Calorimeter R&D

for the International Linear Collider

Hans-Christian Schultz-Coulon

Kirchhoff-Institut für Physik Universität Heidelberg

Helmholtz Alliance Detector Workshop, Karlsruhe, April 2008

ILC Physics and Calorimetry

Jet Energy Measurement

Problems:

Non-Compensation [hadr. vs. electrom. energy]

Missing energy [e.g. muon tracks]

Double counting [when using track momenta]

Particle Flow Calorimetry

Reduce role of 'hadron' calorimetry to measurement of n, $\rm K^0$

Compensating Calorimetry

Correcting hadronic energy for nuclear-binding energy loss.

Component	Detector	Fraction	Part. Resol.	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _×	negligible
Photons (y)	ECAL	30%	0.1/ <i>J</i> Ε _γ	.06/√E _{jet}
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/√E _{jet}

Particle Flow (PFA):

Choose detector best suited for particular particle type ...

i.e.: use tracks and distinguish 'charged' from 'neutral' energy to avoide double counting

distinguish electromagnetic and hadronic energy deposits for software compensation

Component	Detector	Fraction	Part. Resol.	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _×	negligible
Photons (y)	ECAL	30%	0.1/ <i>J</i> Ε _γ	.06/√E _{jet}
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/√E _{jet}

$$\sigma_{jet}^2 = \sigma_X^2 + \sigma_\gamma^2 + \sigma_{had}^2$$

.17/√E

Component	Detector	Fraction	Part. Resol.	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _×	negligible
Photons (y)	ECAL	30%	0.1/ √ Ε _γ	.06/JEjet
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/JEjet

$$\sigma_{jet}^{2} = \sigma_{X}^{2} + \sigma_{\gamma}^{2} + \sigma_{had}^{2} \qquad .17/JE$$
$$+ \sigma_{confusion}^{2} + ... < .25/JE$$

Component	Detector	Fraction	Part. Resol.	Jet Energy Res.
Charged (X [±])	Tracker	60%	10 ⁻⁴ E _×	negligible
Photons (y)	ECAL	30%	0.1/ <i>J</i> Ε _γ	.06/JEjet
Neutral Hadrons (h)	E/HCAL	10%	0.5/√E _{had}	.16/√E _{jet}

$$PFA - Energy Resolution:$$

$$\sigma_{jet}^{2} = \sigma_{X}^{2} + \sigma_{\gamma}^{2} + \sigma_{had}^{2}$$

$$+ \sigma_{confusion}^{2} + \dots$$

$$(25/JE)$$

Granularity more important than energy resolution !?

Overall Calorimeter Design HCAL HCAL **~** 5 λ 40 extra layers [2.5 cm/layer] Granularity: -3x3 cm² to 20x20 cm² (analog) - 1x1 cm² (digital) ECAL ~ 24 X₀ 30 - 40 layers [0.6 - 1.2 X₀] Granularity: - 5x5 mm² (analog) - $50 \times 50 \ \mu m^2$ (digital) ECAL

10⁷ to 10¹² readout channels [high-level of integration, low power consumption]

Silicon Tungsten Calorimeter

^{[...} similar approach: US SiD-Design]

Basic CALICE ECAL Design

Monolithic Active Pixel Digital ECAL /

CMOS

Wafer

Monotlithic Active Pixel Sensor Pixel size: 40x40 µm² Channel number: 8x10¹¹ Absorber: Tungsten Binary readout

Integration of sensor and readout electronics

Manfactured in standard CMOS process

Concerns:

MAPS:

Power consumption: 40 µW/mm² DAQ needs 400 Gbit/s

Sensor Layout (RAL) [0.18 Micron]

Digital ECAL: Shower Imaging

Simulation

Scintillator-Tungsten ECAL (Asia)

SiPM

[1600 pixels]

Scintillator-Tungsten ECAL (Asia)

Silicon Photomultipliers (SiPM)

SiPMs:

Pixelated APDs operated in limited Geiger mode

Signal = sum of fired pixels

MEPhi/Pulsar	: SiPMs
Hamamatsu	: MPPCs
SENSL	: SPMs
Photonique	: SSPMs
Voxtel	: MAPDs

Pros: small size, cheap, work in magnetic field

Cons: temperature & voltage dep., non-linearity, ...

Research in progress ...

