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Introduction

Picture: ATLAS simulation

The expectations for LHC physics can be sorted into three categories: 
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“There are known knowns. These are 
things we know that we know. There are 
known unknowns. That is to say, there are 
things that we know we don't know. But 
there are also unknown unknowns. There 
are things we don't know we don't know.” 

D. Rumsfeld

MC@2TeV MC@14TeVExtrapolation



Introduction

H

1. Incoming hadron                   (gray bubbles)

➮ Parton distribution function

2. Hard part of the process    (yellow bubble)
➮ Matrix element calculation, cross 
sections at LO, NLO, NNLO level

3. Radiations                                (red graphs)
➮ Parton shower calculation
➮ Matching to the hard part

4. Underlying event                        (blue graphs)
➮ Models based on multiple 
interaction

5. Hardonization                     (green bubbles)
➮ Universal models 

From theory point of view this event looks very complicated



Born Level Calculation

σ[FJ ] =
∫

m
dΓ (m)({p}m)|M({p}m)|2FJ({p}m)

✓ Easy to calculate, no IR singularities. Several matrix element 
generators are available (Alpgen, Helac, MadGraph, Sherpa)

✗ Strong dependence on the unphysical scales (renormalization 
and factorization scales)

✗ Exclusive quantities suffer on large logarithms
✗ Every jet is represented by a single parton
✗ No quantum corrections
✗ No hadronization

H



NLO Level Calculation

σNLO =
∫

N
dσB +

∫

N+1

[
dσR−dσA

]
ε=0

+
∫

N

[
dσV +

∫

1
dσA

]

ε=0

✓ Includes quantum corrections, in most of the cases it significantly reduces the 
unphysical scale dependences

✓ One of the jets consists of two partons (still very poor)
✓ Hard to calculate, the most complicated available processes are 2 → 3 

(NLOJET++1, MCFM, PHOX,...) 
✗ Exclusive quantities suffer on large logarithms
✗ No hadronization

Based on soft and collinear factorization

IR singularities!

1 http://cern.ch/nagyz/Site/NLOJET++/NLOJET++.html

dσA ∼ dΓ ({p}N+1) V ⊗ |M({p̃}N )|2︸ ︷︷ ︸FJ ({p̃}N )

HH +
Real contributions

Virtual contributions

http://nagyz.web.cern.ch/nagyz/Site/NLOJET++/NLOJET++.html
http://nagyz.web.cern.ch/nagyz/Site/NLOJET++/NLOJET++.html


Experimenter’s NLO Wish List
Single boson Diboson Triboson Heavy Flavor

Run II Monte Carlo Workshop, April 2001 
(Almost 7 years to the day and only two calculation finished!)

V+≤ 5jets
V+bb+≤ 3jets
V+cc+≤ 3jets

VV+≤ 5jets
VV+bb+≤ 3jets
VV+cc+≤ 3jets
WZ+≤ 5jets
WZ+bb+≤ 3jets
WZ+cc+≤ 3jets
Wγ+≤ 3jets
Zγ+≤ 3jets

WWW+≤ 3jets
WWW+bb+≤ 3jets
WWW+cc+≤ 3jets
Zγγ+≤ 3jets
WZZ+≤ 3jets
ZZZ+≤ 3jets

tt+≤ 3jets
bb+≤ 3jets
tt+V+≤ 2jets
tt+H+≤ 2jets
tb+≤ 2jets

Les Houches Workshop 2005
V+3jets

H+2jets
VV+≤ 2jets
VV+bb

ZZZ tt+2jets
tt+bb

V ∈ {W,Z,γ}

Why are these calculations so hard?



LO Parton Shower

✓ It is an iterative algorithm. Arbitrary number of partons.
✓ Matched to the hadronization models (which is universal effect).
✓ In the best cases it resumes the leading large logarithms properly.
✗ Needs more, rather non systematic approximations.                 (See next slides!)
✗ Strong dependence on the unphysical scales.
✗ The only exact matrix element in the calculations is 2→2 like at Born level.
✗ Positive unweighted events. I think it is time to give up this concept....

2→ 2



Shower from Inside Out
Think of shower branching as developing in a “time” that goes 
from most virtual to least virtual.

Real time picture Shower time picture

Thus shower time proceeds backward in physical time for 
initial state radiation.



Iterative Algorithm
The parton shower evolution starts from the simplest hard configuration, that is usually 
2→2 like.

