Analyticity, Unitarity, and Gauge-String Duality

Chung-I Tan
Sept. 19, 2008, ISMD-2008, DESY

High Energy scattering after AdS/CFT,
Conformal Invariance, Confinement, Saturation and Froissart bound.

References:

- R. Brower, J. Polchinski, M. Strassler, and C-I Tan, "The Pomeron and Gauge/String Duality", hep-th/0603115;
- R. Brower, M. Strassler, and C-I Tan, hep-th/0707.2408, hep-th/ 0710.4378;
- R. Brower, H. Nastase, H. Schinitzer, and C-I Tan, arXiv: 0809.1632 (hep-th). Also: arXiv:0801.3891 (hep-th).

Outline

- QCD Pomeron as "metric fluctuations" in AdS space
- Graviton in AdS becomes a fixed Regge Cut: (Conformal Invariance)
- Pomeron as a Reggeized Massive Graviton: (Confinement)
- Aspects of Analyticity, Unitarity and Confinement
- Conformal Invariance and Transverse Space,
- Phase of Eikonal, Saturation, Confinement.
- Analyticity and Unitarity Constraints on Multi-gluon amplitudes

Issues:

Eikonal Sum in AdS3:

$$
\begin{aligned}
A_{2 \rightarrow 2}(s, t) & \simeq-2 i s \int d^{2} b e^{-i b^{\perp} q_{\perp}} \\
& \times \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)\left[e^{i \chi\left(s, b^{\perp}, z, z^{\prime}\right)}-1\right]
\end{aligned}
$$

Eikonal, $\chi\left(s, b^{\perp}, z, z^{\prime}\right)$, given by Pomeron Exchange in AdS.
Saturation:

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)
$$

Questions:
Constraints due to Comformal Inv.,Analyticity, Unitarity, Confinement, etc.
I. Scale Dependence of QCD and History of Hadron Scattering at High Energies

Asymptotic Freedom

perturbative

$$
\alpha_{s}(q) \equiv \frac{\bar{g}(q)^{2}}{4 \pi}=\frac{c}{\ln (q / \Lambda)}+\ldots
$$

$r<0.1 \mathrm{fm}$

Confinement

non-perturbative

$r \gg 1 \mathrm{fm}$

Force at Long Distance--Constant Tension/Linear Potential, Coupling increasing, Quarks and Gluons strongly bound <==>
"Stringy Behavior"

Test of Perturbative QCD-- Deep Inelastic Scattering (DIS)

Anomalous Dimension of
Leading twist operator
DGLAP evolution
$\operatorname{tr}\left(F_{+\mu} D_{+}^{j-2} F_{+}^{\mu}\right)$

Regge Behavior and Regge Trajectory

Total Cross Sections

$$
\begin{gathered}
\left.\right|_{\substack{1 \\
\text { Pomeron } \uparrow r}} ^{\mathcal{A} \sim s^{J(t)}=s^{\alpha(0)+\alpha^{\prime} t}} \\
\sigma_{\text {total }} \sim \mathcal{A}(s, 0) / s \sim S^{J(0)-1} \sim s^{\alpha(0)-1} \\
\alpha(0)>1 \\
\text { (IR) Pomeron as Closed String?? }
\end{gathered}
$$

BFKL vs Soft Pomeron

- Perturbative QCD
- Short-Distance
- $\alpha_{\text {BFKL }}(0) \sim 1.4$
- Increasing Virtuality
- No Shrinkage of elastic peak
- Fixed-cut in t
- Diffusion in Virtuality
-

UV Pomeron (BFKL): Scale Invariance
IR Pomeron (Soft Pomeron): Confinement

The QCD Pomeron

We show that in gauge theories with stringtheoretical dual descriptions, the Pomeron emerges unambiguously.

Pomeron can be associated with a Reggeized Massive Graviton.

Both the IR (soft) Pomeron and the UV (BFKL) Pomeron are dealt in a unified single step.

