

Virtual Laboratory for Detector Technologies

Situation in Karlsruhe

Contribution

- WP1.1: Electronics System Development
 - Large-scale testing
- WP1.2: Sensors: Material, Design and Characterisation
 - Probe stations
 - TCT in cryostat
 - Irradiations (x-ray, protons and contact to neutrons)
- WP1.3: Detector Systems: Development, Infrastructure and Testing
 - Workshop with experience in construction of modules and larger structures
 - Clean room
 - Coordinate Measurement Machine
 - Wire bonder
 - Module teststands (sources, cosmics, LED)

Manpower

2 x Professors
6 x Scientific staff
4 x Diploma students
2 x PhD students
3 x Technicians

Arbitrary sorting !!!

Probe Stations

- 2 homemade flexible probe stations to measure all relevant sensor and process quantities
- 6" cold chuck (~-10°C) for measurements after irradiation
- Very flexible
 - individual needles
 - bias travels with sensor
- Switching matrix
- RH control
- LCR, electrometer, HV, quasistatic CV
- Camera (incl. frame grabber)

TCT Setup

- Scope with 8GS/s
- Fast amplifier
- Lasers:
 - 670nm (<35ps)
 - 1050nm (1ns)
- Sources: Am²⁴¹, Sr⁹⁰
- Mounted in dewar, cooling down to ~100K

Proton Irradiation

- Energy range: 15 38 MeV (we use 26MeV with κ =1.85)
- Currents: $20nA 100\mu A$ (we use $\sim 1\mu A$)
- Beam spot: σ ~5mm
- Beam wobbled: 15mm x 15mm
- Samples are put in insulated movable box
 - area: 400mm x 200mm
 - cooled down to -20°C -50°C using cold nitrogen gas
 - samples are scanned several times with line distance of 1mm
- Dosimetry is done by activation measurement of Ni-foils using Ni⁵⁷-line
- Examples:
 - Diodes on 25mm x 45mm irradiated up to 10^{16} n/cm² takes 60min at 3µA
 - Sensor 100mm x 100mm irradiated up to 10^{14} n/cm² takes 20min at 2µA

X-ray Setup

- Power supply: max. 60kV @ 20mA
- Cu-target
- Movable stage: manual 400x200mm
 PC controlled 50x100mm
- Temperature: $-10^{\circ}C - 30^{\circ}C$
- Used for DEPFET (Q. Wei, HLL München)

Mechanical Workshop

- Materials: Metal, GFK, CF, Wood
- Machines:
 - 3 x CNC miller
 - 1 x CNC lathe
 - 1 x Cycle lathe
 - several manual millers and lathes
- Welding shop
- Joinery
- Also access to FZK central workshop

CMS Tracker Petal under construction on CNC miller

Clean Room

- Area: 10m x 6m
- Class: 10'000
- Currently equipped for petal production and testing

Coordinate Measurement Machine

- CMM from Zeiss
- Accessible volume: 54x50x32cm³
- Accuracy:
 - xy: ~5µm
 - z: ~10µm
- Situated in small clean room (~12m²)

SiLC ladder during construction

CMS Tracker Endcap module under investigation

Detector Workshop

Industrial Bonding Machine

- Type: Hesse und Knipps Bondjet 710 M
- Travel: 180x255x25 mm
- Pitch: 80µm
- Used wire: 25µm Al(1%Si)
- CMS modules bonded so far: ~900
- Also used for SiLC ladder and many structures for irradiations
- Hand held pull tester
- High precision pull-tests in nearby IPE

Module Test Stations

- ARCS and CMS like readout
- Trigger for cosmics or Sr⁹⁰
- HV up to 1000V@1mA
- Cooling
- Additional cosmic telescope for resolution measurements in preparation

Further Contacts

• ITC: ESEM-EDX (Environmental Scanning Electron Microscope - Energy Dispersive X-ray spectroscopy)

ESEM

EDX map

• IMF: X-ray diffraction

Additional Important Infrastructure

Not virtual !

Please, help yourself outside