SiPM [MEPhi/Pulsar]

used for

analog HCAL

up to 1600 pixels/mm²

MPPC [Hamamatsu]

> used for analog ECAL

1 m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008 → Fermilab]

1 m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008 → Fermilab]

3x3 cm² Tile

1 m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008 → Fermilab]

Mounted SiPM

1 m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008 → Fermilab]

Combined Test Beam Data:

- 100 Million Events collected
- Analysis ongoing

1 m³-Prototype 38 layers

Sandwich structure:

- Scintillator Tiles+WLS+SiPMs (.5 cm)
- Stainless steel absorber (1.6 cm)

2006/2007 CERN Testbeam [2008 → Fermilab]

Combined Test Beam Data:

- 100 Million Events collected
- Analysis ongoing
- ... next big step: technical prototype !

Analog HCAL - Test Beam Result

Analog HCAL - Test Beam Result

HCAL – The Digital Approach

Why digital ?

- better PFA performance
- cheap, robust detectors ...
- small total thickness ...

Used **Technologies**:

- GEMs
- µMegas
- RPCs

Example RPCs:

Pad Size: 1 × 1 cm² Total thickness: < 6 mm possible

Vertical Slize Test with 9 small chambers successful

Large Prototype to be built

Dual-Readout Calorimetry (4th)

Summary

Gaol: unprecedented jet energy resolution ILC: precision physics, Multi-Jet final states, low cross sections

Many interesting research projects High granular HCAL & ECAL (analog & digital), dual-readout calorimetry

Main approach: Particle Flow Algorithm (PFA) Granularity more important than energy resolution

Alternative: Cherenkov-assisted Hadron Calorimetry Dual read-out of cherenkov and scintillation light

Germany: Analog HCAL [incl. SiPMs & Electronics] DESY, Hamburg, Heidelberg, München, Wuppertal

Backups

Example: Higgs Self-Coupling

 $g_{\scriptscriptstyle hhh}$

Improvement of Jet Energy Resolution

60%/JE → 30%/JE

 \rightarrow 20% smaller uncertainty [equivalent of 40% luminosity increase]

Typical !

US ECAL Design (SiD)

Transverse: 12 mm² Longitudinal: 30 layers [0.7 - 1.4 X₀]

Energy resolution: ~ 17%/JE

US ECAL Design (SiD)

Analog HCAL – Technical Prototype

Goal: Compact & realistic design, i.e. scaleable with embedded electronics

Integration issues:

- readout architecture
- ultra-low power ASICs
- calibration system
- tile and SiPM integration
- absorber mechanics with minimal cracks

Feedback from test beam essential

[e.g. calibration concept, overall detector optimization]

Digital HCAL: GEM

Why digital ?

- better PFA performance
- cheap, robust detectors ...
- small total thickness ...

 $^{[30 \}times 30 \text{ cm}^2 \text{ GEM chamber}]$

A first Test chamber works - 80% Ar & 20 % CO₂ - Pad Size: ~ 1x1 cm²

Full size test beam module: 2008 [equipped with 100 x 30 cm2 chambers]

Digital HCAL: µMEGAS

Digital HCAL: RPCs

ILC Calorimeter $R_{\&D}$ – Overview

		L _	L		
ILC CALORIMETRY R&D			Detector Concept	Optimized for PFA	Compensating Calorimetry
ECALs	Silicon - Tungsten		SiD	Yes	No
	MAPS - Tungsten		LDC	Yes	No
	Scintillator – Tungsten		GLD	Yes	Yes
HCALS	Scintillator - Steel		4 th	No	Yes
	RPCs - Steel	_	Concept		
	GEMs - Steel				
	µMegas - Steel				
Dual- Readout	Scintillator – Steel				
тсмт	Scintillator - Steel				

ic Detector concepts

from Zaho et al.

Path to High Precision Hadron Calorimetry: Compensate for the Nuclear Energy Losses

- Compensation principle: $E = E_{obs} + k^* N_{nucl}$
- Two possible estimators of N_{nucl}:

N_{nucl} ~ N_{slow neutrons}
 N_{nucl} ~ (1-E_{em}/E_{tot})

Cherenkov-assisted hadron calorimetry: $E_{em}/E_{tot} \sim E_{Cherenkov}/E_{ionization}$

- 'EM' shower: relativistic electrons, relatively large amount of Cherenkov light
- 'hadronic' shower most of the particles below the Cherenkov threshold

Pb-Sci AHCAL

- Hardware compensation
 - Pb:Sc = 9.1:2
 - Strip/tile sizes are to be optimized
- > Strips

ilr

ÌİL,

- Better position resolution for same channel count
- Potential degradation of pattern recognition due to ghost hits

Design of Slab – Cross Section

The expected alveolar thickness is 6.5 mm if

 \Rightarrow Gaps (slab integration) : 500 μ m ?