Unification

- Soft Pomeron: Diffusion in Impact space, Hard Pomeron: Diffusion in Virtuality,
- Heterotic Pomeron -- G. M. Levin and CIT (ISMD--1993)
- After nearly15 years, Unification through AdS/CFT Correspondence via AdS5
- Pomeron is the Graviton in Curved Space (AdS)

Emergence of 5-dim AdS-Space

Let $z=1 / r, \quad 0<z<z_{0}$, where $\quad z 0 \sim 1 / \Lambda_{\text {qcd }}$
"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

II: Gauge/String Duality

QCD Pomeron as "metric fluctuations" in AdS
(strong $\langle=>$ Weak duality

- Scale Invariance:
- Confinement:
- Pomeron as Reggeized Massive Graviton

II-a. Gauge/String Duality

Degrees of freedom: metric tensor, Kolb-Ranond anti-sym. tensor, etc.

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $A d S_{5} \times X$ space

$$
d s^{2}=r^{2} d x_{\mu} d x^{\mu}+\frac{d r^{2}}{r^{2}}+d s_{X}^{2}
$$

Captures QCD's approximate UV conformal invariance

$$
x \rightarrow \zeta x, r \rightarrow \frac{r}{\zeta} \quad(\text { recall } r \sim \mu)
$$

Confinement: IR (small r) is cut off in some way

$$
r \sim \mu>r_{\text {min }} \sim \Lambda_{Q C D}
$$

For Pomeron: string theory on cut-off $A d S_{5}$ (X plays no role)

Cutoff AdS_{5}

Large Sizes pt defects at $r \equiv 1 / z=1 / \rho \longrightarrow *$

Scale Invariance and AdS

What is the curved space?

Maldacena: UV (large r) is (almost) an $A d S_{5} \times X$ space

$$
d s^{2}=r^{2} d x_{\mu} d x^{\mu}+\frac{d r^{2}}{r^{2}}+d s_{X}^{2}
$$

Captures QCD's approximate UV conformal invariance

$$
x \rightarrow \zeta x, r \rightarrow \frac{r}{\zeta} \quad(\text { recall } r \sim \mu)
$$

Confinement: IR (small r) is cut off in some way

$$
r \sim \mu>r_{\min } \sim \Lambda_{Q C D}
$$

For Pomeron: string theory on cut-off $A d S_{5}$ (X plays no role)

$z=1 / r$,

"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

QCD Pomeron <===> Graviton (metric) in AdS

Flat-space String

Conformal Invariance
Fixed cut in J-plane:

Weak coupling:
(BFKL)

$$
j_{0}=1+\frac{4 \ln 2}{\pi} \alpha N
$$

Strong coupling:

$$
j_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

Confinement

Pomeron in AdS Geometry

Pomeron in QCD

Running UV, Confining IR (large N)

The hadronic spectrum is little changed, as expected. The BFKL cut turns into a set of poles, as expected.

"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

[^0]II-6. Spectrum at strong coupling

4-Dim Massive Graviton

5-Dim Massless Mode:

$$
0=\mathrm{E}^{2}-\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}+\mathrm{p}_{\mathrm{r}}^{2}\right)
$$

If, due to Curvature in fifth-dim, $\mathrm{p}_{\mathrm{r}}^{2} \neq 0$,
Four-Dimensional Mass:

$$
\mathrm{E}^{2}=\left(\mathrm{p}_{1}^{2}+\mathrm{p}_{2}^{2}+\mathrm{p}_{3}^{2}\right)+\mathrm{M}^{2}
$$

QCD Pomeron <===> Graviton (metric) in AdS

Approx. Scale Invariance and the $5^{\text {th }}$ dimension

IIc: Pomeron as
Diffusion in AdS

Flat Space String Scattering -- Regge Behavior

Rage in AdS

$\operatorname{Im} \mathcal{A} \sim s^{J(t)}=s^{2+\alpha^{\prime} \nabla_{b}^{2} / 2} \quad$ (flat space)

$$
G\left(s ; \vec{b}, \vec{b}^{\prime}\right) \longleftrightarrow\langle\vec{b}| s^{2+\alpha^{\prime}} \nabla_{b}^{2} / 2\left|\vec{b}^{\prime}\right\rangle
$$

