Status of the Laboratory

UH	Į
1 11	

Universität Hamburg Institut für Experimentalphysik Detektorlabor

D. Eckstein, E. Fretwurst, V. Khomenkov, R. Klanner, G. Lindström, A. Srivastava, G. Steinbrück J. Becker, M. Bock, A. Junkes, J. Lange

1st Detector Workshop of the Helmholtz Alliance *Physics at the Terascale* Karlsruhe, 3rd and 4th of April 2008

Outline:

•Projects

•Aims

- •Expertise and Infrastructure
- •Examples

Detector R&D Projects

funding within the Alliance:

WP1: The Virtual Laboratory for Detector Technologies

WP1.2: Sensors: Materials, Design and CharacterisationWP1.3: Detector Systems: Development, Infrastructure and Testing

WP2: Detector R&D Projects

>WP2.4: Radiation hard silicon sensors for the sLHC

time/annealing for different materials

other:

CMS (funded by BMBF)
HPAD-XFEL (with Bonn, PSI, DESY)
Marie Curie International Training Network MC-PAD (with CERN, DESY, ...)
FP7 Proposal

≻quantitative understanding of Si sensor performance in harsh radiation environment

>improve sensor performance by defect engineering

➢optimize sensor design (for given material, dose/fluence)

Expertise and Infrastructure

- Irradiation campaigns Ι. (CERN, Ljubljana, Stockholm, Darmstadt, Karlsruhe, DORIS,...)
- Н. Macroscopic damage vs. time/annealing for different materials
 - Dark current
 - $\begin{array}{ccc} \mathsf{N}_{\mathrm{eff}} & \rightarrow \mathsf{V}_{\mathrm{dep}} & \rightarrow \mathsf{C/V} \\ \mathsf{CCE} & \rightarrow \tau_{\mathrm{off}} & \rightarrow \mathsf{TCT} \end{array}$
 - CCE $\rightarrow \tau_{eff}$ \succ
 - \succ N_{ox} , $N_{eff} \rightarrow$ sensor stability \rightarrow C/V
 - evolution with time \rightarrow annealing
 - \succ

- \rightarrow I/V
- overall performance → multi-channel TCT (*new*) testbeam
- Microscopic damage vs. time/annealing for different materials: TSC, DLTS Ш.
 - characterisation of damage levels \geq
 - kinetics vs. time/annealing \succ
 - relate to macroscopic damage \succ
- Incorporate results I. and II. into simulation of IV.
 - sensor "static" \geq
 - charge collection
 - → reliable prediction of long-term performance in the experiments environment

Strategies

Example: Epitaxial Silicon Detectors

- for LHC oxygenated Si chosen
- based on findings of RD48
- Now for SLHC: try naturally oxygen rich material → epitaxial and MCz materials try thin material (trapping!)

- Epitaxial silicon
 - Chemical-Vapor Deposition (CVD) of Silicon
 - CZ silicon substrate used ⇒ diffusion of oxygen
 - Growth rate about 1µm/min
 - Excellent homogeneity of resistivity

[O](25μm) > [O](50μm) > [O](75μm)

Epitaxial Silicon contd...

 $N_{eff}(t_0)$: Value taken at annealing time t_0 at end of short term annealing (10 min @ 80°C)

No SCSI after proton (and neutron) irradiation

Introduction of shallow donors overcompensates creation of acceptors

Neff(25μm) > Neff(50μm) > Neff(75μm)

Defect spectroscopy after p-irradiation (TSC)

Generation of shallow donors BD (Ec-0.23 eV) strongly related to [O]

[BD](25μm) > [BD](50μm) > [BD](75μm)

Strong correlation between [O]-[BD]-N_{eff} generation of O (dimer?)-related BD reason for superior radiation tolerance of EPI Si detectors

G.Lindstroem et al., NIM A568 (2006) 66-71

03/04/2008

Example: SLHC operating scenario – simulation and experiment

- Experimental parameter:
- ➢ Irradiation: fluence steps ≈ 2.2×10^{15} cm⁻² irradiation temperature ≈ $25 ^{\circ}$ C
- After each irradiation step annealing at 80 °C for 50 min, corresponding 265 days at 20 °C

Simulation + parameters reliable!

