
Trigger at SLHC

ON-line

Physics on the TeV-scale at the Large Hadron Collid

OFF-line

Contents

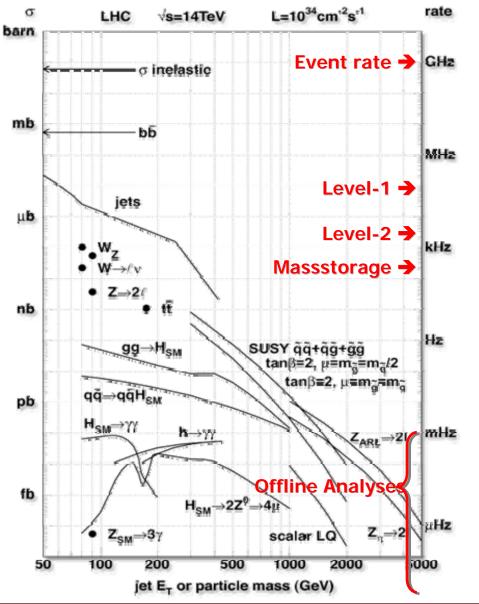
• LHC

challenges and trigger/DAQ architecture

• SLHC

- > physics requirements
- → challenges

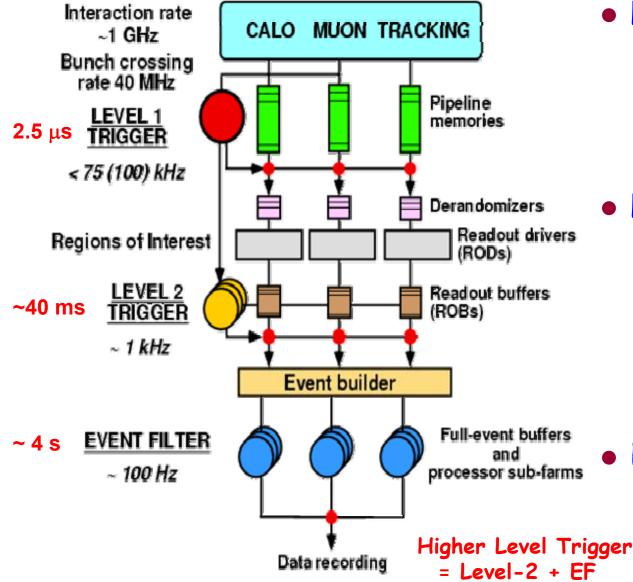
• Trigger upgrade for SLHC


- → ATLAS Level-1 calorimeter trigger
- > CMS Level-1 track trigger

• Summary

1st Detector Workshop HGF 'Terascale', Karlsruhe, April 3rd 2008

LHC: the challenge(s)


- extremely high interaction rates
 - mostly uninteresting background
- many physics processes of interest happen only rarely
 - very efficient selection needed
- complex detectors
 - → 10⁸ electronic channels
- many simultaneous pp interactions
 - → at design luminosity
- constraints from available latency, computing resources, network bandwidth, ...

solution

→ multi-level trigger systems

ATLAS trigger & DAQ architecture

Level-1

 coarse calorimeter data and muon trigger chambers
 buffering on detector

Level-2

- → Region-of-Interest data (~2% only)
- → full granularity
- all detectors
- fast rejection
 buffering in ROBs
- EF (Event Filter)
 - \rightarrow refines selection
 - latest calibration, alignment

SLHC physics requirements

• to exploit physics potential of SLHC, need

- > triggers for discovery physics
 - \circ (very) high p_T objects (thresholds increased wrt LHC) \circ as inclusive as possible (also inclusive W/Z selection ?)

> triggers for precision measurements

o high p_T objects (with similar thresholds as for LHC)
 ○ use more exclusive / multi-object selection to control rate

→ monitor and calibration triggers

 ${\bf O}$ low to high p_{T} thresholds (will be pre-scaled)

• conditions at 10³⁵ cm⁻²s⁻¹ will impact trigger rates

- > higher rate for fixed threshold and efficiency
 - o trivial increase by corresponding increase in luminosity
 - further increase due to less effective isolation criteria, increase in fake rate, ...
 - Jup to 400 inelastic pp interactions per crossing (on average)

TDAQ upgrade parameter space

- upgrades of the trigger and DAQ system are influenced (driven) by several constraints and requirements, from
 - \rightarrow physics goals

 \circ objects, algorithms, p_T thresholds, ...