$\operatorname{Im} \mathcal{A} \rightarrow s^{2+\alpha^{\prime} \nabla^{2} / 2} \quad$ (curved space)

$$
\left.\begin{array}{rl}
G\left(s ; \vec{b}_{2}, z_{2}, \vec{b}_{1}, z_{1}\right) & \longleftrightarrow
\end{array} \quad\left\langle\vec{b}_{2}, z_{2}\right| s^{2+\alpha^{\prime} \nabla^{2} / 2}\left|\vec{b}_{1}, z_{1}\right\rangle\right)
$$

$$
\mathcal{H} \longleftrightarrow \quad-2-\alpha^{\prime} \nabla^{2} / 2 \quad \tau \longleftrightarrow \quad \log s \quad \quad u=\log r
$$

$$
-\nabla^{2}=-\frac{1}{r^{2}} \nabla_{3+1}-\nabla_{\mathbf{r}}^{2}+0=-\partial_{u}^{2}+\left(4-e^{-2 u} t / t_{0}\right)
$$

Diffusion in $u=\log$ r: (Effective Hamiltonian at $t=0$)

where $\tau \propto \ln s$ is again a diffusion time, and for $t=0$,

$$
H \propto-\nabla^{2}=-\frac{1}{r^{2}} \nabla_{3+1}-\nabla_{\mathrm{r}}^{2}+0=-\partial_{u}^{2}+4
$$

$$
\text { where } u=\ln r
$$

A Schrödinger operator with potential $V(u ; t)=4$

$$
\mathcal{A} \sim s^{2} e^{-H \tau} \sim s^{j_{0}} e^{-\mathcal{D} \tau\left[-\partial_{u}^{2}\right]}, \quad j_{0}=2-\frac{2}{\sqrt{\lambda}}, \quad \mathcal{D}=\frac{1}{2 \sqrt{\lambda}}
$$

Fixed cut in J-plane:

Weak coupling:
(BFKL)

$$
j_{0}=1+\frac{4 \ln 2}{\pi} \alpha N
$$

Strong coupling:

$$
j_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

Comparison of Diffusion in AdS and BFKL

BFKL:

$$
\mathcal{A}=\int \frac{d k_{\perp}}{k_{\perp}} \int \frac{d k_{\perp}^{\prime}}{k_{\perp}^{\prime}} \Phi_{1}\left(k_{\perp}\right) \quad s^{j_{0}} \frac{e^{-\left[\left(\ln \left[k_{\perp}^{\prime} / k_{\perp}\right]\right)^{2} / 4 \mathcal{D} \ln s\right]}}{\sqrt{4 \pi \mathcal{D} \ln s}} \Phi_{2}\left(k_{\perp}^{\prime}\right)
$$

$$
j_{0}=1+\frac{4 \ln 2}{\pi} \alpha N, \quad \mathcal{D}=\frac{7 \zeta(3)}{\pi} \alpha N
$$

Pomeron in AdS:

$$
\begin{gathered}
\mathcal{A} \sim \int \frac{d r}{r} \int \frac{d r^{\prime}}{r^{\prime}} \Phi_{1}(r) s^{j_{0}} \frac{-\left[\left[\ln \left[r^{\prime} / r\right)^{2} / 4 \mathcal{D} \ln s\right]\right.}{\sqrt{4 \pi \mathcal{D} \ln s}} \Phi_{2}\left(u^{\prime}\right) \\
j_{0}=2-\frac{2}{\sqrt{\lambda}}, \mathcal{D}=\frac{1}{2 \sqrt{\lambda}}
\end{gathered}
$$

$\mathcal{N}=4$ Strong vs Weak BFKL

Main Lesson from AdS/CFT dual description of Diffraction

Here $\lambda \equiv R^{4} / \alpha^{\prime 2}=g_{Y M}^{2} N=4 \pi \alpha N$ in $\mathcal{N}=4$ supersymmetric Yang-Mills theory - the numerical coefficient can differ in other theories but the proportionality always holds

- so large λ is large 't Hooft coupling.

The identification of r and k_{\perp} has its source in the UV/IR correspondence and has been suggested in numerous contexts, but here appears as a nontrivial and precise match. The effective diffusion time, In s, holds for both the BFKL and the Regge diffusions, at both large and small λ.