- ➡ Heat shield : 400 µm ? but real thermal dissipation ? (active cooling ?)
- \Rightarrow PCB: 800 μ m (tolerances : ± ?) but chips embedded in PCB?
- ⇒ Thickness of glue : <100 µm ? study of the size of dots
- ⇒ Thickness of wafer : $320 \ \mu m (\pm ?)$ 30 matrix ordered ($90 \times 90 \ mm^2$)
- ⇒ Kapton[®] film HV feeding : 100 µm - OK (DC coupling)
- \Rightarrow Thickness of W : 2100 μ m (± 80 μ m)

Several technological issues have to be studied and validated

S.Schuwalov

.... Tasks of the Forward Region

ECal and Very Forward Tracker acceptance region.

•Precise measurement of the integrated luminosity ($\Delta L/L \sim 10^{-4}$) •Provide 2-photon veto

Provide 2-photon veto
Serve the beamdiagnostics using beamstrahlung pairs

•Serve the beamdiagnostics using beamstrahlung photons

<u>Challenges:</u>

High precision, high occupancy, high radiation dose, fast read-out!

o4.03.2008 S.Schuwalov

Impact of gaps on PFA

★ Assuming 60% charged particles, 30 % photons, 10 % neutral hadrons, can estimate contributions to PFA performance

45 GeV jets:		$\sigma_E = \alpha \sqrt{E}$						
α	ECAL	ECAL HCAL Confusion Other Total						
LDC00Sc	0.07	0.17	0.11	0.09	0.235			
LDC01_05Sc	0.14	0.17	0.12	0.09	0.267			

For LDC01_05Sc ECAL energy resolution is a significant contribution to jet energy resolution ! PandoraPFA v02-01

★ Ideally address this issue before mass reconstruction of samples.

Some preliminary answers to some PFA questions, e.g.

e.g. for PFA, what are the main detector questions ?

(at Snowmass LDC/GLD/SiD came up with list of questions) **★**Have "answers" to some of these questions (marked in green) The A-List (in some order of priority) 1) B-field : why 4 T ? Does B help jet energy resolution 2) ECAL inner radius/TPC outer radius 3) TPC length/Aspect ratio 4) Tracking efficiency – forward region 5) How much HCAL – how many interactions lengths 4, 5, 6... 6) Impact of dead material – see my talk on Wednesday 7) Longitudinal segmentation – pattern recognition vs sampling frequency for calorimetric performance 8) Transverse segmentation ECAL/HCAL ECAL : does high/very high granularity help? 9) Compactness/gap size 10) HCAL absorber : Steel vs. W, Pb, U... 11) Circular vs. Octagonal TPC (are the gaps important) 12) HCAL outside coil... 13) TPC endplate thickness and distance to ECAL 14) Material in VTX – how does this impact PFA

*****How about a similar list for Vertex and Tracking?

Status at LCWS07

★Full simulation studies using the LDC ILC detector concept with the PandoraPFA algorithm. Use $Z \rightarrow u\overline{u}, d\overline{d}, s\overline{s}$ decays at rest to benchmark performance

★For jet energies below 100 GeV achieve $\sigma_E/E < 0.30/\sqrt{E_{jj}({
m GeV})}$

★ Perhaps more importantly, for jet energies above ~75 GeV achieved

$$\sigma_{E_j}/E_j < 3.8\%$$

★ Post-LCWS emphasis shifted to improving low energy performance, important in likely initial phase of ILC at $\sqrt{s} \sim 200-500$ GeV

Particle Flow Performance

~ 50%/JE

~ 30%/√E

Integrated layer design

Design of the module...

The expected alveolar thickness is 6.5 mm if :

- \Rightarrow Gaps (slab integration) : 500 μ m OK
- ⇒ Heat shield : 400 µm ? but real thermal dissipation ? (active cooling ?)
- ⇒ PCB : 800 µm but chips embedded in PCB ?
- ⇒ Thickness of glue : 100 µm ? study of the size of dots ?
- \Rightarrow Thickness of wafer : 300 μ m ?
- ⇒ Ground or isolate foil : 100 µm ? AC vs DC ?
- \Rightarrow Thickness of W : 2100 μm OK

Several technological issues have to be studied and validated

Julien Fleury – EUDET/CALICE Electronic Meeting – 12 Jul 07

Chip Integration in PCB

- Bonding wires from Chip to PCB challenging due to large number of channels - Has to fit into overall mechanical to large above) 23

Chip on board design

Julien Fleury – EUDET/CALICE Electronic Meeting – 12 Jul 07