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Detector R&D Projects

funding within the Alliance:

WP1: The Virtual Laboratory for Detector Technologies
�WP1.2: Sensors: Materials, Design and Characterisation
�WP1.3: Detector Systems: Development, Infrastructure and Testing

WP2: Detector R&D Projects
�WP2.4: Radiation hard silicon sensors for the sLHC

other:

�CMS (funded by BMBF)
�HPAD-XFEL (with Bonn, PSI, DESY)
�Marie Curie International Training Network MC-PAD (with CERN, DESY, …) 
�FP7 Proposal

time/annealing for different materials
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Aims

�quantitative understanding of Si sensor performance in harsh 
radiation environment

�improve sensor performance by defect engineering

�optimize sensor design (for given material, dose/fluence)
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Expertise and Infrastructure

I. Irradiation campaigns                                           
(CERN, Ljubljana, Stockholm, Darmstadt, Karlsruhe, DORIS,…)

II. Macroscopic damage vs. time/annealing for different materials

� Dark current                       � I/V
� Neff    � Vdep � C/V
� CCE      � τeff � TCT
� Nox, Neff � sensor stability � C/V

� evolution with time             � annealing
� overall performance           � multi-channel TCT  (newnew)

testbeam

III. Microscopic damage vs. time/annealing for different materials: TSC, DLTS
� characterisation of damage levels
� kinetics vs. time/annealing

� relate to macroscopic damage

IV. Incorporate results I. and II. into simulation of 
� sensor “static”
� charge collection 

� reliable prediction of long-term performance in the experiments environment
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Study of macroscopic properties: 

IV, CV, TCT (transient current technique)

Study of microscopic properties: Defects

DLTS: deep level transient spectroscopy, 
TSC: thermally stimulated current method)

Neff, I, te,h :f(Doping, t, radiation dose, …)

Sensor simulation/ optimization:

E, I, C as a function of irradiation, 
material

Simulation of charge collection in detector 

e, spatial resolution, reconstruction

Monte Carlo

•simulation

•experiment:          
-multi-TCT            

-testbeam

detector 

= dE/dx x sensor x FE electronics

Strategies
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Example: Epitaxial Silicon Detectors

• Epitaxial silicon

• Chemical-Vapor Deposition (CVD) of Silicon

• CZ silicon substrate used � diffusion of 
oxygen

• Growth rate about 1µm/min

• Excellent homogeneity of resistivity
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• for LHC oxygenated Si chosen

• based on findings of RD48

Now for SLHC: try naturally oxygen rich material

� epitaxial and MCz materials

try thin material (trapping!) [O](25µm) > [O](50µm) > [O](75µm)
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Epitaxial Silicon contd…
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Defect spectroscopy after p-irradiation (TSC)

Generation of shallow donors BD (Ec-0.23 eV) 

strongly related to [O]

Strong correlation between [O]-[BD]-Neff

generation of O (dimer?)-related BD reason for
superior radiation tolerance of EPI Si detectors G.Lindstroem et al., NIM A568 (2006) 66-71
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Example: SLHC operating scenario – simulation and experiment

• Radiation @ 4cm: Φeq(year) = 3.5 × 1015 cm-2

• SLHC-scenario: 

– 1 year = 100  days beam  (-7°C)

– 30  days maintenance (20°C)

– 235  days no beam (-7°C or 20°C)

• Operation without cooling is beneficial!!!
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� Experimental parameter:

� Irradiation: fluence steps ≈ 2.2×1015 cm-2

irradiation temperature ≈ 25°C

�After each irradiation step
annealing at 80°C for 50 min,
corresponding 265 days at 20°C 
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Excellent agreement between
experimental data and simulated results

���� Simulation + parameters reliable!
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New: multi-channel TCT

Goal: Time-resolved measurement of charge 

collection in Si-pixel and strip detectors in 

multiple channels up to very high charge 

densities. fine-grain position and angle scans.

Multi-TCT under construction in Hamburg:

• ps laser (1052 nm and 660 nm), <90ps, 

Wmax~200pJ, spot size <10 µm (red)

• penetration depth 3 µm (red), 1000µm (IR)

• fast amplifiers (miteq)

• data acquisition with fast oscilloscope (500 MHz, 

1GS/channel), possible upgrade to digitizer 

cards with up to 20 ch, synchronized 

• cooled detector support (Peltier)

attenuator + amplifier

Laser

optics

z table

x-y stagetemporary

detector support
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Summary

Aims:

�quantitative understanding of Si sensor performance in harsh 
radiation environment

�improve sensor performance by defect engineering

�optimize sensor design (for given material, dose/fluence)

Techniques:

�I/V, C/V, TCT, multi-TCT, DLTS, TSC
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BACKUP
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Silicon Detectors for Vertexing and Tracking

LHC starting 2008:
� Luminosity L = 1034 cm-2s-1

� in 10 years (500 fb-1) Φ (r=4cm) ~ 3·1015 cm-2

� Oxygenated Silicon    (ROSE-Collaboration RD48)
� replacement might be necessary 

sLHC starting 201x:

� Luminosity L = 1035 cm-2s-1

� in 5 years (2500 fb-1) Φ (r=4cm) ~ 1.6·1016 cm-2

� new materials/technologies under investigation  (RD50 Collaboration) 

Silicon detectors:

� are used for vertexing, lifetimes, triggering, tracking, even dE/dx
� are used in all current HEP experiments
� detect MIPs
� are fast (~10ns) and precise (~10µm)
� (crazy geometries, run in vacuum, cover large surface)

� are radiation tolerant
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Radiation Damage in Silicon Sensors

Two general types of radiation damage:

• Bulk damage due to Non Ionizing Energy Loss
- displacement damage, built up of crystal defects –

• Change of Effective Doping Concentration Neff

� type inversion

� higher depletion voltage � possibly under-depletion � loss of signal, increased noise

� junction moves from p+ to n+ side

 influenced by impurities in Si (oxygen, carbon,…)  defect engineering, material dependence!defect engineering, material dependence!

• Increase of Leakage Current

� shot noise � thermal runaway, power consumption � hard to bias

 temperature dependent  need cooling

• Increased carrier Trapping
�Charge loss � at 1016cm-2 λ≤20µm charge collection distance! 

• Surface damage due to Ionizing Energy Loss
�accumulation of charge in the oxide (SiO2) and Si/SiO2 interface 

� interstrip capacitance (noise factor), breakdown behavior, …
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Radiation Damage - Annealing

Short term: “Beneficial annealing”

Long term: “Reverse annealing”

- time constant depends on temperature:

~ 500 years (-10°C)

~ 500 days ( 20°C)

~  21 hours ( 60°C)
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Consequence:

Cool Detectors even during beam off 
alternative: acceptor/donor compensation by 

defect engineering
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Schematic Set-up
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Laser Controller

HV Supply

Peltier Controller

automated control and 

data aquisition

z table x table

500 MHz 

Oscilloscope

cooling pipes

4 Attenuators (steps 1/1 to 1/316.000)
4 Amplifiers (x500)

trigger line

laser fiber and optics