General form depends on Conformal Symmetry.

The QCD Pomeron and AdS/CFT

- Have shown that in gauge theories with string-theoretical dual descriptions, the Pomeron emerges unambiguously.
-Pomeron can be identified as Reggeized Massive Graviton.
- Both the IR Pomeron and the UV Pomeron are dealt in a unified single step.
-Both conceptual and practical advantages.
III. Conformal Invariance at HE and Graviton
* Reduction to AdS_3
* Conformal Invariance
- Conformal limit:
- Confinement:

full $O(4,2)$ conformal group as isometries of $A d S_{5}$

 15 generators: $P_{\mu}, M_{\mu \nu}, D, K_{\mu}$collinear group $S L_{L}(2, R) \times S L_{R}(2, R)$ used in DGLAP generators: $D \pm M_{+-}, P_{ \pm}, K_{\mp}$

Möbius invariance $\quad S L(2, C)$ generators: $i D \pm M_{12}, P_{1} \pm i P_{2}, K_{1} \mp i K_{2}$
isometries of the Euclidean (transverse) $A d S_{3}$ subspace of $A d S_{5}$

$$
\text { Lorentz boost, } \exp \left[-y M_{+-}\right]
$$

$$
d s^{2}=R^{2}\left[d z^{2}+d w d \bar{w}\right] / z^{2}
$$

$A d S_{3}$ is the hyperbolic space H_{3}. Indeed $S L(2, C)$ is the subgroup generated by all elements of the conformal group that commute with the boost operator, M_{+-}and as such plays the same role as the little group which commutes with the energy operator P_{0}.

$$
\begin{array}{lll}
J_{0}=w \partial_{w}+\frac{1}{2} z \partial_{z}, & J_{-}=-\partial_{w}, & J_{+}=w^{2} \partial_{w}+w z \partial_{z}-z^{2} \partial_{\bar{w}} \\
\bar{J}_{0}=\bar{w} \partial_{\bar{w}}+\frac{1}{2} z \partial_{z}, & \bar{J}_{-}=-\partial_{\bar{w}}, & \bar{J}_{+}=\bar{w}^{2} \partial_{\bar{w}}+\bar{w} z \partial_{z}-z^{2} \partial_{w}
\end{array}
$$

$$
M_{+-}=2-H_{+-} /(2 \sqrt{\lambda})+O(1 / \lambda)
$$

$$
H_{+-}=-z^{3} \partial_{z} z^{-1} \partial_{z}-z^{2} \nabla_{x_{\perp}}^{2}+3
$$

$$
\left[H_{+-}+2 \sqrt{\lambda}(j-2)\right] G_{3}(j, v)=z^{3} \delta\left(z-z^{\prime}\right) \delta^{2}\left(x_{\perp}-x_{\perp}^{\prime}\right)
$$

$$
v=\frac{\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}{2 z z^{\prime}}
$$

Emergence of 5-dim AdS-Space

Let $z=1 / r, \quad 0<z<z_{0}$, where $\quad z 0 \sim 1 / \Lambda_{\text {qcd }}$
"Fifth" co-ordinate is size \mathbf{z} / \mathbf{z} ' of proj/target

Remarks on AdS3 Propagator:

$$
G_{3}\left(j ; x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right) \sim\left\langle x^{\perp}, z\right| \frac{1}{2 \sqrt{\lambda}(j-2)+H_{+,-}}\left|x^{\perp}, z^{\prime}\right\rangle
$$

- Conformal Invariance, a function of a single AdS3 invariant.

$$
v=\frac{\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}{2 z z^{\prime}}
$$

- Large $\lambda \Rightarrow \mathrm{j} \sim 2$.
- $\underline{\lambda}$ infinite, s large and fixed $\Rightarrow j=2$, and Graviton exchange
- λ and s infinite, $\log s=O(\sqrt{\lambda}) \quad \Rightarrow \quad$ Pomeron exchange, in order to resolve "fine structure", with

$$
j \simeq j_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

Strong Coupling Pomeron Propagator-Conformal Limit

- AdS-3 propagator:

$$
\mathcal{K}\left(j, x_{\perp}-x_{\perp}^{\prime}, z, z^{\prime}\right)=\frac{1}{4 \pi z z^{\prime}} \frac{\left[y+\sqrt{y^{2}-1}\right]^{\left(2-\Delta_{+}(j)\right)}}{\sqrt{y^{2}-1}}
$$

$$
y \pm 1=\frac{\left(z \mp z^{\prime}\right)^{2}+\left(x_{\perp}-x_{\perp}^{\prime}\right)^{2}}{2 z z^{\prime}}
$$