- Radiation @ 4cm: Φ eq(year) = 3.5×10^{15} cm⁻²
- SLHC-scenario:
 - 1 year = 100 days beam (-7°C)
 - 30 days maintenance (20°C)
 - 235 days no beam (-7°C or 20°C)
- Operation without cooling is beneficial!!!

03/04/2008

New: multi-channel TCT

Goal: Time-resolved measurement of charge collection in Si-pixel and strip detectors in multiple channels up to very high charge densities. fine-grain position and angle scans.

Multi-TCT under construction in Hamburg:

- ps laser (1052 nm and 660 nm), <90ps, W_{max} ~200pJ, spot size <10 μ m (red)
- penetration depth 3 μm (red), 1000μm (IR)
- fast amplifiers (miteq)
- data acquisition with fast oscilloscope (500 MHz, 1GS/channel), possible upgrade to digitizer cards with up to 20 ch, synchronized
- cooled detector support (Peltier)

03/04/2008

Aims:

>quantitative understanding of Si sensor performance in harsh radiation environment

➤improve sensor performance by defect engineering

➢optimize sensor design (for given material, dose/fluence)

Techniques:

≻I/V, C/V, TCT, multi-TCT, DLTS, TSC

Silicon Detectors for Vertexing and Tracking

Silicon detectors:

- \checkmark are used for vertexing, lifetimes, triggering, tracking, even dE/dx
- ✓ are used in all current HEP experiments
- ✓ detect MIPs
- ✓ are fast (~10ns) and precise (~10µm)
- ✓ (crazy geometries, run in vacuum, cover large surface)
- ✓ are radiation tolerant

LHC starting 2008:

- \blacktriangleright Luminosity L = 10³⁴ cm⁻²s⁻¹
- ➢ in 10 years (500 fb⁻¹) Φ (r=4cm) ~ 3·10¹⁵ cm⁻²
- Oxygenated Silicon (ROSE-Collaboration RD48)
- replacement might be necessary

sLHC starting 201x:

- \succ Luminosity L = 10³⁵ cm⁻²s⁻¹
- ➢ in 5 years (2500 fb⁻¹) Φ (r=4cm) ~ 1.6·10¹⁶ cm⁻²
- > new materials/technologies under investigation (RD50 Collaboration)

Radiation Damage in Silicon Sensors

Two general types of radiation damage:

- Bulk damage due to Non Ionizing Energy Loss
 - displacement damage, built up of crystal defects -

Change of Effective Doping Concentration N_{eff}

- \rightarrow type inversion
- \rightarrow higher depletion voltage \rightarrow possibly under-depletion \rightarrow loss of signal, increased noise
- \rightarrow junction moves from p+ to n+ side
- ← influenced by impurities in Si (oxygen, carbon,...) ← defect engineering, material dependence!

• Increase of *Leakage Current*

- \rightarrow shot noise \rightarrow thermal runaway, power consumption \rightarrow hard to bias
- ← temperature dependent ← need cooling
- Increased carrier Trapping
 - → Charge loss → at 10^{16} cm⁻² $\lambda \le 20 \mu$ m charge collection distance!

Surface damage due to Ionizing Energy Loss

- \rightarrow accumulation of charge in the oxide (SiO₂) and Si/SiO₂ interface
- → interstrip capacitance (noise factor), breakdown behavior, ...

Radiation Damage - Annealing

Short term: "Beneficial annealing" Long term: "Reverse annealing"

- time constant depends on temperature:
 - ~ 500 years (-10°C)
 - ~ 500 days (20°C)
 - ~ 21 hours (60°C)

Consequence:

Cool Detectors even during beam off alternative: acceptor/donor compensation by defect engineering

Schematic Set-up