\rightarrow machine parameters

bunch crossing frequency,
 # of simultaneous inelastic pp interactions, ...

→ sub-detector changes

 number of channels, occupancy, signal formats for LVL1 (analog vs. digital), ...

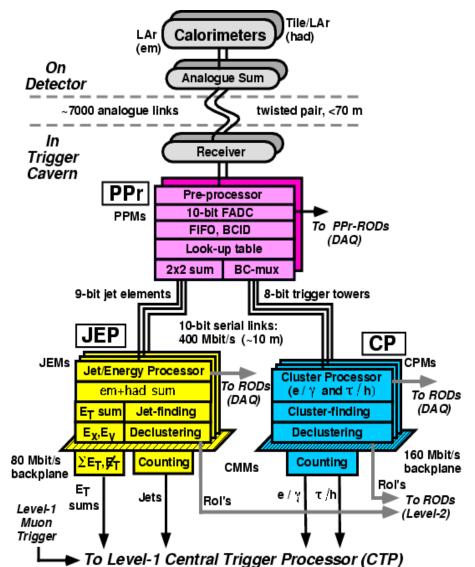
> technology evolution

o availability of performing commodity items, ...

Upgrade plans/ideas

• CMS

- \rightarrow increase Level-1 latency to 6.4 μ s
- muon and calorimeter trigger at Level-1 with finer granularity
- → introduce Level-1 track trigger (see later)
- regional correlation at Level-1 with track, muon and calo trigger information (before global trigger)


• ATLAS

- discussion on new concepts have started
 - example Level-1 calorimeter trigger (see later)
- need/use of Level-1 track trigger to be determined
- boundary Level-1 to Higher Level trigger likely to be kept
 - → no change in Level-1 accept rate
- mostly focusing on Level-1 issues right now
 - DAQ and Higher Level trigger to profit from technology advancements (bandwidth/processing demands will increase)

ATLAS LVL1 calorimeter trigger

- analogue electronics on detector sums signals → trigger towers
- signals received and digitised
 - → digital data measure E_T per tower for each BC
 - ${\rm o}~{\rm E}_{\rm T}$ matrix for ECAL and HCAL
- tower data transmitted to processors (4+2 crates in total)
 - fan out values needed in more than one crate
 - Motivation for very compact design of processor
- within crates, values need to be fanned out between electronic modules, and between processing elements on the modules
- Connectivity and data-movement issues drive the design

1st Detector Workshop HGF 'Terascale', Karlsruhe, April 3rd 2008

ATLAS calorimeter trigger: installed

- Imitations on input/output
 - stability and reliability of cable plants
- first stage (preprocessor)
 - → mixed signal design
- data duplication in processor systems
 - → backplane limitations

ATLAS Level-1 calorimeter trigger

• present areas for initial upgrade studies

- brainstorming meeting Jan. 2008 in Heidelberg
- > critical assessment of present system (lessons learnt)

o to be continued during first data taking

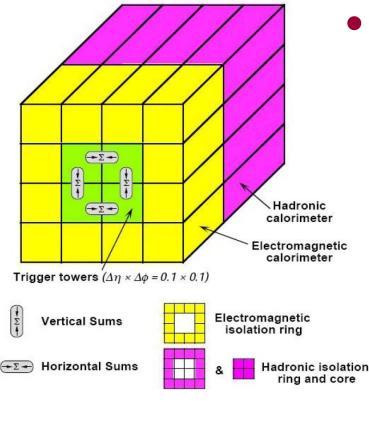
→ granularity of input data

• relation to upgrades of calorimeter f/e electronics

improvement of trigger algorithms

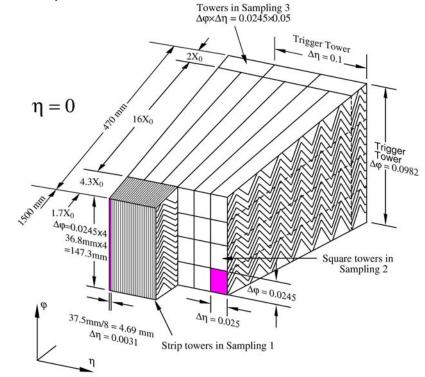
• transfer part of Higher Level rejection to Level-1

architecture studies


• possibilities to reduce/avoid data duplication (backplanes)