- BFKL Kernel:

$$
\Phi_{n, \nu}\left(b_{1}-b_{0}, b_{2}-b_{0}\right)=\left[\frac{b_{1}-b_{2}}{\left(b_{1}-b_{0}\right)\left(b_{2}-b_{0}\right)}\right]^{i \nu+(1+n) / 2}\left[\frac{\bar{b}_{1}-\bar{b}_{2}}{\left(\bar{b}_{1}-\bar{b}_{0}\right)\left(\bar{b}_{2}-\bar{b}_{0}\right)}\right]^{i \nu+(1-n) / 2}
$$

$$
\begin{gathered}
\text { One Graviton in Momentum } \\
\text { Representation at High Energy } \\
\mathrm{J}=2, \Delta=4 \\
T^{\left(1^{1}\right)\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=g_{s}^{2} \int \frac{d z}{z^{5}} \int \frac{d z^{\prime}}{z^{\prime}} \tilde{\Phi}_{\Delta}\left(p_{1}^{2}, z\right) \tilde{\Phi}_{\Delta}\left(p_{3}^{2}, z\right) T^{(1)}\left(p_{i}, z, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{2}^{2}, z^{\prime}\right) \tilde{\Phi}_{\Delta}\left(p_{4}^{2}, z^{\prime}\right)}
\end{gathered}
$$

$$
p_{1}+p_{2} \rightarrow p_{3}+p_{4}
$$

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\left(z^{2} z^{\prime 2} s\right)^{2} G_{++,--}\left(q, z, z^{\prime}\right)=\left(z z^{\prime} s\right)^{2} G_{\Delta=4}^{(5)}\left(q, z, z^{\prime}\right)
$$

Pomeron Propagator--Conformal Limit

- Spin 2-.....-. J by Using Complex angular momentum representation
- Reduction to AdS-3
- Use J-dependent Dimension

$$
\Delta: \quad 4 \rightarrow \Delta(J)=2+\left[2 \sqrt{\lambda}\left(J-J_{0}\right)\right]^{1 / 2}=2+\sqrt{\bar{j}}
$$

- BFKL-cut:

$$
J_{0}=2-\frac{2}{\sqrt{\lambda}}
$$

Spin-Dimension Curve
$(4,2)$ and $(0,2)$ have zero anomalous dimension

Dim=0
inversion symmetry: $\Delta \rightarrow 4-\Delta$

All coupling form: $\Delta(\mathrm{j})$ in DGLAP vs BFKL

$(4,2)$ and $(0,2)$ have zero anomalous dimension

inversion symmetry: $\Delta \boldsymbol{\rightarrow} 4-\Delta$

Complex j-Plane:

$$
\mathcal{T}^{(1)}\left(p_{i}, z, z^{\prime}\right)=\int \frac{d j}{2 \pi i} \frac{\left(1+e^{-i \pi j}\right)}{\sin \pi j}(\tilde{s})^{j} G^{(5)}\left(j, q, z, z^{\prime}\right)
$$

Integration Contour for Mellin Transform

$$
j_{0}=2-2 / \sqrt{\lambda}
$$

$\left\{2 \sqrt{\lambda}(j-2)-z^{5} \partial_{z} z^{-3} \partial_{z}-z^{2} t\right\} G_{\Delta(j)}^{(5)}\left(j, q, z, z^{\prime}\right)=z^{5} \delta\left(z-z^{\prime}\right)$

Reduction to AdS-3:

$$
G_{\Delta}^{(5)}\left(j, q^{ \pm}=0, q^{\perp}, z, z^{\prime}\right) \rightarrow\left(z z^{\prime}\right) G_{(\Delta-1)}^{(3)}\left(j, q_{\perp}, z, z^{\prime}\right)
$$