“Nothing happens”

“Something  happens”
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Collinear Approximation
The QCD matrix elements have universal factorization property when two 
external partons become collinear

• Produces leading and next-to-leading logarithms.

• It is diagonal color, no color correlations.

• The gluon splitting is not diagonal in spin.

• The spin correlations are not really complicated but one can use 
average spin as extra approximation.

HC ∼
∑

l

tl ⊗ t†l Vij(si, sj)⊗ V †
ij(s

′
i, s

′
j)

...
..

1

m + 1

i
j i‖j−−−−→

...
..

1

m + 1

i

j

⊗
M

m
+

1

M
m
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l



Soft Approximation
The QCD matrix elements have universal factorization property when an external 
gluon becomes soft

• Pure soft contributions produce next-to-leading logarithms.

• Soft gluon connects everywhere and the color structure is not diagonal; 
quantum interferences in the color space.

• Does it spoil the independent evolution picture? Yes, it does, but ...

HS ∼ −
∑

l,k
l !=k

p̂l · ε(s) p̂k · ε(s′)
p̂l · p̂m+1 p̂k · p̂m+1

tl ⊗ t†k

pr→0−−−−−→

l

k

∑

l,kM
m

+
1

M
m

+
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M
m

M
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Color Coherence

1. The soft gluon contributions are cancelled in the wide angle region. 
One can apply angular ordering (Herwig/Herwig++) or impose 
angular ordering by angular veto (old Phytia). This is an extra 
approximation, especially for massive quarks. In the massive quark 
case the color coherence breaks down.

2. One can do leading color approximation. In the large Nc limit the soft 
gluon is radiated from a color dipole. The leading color contributions 
are diagonal in color space, thus no technical complication with colors. 
(Ariadne, new Phytia, Vincia)

3. No extra approximation, treat the soft gluon as it is. Full color 
correlations.                                                                                  ZN and D. Soper: JHEP: 0709 114,2007

There are three way to deal with the soft gluon color interferences:
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Classical Parton Shower
☀ The parton shower relies on the universal 

soft and collinear factorization of the QCD 
matrix elements. It is universal property and 
true at all order. This should be the only 
approximation ...

Parton shower as 
Quantum statistical 
mechanics 



Classical Parton Shower
☀ The parton shower relies on the universal 

soft and collinear factorization of the QCD 
matrix elements. It is universal property and 
true at all order. This should be the only 
approximation ...

... but we have some further approximations:
✗ Interference diagrams are treated 

approximately with the angular ordering
✗ Color treatment is valid in the Nc → ∞ limit 
✗ Spin treatment is usually approximated. 
✗ Usually very crude approximation in the 

phase space

... non-systematic approximations lead to 
systematically NOT improvable algorithm.

Parton shower as 
classical statistical 
mechanics 

Parton shower as 
Quantum statistical 
mechanics 



Shower Family Tree
NLO Parton Shower
Full spin and color correlations

LO Parton Shower
(Algorithm)

Full spin and color correlations

Classical Shower
No spin and color correlations

-Herwig, Pythia, Ariadne, 
Dipole shower, ...

- JHEP 0803:030 (2008)

Spin averaged shower
Full color but no spin correlations

-  Nothing happened so far....
-

Leading color shower
Full spin but no color correlations

-Herwig
- JHEP 0807:025 (2008)

“Dreamland”

“Partial Reality”

“Reality”

LO Parton Shower 
(Theory)

Full spin and color correlations
- JHEP 0709:114 (2007)



LO Matching Schemes

LO Parton 
Shower

NLO Level 
calculations

NLO Matching 
Schemes

Born Level 
calculations

LO Matching 
Schemes

☀CKKW-L algorithm: Reweighting Born matrix elements with Sudakov 
factors                                         S. Catani, R. Kuhn, F. Krauss, B. Webber: JHEP 0111:063,2001
                                                             L. Lönnblad: JHEP 0205:046,2002

☀MLM algorithm: Reweighting shower contributions with Born level 
matrix elements          M. Mangano
                                      M. Mangano , M. Moretti, F. Piccinini, M. Treccani: JHEP 0701:013,2007

There are two algorithm available in the literature for LO matching:



Shower Cross Section
Iterating the evolution twice, then we have
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Deficiency of Shower

• The shower approximation relies on the small  pT splittings.

• May be the exact matrix element would be better.

• But that lacks the Sudakov exponentials.
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Standard shower contribution Small pT approximation |M(2→ 4)|2

Rewieght the exact matrix 
elements with Sudakov factors



Improved weighting

• This is the essential part of the CKKW matching procedure.