prototype/emulation board development o firmware development for algorithms

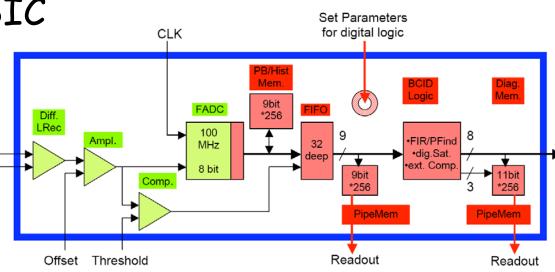
- Assessment of multi-Gbit link technologies
- > timing distribution
 - TTC inadequate for multi-Gbit links


uníder Sítát⊗ maínz

Calorimeter trigger algorithm

- example: EM trigger
 - > select e/γ at Level-1
 - narrow shower shape
 - no longitudinal leakage
 - transverse isolation
 - → input: 'trigger towers'
 summed energies of ≤ 60 cells

- much finer granularity of cells in liquid argon calorimeter
 - additional rejection power (Higher Level trigger with calorimeter only)
 - investigate possibilities of using finer granularity for Level-1

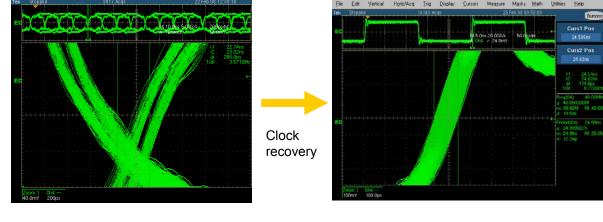

Calorimeter trigger upgrade: plans

• Heidelberg

- integrate pre-processor functionality into higher density
- > mixed signal ASIC

analog signal conditioning
 digitisation

(FADC) obunch crossing identification


implement prototype channel in MPW-run 0180 nm UMC process

Calorimeter trigger upgrade: plans

• Mainz

sifat®

- investigate clock jitter / data integrity of high speed data links
 - → using Xilinx demonstrator boards
 - develop jitter cleaner card
 - o synchronous vs. asynchronous transmission

∆t ~300 ps

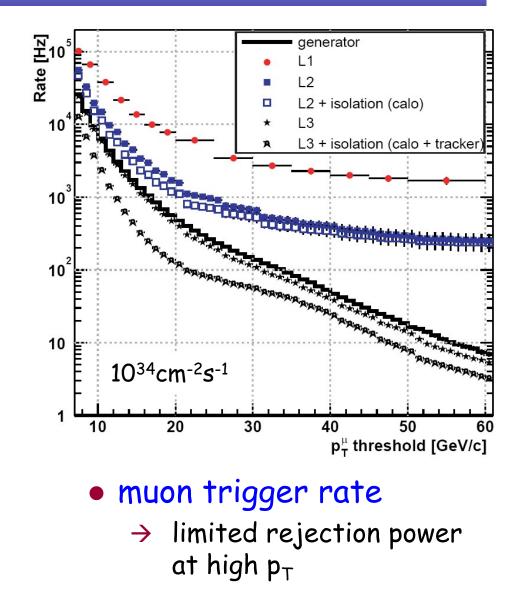
∆t ~120 ps

→ develop demonstrator board for jet-energy sumprocessor

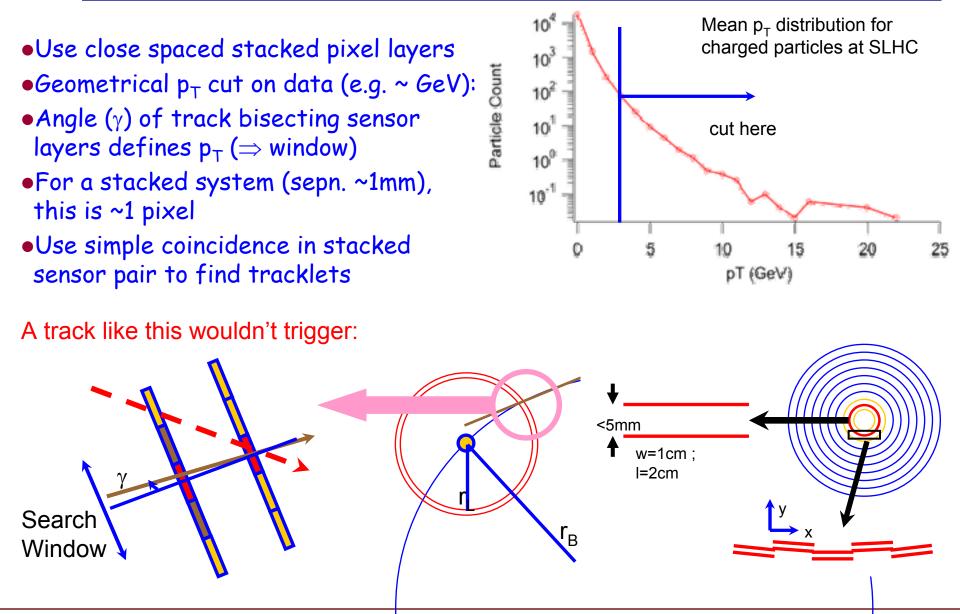
• firmware developments for signal deserialisation and algorithmic processing in single FPGA