IV. Beyond Pomeron:

- Eikonal Summation:
- Summing "Reggeized Witter Diagrams"
- Black Disk Picture
- Froissart Bound
- Only follows from confinement

IV. Beyond Pomeron: Saturation, etc.

- Sum over Pomeron Exchanges (string perturbative)
- Eikonal Sum in $\mathrm{AdS}_{3 \text { : (derived both via Cheng-Wu and by Shock-wave method) }}$

$$
A_{2 \rightarrow 2}(s, t) \simeq-2 i s \int d^{2} b e^{-i b^{\perp} q_{\perp}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right)\left[e^{i \chi\left(s, b^{\perp}, z, z^{\prime}\right)}-1\right]
$$

$$
P_{13}(z)=(z / R)^{2} \sqrt{g(z)} \Phi_{1}(z) \Phi_{3}(z) \quad P_{24}(z)=\left(z^{\prime} / R\right)^{2} \sqrt{g\left(z^{\prime}\right)} \Phi_{2}\left(z^{\prime}\right) \Phi_{4}\left(z^{\prime}\right)
$$

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=\frac{g_{0}^{2} R^{4}}{2\left(z z^{\prime}\right)^{2} s} \mathcal{K}\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)
$$

- Condition for Saturation:

$$
\chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)
$$

Unitarity:

-Local Scattering in AdS3 of "String Bits" or "Partons"

$$
\begin{gathered}
A_{2 \rightarrow 2}(s, t) \simeq \int d^{2} b e^{-i b^{\perp} q_{\perp}} \int d z d z^{\prime} P_{13}(z) P_{24}\left(z^{\prime}\right) \widetilde{A}\left(s, b^{\perp}, z, z^{\prime}\right) \\
\widetilde{A}\left(s, b^{\perp}, z, z^{\prime}\right)=-2 i s\left[e^{i \chi\left(s, b^{\perp}, z, z^{\prime}\right)}-1\right] \\
\operatorname{Im} \widetilde{A}\left(s, b^{\perp}, z, z^{\prime}\right) \geq(1 / 4 s)\left|\widetilde{A}\left(s, b^{\perp}, z, z^{\prime}\right)\right|^{2}
\end{gathered}
$$

-With J ~ 2, eikonal predominantly real:

$$
\begin{aligned}
|\operatorname{Re}[\chi]| & \leq|\operatorname{Im}[\chi]|, \quad 1 \leq J_{0} \leq 1.5 \\
|\operatorname{Re}[\chi]| & \geq|\operatorname{Im}[\chi]|, \quad 1.5 \leq J_{0} \leq 2
\end{aligned}
$$

- "Parton-Hadron Duality": Local parton scattering in AdS3 is equiv to Multi-Channel eikonal for hadrons in 2-dim Impact Space

$$
\begin{gathered}
A_{n_{4}, n_{3} \longleftarrow n_{2}, n_{1}}(s, t)=-2 i s \int d^{2} b e^{-i b q_{\perp}}\left[e^{i \widehat{\chi}(s, b)}-1\right]_{n_{4}, n_{3} ; n_{2}, n_{1}} \\
\chi_{n_{4} n_{3} ; n_{2} n_{1}}(s, b)=\int d z d z^{\prime} P_{n_{3} n_{1}}(z) P_{n_{4} n_{2}}\left(z^{\prime}\right) \chi\left(s, b, z, z^{\prime}\right)
\end{gathered}
$$

- For real eikonal, quasi-elastic scattering only, and no scattering into "long-string" states.

$$
\operatorname{Im} A_{n_{4} n_{3} ; n_{2} n_{1}}\left(s, b^{\perp}\right)=(1 / 4 s) \sum_{n, m} A^{\dagger}\left(s, b^{\perp}\right)_{n_{4} n_{3} ; n m} A\left(s, b^{\perp}\right)_{n m ; n_{2} n_{1}}
$$

