|) J_2(m_n w)$$

B.C.
$$\frac{d}{dz}[z^2J_2(z)] = 0 \text{ at } z = 1$$

Confinement and Froissart Bound

Mass of the lightest Glueball provides scale

$$e^{-m_0b}/\sqrt{m_0b}$$

Elastic Ring:

$$b_{\text{diff}} \simeq \frac{1}{m_0} \log(s/N^2 \Lambda^2) + \dots$$

Absorptive Disc:

Inner Core:

Saturation of Froissart Bound

- The hardwall gives a cut-off so that exponential fall off for b > log(s/s₀)
- But there is shell of width ¢ b of O(log(s/s₀)) that is nearly conformal.
- Therefore Froissart is respected and saturated.

Applications beyond the LHC

QCD influence on UHE V detection Importance of wee-x parton distributions

V. Summary and Outlook

- Provide meaning for Pomeron Pole nonperturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
- New starting point for unitarization, saturation, etc.
- @ Phenomenological consequences.

Further Restrictions:

- Nonlinear effects: e.g., fan diagrams,
- Loops: e.g., AdS-3 Pomeron-Field Theory,
- ø etc.