spread over several parts presently

• integrate into present system for detailed tests


CMS: track trigger at Level-1

motivation


- need to sufficiently reduce trigger rates at SLHC
- allow for increased algorithm complexity

examples

- improve muon momentum measurement
- → increase rejection of fake e/γ objects
- refine isolation criteria (track based)
- disentangle different primary vertex contributions

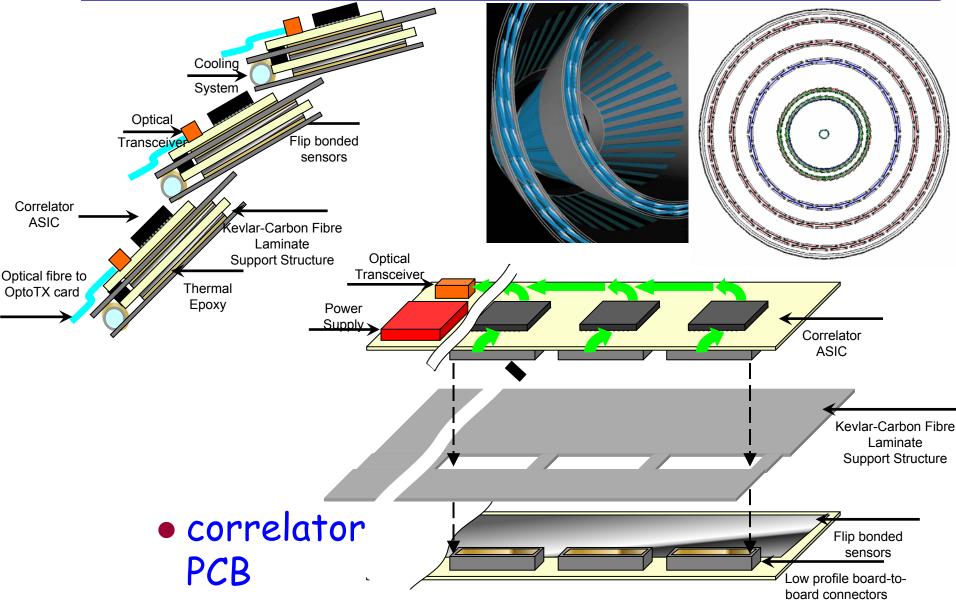
CMS: trigger capable tracker modules

1st Detector Workshop HGF 'Terascale', Karlsruhe, April 3rd 2008

I AI 🐼

Stefan Tapprogge, Johannes Gutenberg-Universität Mainz

uníver Sítắt⊛ maínz


Reconstruction of tangent point

- → assume IP r=0
- → angle α determines p_T of track
- smaller α = greater p_T
 - → can find high-p_T tracks by looking for small angular separation of hits in the two layers
 - correlation is fairly 'pure' provided separation is small and pixel pitch is small
- matching hits tend to be from the same track
 - if sensors are precisely aligned, column number for hit pixels in each layer can be compared
 - → finding high-p_T tracks becomes a relatively simple difference analysis

ά

CMS: conceptual design

1st Detector Workshop HGF 'Terascale', Karlsruhe, April 3rd 2008

Summary

• trigger upgrade for SLHC depends on

- > physics requirements (not yet really known)
- > machine parameters (might change again)
- > detector upgrades
- challenges at SLHC might/will be even larger than the ones for LHC
 - Triggering will be a really tough job
- present activities with HGF alliance
 - Heidelberg and Mainz on Level-1 calo trigger