- Inelastic Production

4

4

幽

- Generalized Cutting Rules

$$
\begin{aligned}
& \cos \left(j_{0} \pi\right)|\chi|^{2}=\left[1-2 \sin ^{2}\left(j_{0} \pi / 2\right)-2 \sin ^{2}\left(j_{0} \pi / 2\right)+2 \sin ^{2}\left(j_{0} \pi / 2\right)\right]|\chi|^{2} \\
& j_{0}=1.0:-1=1-2-2+2 \\
& j_{0}=1.5: 0 \quad 0 \quad 1-1-1+1 \\
& j_{0}=2.0: 1=1-0-0+0
\end{aligned}
$$

-Real World: $\underline{\text { jo } \sim 1.5}$ and $\underline{\lambda \sim(1)}$

Analyticity:

- Amplitude is crossing even.

$$
\begin{aligned}
\mathcal{K}\left(s, b^{\perp}, z, z^{\prime}\right) & =-\left(z z^{\prime} / R^{4}\right) G_{3}\left(j_{0}, v\right) \\
& \times \widehat{s}^{j_{0}} \int_{-\infty}^{j_{0}} \frac{d j}{\pi} \frac{\left(1+e^{-i \pi j}\right)}{\sin \pi j} \widehat{s}^{\left(j-j_{0}\right)} \sin \left[\xi(v) \sqrt{2 \sqrt{\lambda}\left(j_{0}-j\right)}\right]
\end{aligned}
$$

$$
\cosh \xi=v+1 \quad e^{\xi}=1+v+\sqrt{v(2+v)}
$$

- With $\boldsymbol{\lambda}$ large, the Amplitude has a Large Real Part. Purely real at $\lambda \rightarrow \infty$.
- Need to know both $\operatorname{Re}[K]$ and $\operatorname{Im}[K]$ for all $s>0$.
- Im [K] can be found more easily. $\operatorname{Re}[K]$ can be found by Derivative Dispersion Relation.
- Im [K] can be evaluated analytically, exhibiting Diffusion in AdS3, with diffusion time, $\mathrm{T} \sim \log \mathrm{s}$.

$$
\operatorname{Im}[\mathcal{K}]=\left(z z^{\prime} / R^{4}\right) G_{3}\left(j_{0}, v\right)(\sqrt{\lambda} / 2 \pi)^{1 / 2} \xi e^{j_{0} \tau} \frac{e^{-\sqrt{\lambda} \lambda^{2} / 2 \tau}}{\tau^{3 / 2}}
$$

- With λ large, derivative dispersion relation simplifies,

$$
\partial_{\tau}\left[e^{-2 \tau} \mathrm{Re}[\mathcal{K}]\right]=-(2 / \pi) e^{-2 \tau} \operatorname{Im}[\mathcal{K}]
$$

- Re [K] can again be expressed simply as

$$
\begin{aligned}
\operatorname{Re}[\mathcal{K}] & \rightarrow(\sqrt{\lambda} / \pi) \operatorname{Im}[\mathcal{K}] \sim e^{j_{0} \tau} \frac{e^{-\sqrt{\lambda} \xi^{2} / 2 \tau}}{\tau^{3 / 2}}, \quad \text { if } \quad \log \widetilde{s}>(\sqrt{\lambda} / 2) \xi \\
& \rightarrow \frac{2}{\pi} \widehat{s}^{2}\left(\frac{z z^{\prime}}{R^{4}}\right) G_{3}(2, v)+O\left(e^{j_{0} \tau}\right), \quad \text { if } \quad \log \widetilde{s}<(\sqrt{\lambda} / 2) \xi
\end{aligned}
$$

Absorption \& Saturation?

