

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Anna Kropivnitskaya – ITEP (

on behalf of H1 and ZEUS Collaborations

- Inclusive non-diffractive photoproduction of $\rho(770)^0,\, \text{K*}(892)^0$ and $\phi(1020)$ mesons
- KO_{s} and Λ at low Q² in DIS
- Inclusive $K^{\star\pm}$ production at low Q^2 in DIS
- Inclusive $K_{s}^{0}K_{s}^{0}$ resonance production
- Production of excited charm and charm-strange mesons

H1

The HERA Collider

ep kinematics:

energy c.m.: $\int s = 300-320 \text{ GeV}$ hadronic energy: $W = m(\gamma^*p)$ photon virtuality : Q^2 two regions: $Q^2 \approx 0 \text{ GeV}^2$ — photoproduction $Q^2 > 1 \text{ GeV}^2$ — electroproduction (DIS)

H1 and ZEUS:

- 92 07 years
- Lumi ~ 0.5 fb⁻¹ (each exper.)

Charged Particle Production

10

1

• Inclusive charged spectrum in γp , pp and AuAu collision could be describe by power law distribution:

$$f(E_T^{kin}) = \frac{A}{(E_{T_0} + E_T^{kin})^n} = - \begin{cases} \frac{A}{(E_T^{kin})^n}, & E_T^{kin} \gg E_{T_0} \\ \sim & \exp(-E_T^{kin}/T), & E_T^{kin} < E_{T_0}, & T = E_{T_0}/n \end{cases} \qquad \begin{array}{l} \text{Boltzmann} \\ \text{distribution} \\ \end{array}$$

Comparison with simpler systems (γp , pp) gives more understanding for heavy ion collision

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

3

10

p_T [GeV]

Charged Particle Production

Comparison with simpler systems (yp, pp) gives more understanding for heavy ion collision

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Charged Particle Production

Inclusive Photoproduction ρ^0 , K* and ϕ

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

$\rho^0,\, \text{K*}$ and $\phi\text{:}$ cross section, comparison with RHIC

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

$\rho^{0},$ K* and ϕ : cross section fit parameters

	$ ho^0$	$(K^{*0} + \overline{K}^{*0})/2$	ϕ
$< d\sigma/dy >_{ y <1} [nb]$	23600 ± 2400	5220 ± 560	1850 ± 210
T [GeV]	0.151 ± 0.006	0.166 ± 0.008	0.170 ± 0.009
T^{PYTHIA} [GeV]	0.136	0.140	0.149
$\langle E_T \rangle$ [GeV]	1.062 ± 0.014	1.205 ± 0.017	1.333 ± 0.020
$\langle E_T^{kin} \rangle$ [GeV]	0.287 ± 0.014	0.313 ± 0.017	0.315 ± 0.020
$< p_T > [GeV]$	0.726 ± 0.021	0.811 ± 0.025	0.860 ± 0.032
$< p_T >_{pp} [GeV]$	0.616 ± 0.062	0.81 ± 0.14	0.82 ± 0.03
$< p_T >_{AuAu} [GeV]$	0.83 ± 0.10	1.08 ± 0.14	0.97 ± 0.02

H1 Preliminary

- ρ^0 , K* and ϕ are produced with about the same value of the average $\langle E_T^{kin} \rangle$ • n is described by PYTHIA6.2 (pQCD) while T is not (non pQCD)
- $\langle p_{T} \rangle$ in H1 is in agreement with RHIC pp and is lower then RHIC AuAu

ρ^0 , K* and ϕ : cross section

 All inclusive photoproduction cross sections measured at H1 is described by power law distribution with fixed n = 6.7 calculated from h±

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

• Predictions fail to describe the details in low p_T , low x and large η

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

ISMD2008

• Overall features of the Data are reproduced by the ARIADNE CDM with $\lambda_s = 0.3$ and MEPS with $\lambda_s = 0.22$

• Predictions fail to describe the details in low p_T , low x and large n

• No asymmetry in the Λ and $\overline{\Lambda}$ is found within errors

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

K⁰_s to Light Hadrons

• K_s^0 /hadrons is overall described by CDM and MEPS with $\lambda_s = 0.22$ • K_s^0 and Λ is better described by CDM with $\lambda_s = 0.3$

12

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Django (CDM) and RAPGAP (MEPS) are in agreement with Data Consistent with K° $_{s}$ and Λ Data

13

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

K⁰_sK⁰_s: Glueball Candidate

HERA I + HERA II Data, all Q^2 => selected 672418 $K_s^0 K_s^0$ combinations

14

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

K⁰_sK⁰_s: Glueball Candidate

f₂ (1525) summary

The measured masses of the $f'_2(1525)$ and $f_0(1710)$ states are somewhat below the world average, however, the width consistent with the PDG

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Excited Charmed Mesons

The large charm production cross section at HERA provides possibility to study excited charm and charm-strange mesons

Orbitally excited P-wave mesons: $D_1(2420)^0 \rightarrow D^{*+}\pi^ D_2^*(2460)^0 \rightarrow D^{*+}\pi^-, D^+\pi^-$

Helicity measurements:

h(D⁰₁) = 5.9 ^{+3.0}_{-1.7}(stat.) ^{+2.4}_{-1.0} (sys.) HQET: +3

$$f(c \rightarrow D_{1}^{0}) = 3.5 \pm 0.4_{-0.6}^{+0.4} \%$$

$$f(c \rightarrow D_{2}^{*0}) = 3.8 \pm 0.7_{-0.6}^{+0.5} \%$$

D⁰₁ consistent with pure D-wave h = +3
Consistent with e⁺e⁻ measurements

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Excited Charmed Mesons

A. Kropivnitskaya

Light/Strange/Charm Hadron Measurements in ep Collisions as a Baseline for Heavy-Ion Physics

Summary

- Light $\rho(770)^{0}$, K*(892)⁰ and $\phi(1020)$ mesons production:
 - first measurement in photoproduction at HERA
 - comparison with RHIC results
 - universality is observed
- Strange particle production:
- K_{s}^{0} , Λ and $K^{\star\pm}$ production was measured at DIS
- CDM and MEPS describe overall features well
- Gluball candidate in K⁰_sK⁰_s:
 - •clear evidence for $f'_2(1525)$ and $f_0(1710)$ states
- Charm production:
 - orbital exited D_{1}^{0} , D_{2}^{*0} and D_{s1}^{+} are measured
 - radially excited D*'+ is not observed