• In general there are many ways to get from            configuration 
to              configuration.

• CKKW use the kT algorithm to find a unique history to define 
the Sudakov reweighting.

• The unique history requires to introduce matching scale.
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CKKW Algorithm
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CKKW break the evolution 
into                      and 0 < t < tini tini < t < tf

- CKKW use improve weighting for
- For                       they have standard shower 
   (in Herwig and old Phytia case transverse
    momentum veto is needed) 
- They use the kT algorithm and NLL Sudakov
   factors to do the reweighting. 
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MLM Algorithm

• This is the essential part of the MLM matching procedure.

• MLM algorithm use the cone jet finding algorithm to define the 
ratio

• No analytic Sudakov factors, it use the native Sudakov of the 
underlying parton shower.

• Matching parameters:    
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LO Matching Schemes
✓ The CKKW-L algorithm is implemented 

in Sherpa and in Ariadne. MLM in 
AlpGen and MadGraph

✓ It is certainly an improvement.
✗ Only normalized cross section can be 

calculated.
✗ The result could strongly depend on the 

matching scale.
➡ It would be nice NOT to use matching 

scale.
✗ Matching scale dependence cancelled at 

NLL level but only in e+e- annihilation.
✗ No matching at quantum level.
✗ It is still LO order calculation thus the 

scale dependence is large.
➡ The algorithm can be generalized at 

NLO level.       ZN and D. Soper: JHEP 0510:024,2005



NLO Matching Schemes

☀ MC@NLO: Avoiding double counting by introducing extra subtraction 
terms.                                                  S. Frixione and B. Webber: JHEP 0206:029,2002
                                                                                         S. Frixione, P. Nason and B. Webber: JHEP 0308:007,2003

☀ KS approach: The main idea is to include the first step of the shower in 
NLO calculation and then start the shower from this configuration.                     
                                                                 M. Krämer and D. Soper: Phys.Rev. D69:054019,2004
                                                                                         P. Nason: JHEP 0411:040,2004

☀ “CKKW@NLO” Combines the KS approach and the CKKW matching 
procedure.                                                                                          ZN and D. Soper: JHEP 0510:024,2005
                                                                                                    Giele, Kosower, Skands: arXiv:0707.3652 [hep-ph]

LO Parton 
Shower

NLO Level 
calculations

NLO Matching 
Schemes

Born Level 
calculations

LO Matching 
Schemes

There are several algorithm available in the literature for NLO matching:



MC@NLO

✓ Several simple processes are 
implemented in the MC@NLO 
framework. 

✗ The MC@NLO is worked out for 
HERWIG.  If you want to use it with 
PYTHIA you have to redo the MC 
subtraction.

✗ MC@NLO is defined only for the 
simplest processes, like  2→0,1,(2)             
processes. 

✗ No quantum correlations. 

It might be a good idea to illustrate the MC@NLO matching procedure:

Obvious step to choose 
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M
(2
→

3)

t3

M
(2
→

2)

t3

−

tf

··
·

U
(t

3
,t

f)

tf

··
·

U
(t

2
,t

f)

M
(2
→

2)

+
∫

1

[
dVMC − dV

]




+





tf

··
·

U
(t

2
,t

f)

M
(1

)
fi
n
(2
→

2)

+









tf

··
·

U
(t

2
,t

f)

M
(2
→

2)



Other approaches
At least the first step of the shower is done with the NLO splitting functions.

✓ This matching works with any shower algorithm. 

✗ Several proposal but NO implementation in a general purpose program so far.

✗ No quantum correlations. Matching only in the momentum and flavor space.

✗ It is usually defined only for the simplest processes, like 2→ 0,1,2 processes. 

✓ To apply for other processes one has to combine the NLO matching with the 
CKKW algorithm.                                                   ZN and D. Soper: JHEP 0510:024,2005
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Quantum level NLO matching
Including the quantum correlations (color and spin) properly the structure of the shower 
with NLO matching is simpler (no subtraction).

✓ This matching requires shower with quantum interference.

✓ All the quantum correlations are included.

✓ Systematically defined for any process.

✗ No complete algorithm worked out, No implementation.
ZN and D. Soper: hep-ph/0601021

http://cern.ch/nagyz
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Instead of having defined LO, NLO and shower calculation separately and 
patching the gap between them by matching schemes 

we should define a new shower concept 
that can naturally cooperate with NLO 
calculations
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