Expected at low x and high Q^{2}, as number of partons grows, and they overlap

In Q^{2}

Pomeron $>$ Pomeranchukon $>$ Pomeranchuk singularity

I.Ya. Pomeranchuk

$$
\sigma_{\mathrm{tot}} \leq C \cdot \ln ^{2} \mathrm{~s}
$$

Theory Parameters: $N_{c} \& g^{2} N_{c}$

Unitarity, Confinement and Froissart Bound

Use the condition: $\quad \chi\left(s, x^{\perp}-x^{\prime \perp}, z, z^{\prime}\right)=O(1)$

Scattering in Conformal Limit:
No Froissart
Elastic Ring:

$$
b_{\text {diff }} \sim \sqrt{z z^{\prime}}\left(z z^{\prime} s / N^{2}\right)^{1 / 6}
$$

Inner Absorptive Disc:

$$
b_{\text {black }} \sim \sqrt{z z^{\prime}} \frac{\left(z z^{\prime} s\right)^{(j o-1) / 2}}{\lambda^{1 / 4} N} \quad b_{\text {black }} \sim \sqrt{z z^{\prime}}\left(\frac{\left(z z^{\prime} s\right)^{j o-1}}{\lambda^{1 / 4} N}\right)^{1 / \sqrt{2 \sqrt{\lambda}}(j 0}
$$

Inner Core: "black hole" production ?

With Confinement

- discrete spectrum

Kernel for hardwall at $z=1$

$K_{h w}\left(x_{\perp}, z z^{\prime}\right) \sim \frac{k_{5}^{2} s^{2}}{z z^{\prime}} \sum_{n} \frac{2}{J_{2}^{2}\left(m_{n}\right)} J_{2}\left(m_{n} z\right) K_{0}\left(m_{n}\left|x_{\perp}\right|\right) J_{2}\left(m_{n} z^{\prime}\right)$

$\lim _{\Lambda \rightarrow 0} K_{h w}\left(x_{\perp} / \Lambda, z / \Lambda, z^{\prime} / \Lambda\right) \sim \frac{\kappa_{5}^{2} s^{2}}{z z^{\prime}} \sum_{n} \frac{2}{y+\sqrt{y^{2}-1}} 4 \pi \sqrt{y^{2}-1}$

Born Term for Hard Wall model

$K_{\text {hw }}\left(z, z, x_{?}\right) / K_{\text {conf }}\left(z, z, x_{?}\right)$
$K_{\text {Hardwall }}\left(z, w, x_{\perp}\right)=\sum_{n=1}^{\infty} \frac{2}{J_{2}^{2}\left(m_{n}\right)} J_{2}\left(m_{n} z\right) K_{0}\left(m_{n}\left|x_{\perp}\right|\right) J_{2}\left(m_{n} w\right)$
B.C. $\frac{d}{d z}\left[z^{2} J_{2}(z)\right]=0$ at $z=1$

Confinement and Froissart Bound

Mass of the lightest Glueball provides scale

$$
e^{-m_{0} b} / \sqrt{m_{0} b}
$$

Elastic Ring:

$$
b_{\text {diff }} \simeq \frac{1}{m_{0}} \log \left(s / N^{2} \Lambda^{2}\right)+\ldots
$$

Absorptive Disc:

Inner Core:

Saturation of Froissart Bound

- The hardwall gives a cut-off so that exponential fall off for $b>\log \left(\mathrm{s} / \mathrm{s}_{0}\right)$
- But there is shell of width $\phi \mathrm{b}$ of $\mathrm{O}\left(\log \left(\mathrm{s} / \mathrm{s}_{0}\right)\right)$ that is nearly conformal.
- Therefore Froissart is respected and saturated.

Applications beyond the LHC

 QCD influence on UHE v detection Importance of wee-x parton distributions
V. Summary and Outlook

- Provide meaning for Pomeron Pole nonperturbatively from first principles.
- Realization of conformal invariance beyond perturbative QCD
(2) New starting point for unitarization, saturation, etc.
- Phenomenological consequences.

Further Restrictions:

- Nonlinear effects: e.g., fan diagrams,
- Loops: e.g., AdS-3 Pomeron-Field Theory,
- etc.

[^0]: 2-d Longitudinal
 5 kinematical Parameters:
 2-d Transverse space:
 $\mathrm{p}^{ \pm}=\mathrm{p}^{0} \pm \mathrm{p}^{3} \simeq \exp \left[\pm \log \left(\mathrm{s} / \Lambda_{q c d}\right)\right]$ $\mathrm{X}_{\perp}-\mathrm{X}_{\perp}=\mathrm{b}_{\perp}$ $z=1 / Q$ (or $\left.z^{\prime}=1 / Q^{\prime}\right)$

