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• Using as reference the 
beautiful work of the BRM 
group, in particular in 2012.

• Reference: Detector note 
DN-12-006 under 
construction.
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Abstract

The BCM1F detector exploits single particle counting in the CMS inner detector re-
gion with nanosecond time resolution. It has the capacity to serve as an online mon-
itor, and sample the average and the per bunch crossing instantaneous particle rates
in the CMS inner detector. This allows for the extraction of information that can be
used to optimize the beam characteristics and measure the delivered luminosity of
the LHC to the CMS Experiment. In this paper we describe the method for determin-
ing luminosity from the measured particle rates using the BCM1F detector, and the
method to derive an absolute luminosity calibration from a Van der Meer scan.

Introduction
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Luminosity basics
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Luminosity Basics
For a pp collider, the luminosity can be defined as,

L =
µvis · nb · forbit

�vis
(1)

Where we account for the detection e�ciency by

considering �vis = "�inel . �vis is measured using a Van

der Meer scan (see back-up for details).

µ ⌘ average
number of
inelastic collisions

forbit ⌘ orbit
frequency (
= 11246 Hz)

nb ⌘ number of
colliding bunches
(. 1380)

�inel ⌘ inelastic
pp cross-section

Zero Counting
Assuming that the number of observed interactions is Poisson distributed with
and MPV of µ, we can determine µ by measuring the number of colliding bunch
crossings with no observed interaction,

Pn =
µn

e

�µ

n!
! µ = �ln[P0] where P0 = 1� POR = 1� NOR

NBX
(2)
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hits in the +z OR -z sides
Slide from N. Odell
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• Overlap region measured in the x and 
y directions

•
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Algorithms for luminosity

• The main logic for µ used in BCM1F is the OR logic:
• Require hits in the +z OR -z sides.
• May suffer from zero starvation at high luminosity.

• The OR counts can be divided into:
• AND: Require hits in the +z AND -z sides.
• XOR+: Require hits on the +z side and no hit on the -z side.
• XOR-: Require hits on the -z side and no hit on the +z side.

• In principle these algorithms can be used individually to determine the 
luminosity, with all or small groups of channels.

• Certain algorithms may present very low rates in the VdM scan → particularly 
the tails of the beam profile are not well described.

• Use the µpeak of an algorithm (e.g. AND) with the measured beam profile from 
another logic (e.g. OR) to extract the calibration constant (σvisAND).

• Need Monte Carlo simulation studies to make an optimal choice.
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• Signals are detected using a constant threshold discriminator.
• LHC Run I: Inefficiency due to the response of preamplifier – time under threshold
• LS1 upgrade: New front-end design should be able to distinguish two MIP signals 

12 ns apart → suppress inefficiency!

Systematic effects (I)
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• Time above threshold: saturation of the front-end due large amplitude signals 
→ deadtime of hundreds of ns in LHC Run I

• LS1 upgrade: New front-end design – fast baseline recovery after overdrive 
detector signal.

Systematic effects (II)

7
Simulation by Dominik Przyborowski

UST Kraków
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Systematic effects (III)

• Effect of time above threshold: efficiency drop during bunch train.
• Corroborated by simulation studies.
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Systematic effects (IV)

• Linear laser driver very sensitive to radiation.
• Optical signal degrades with integrated luminosity.
• Degradation of baseline and test pulse amplitude observed. Reduced bandwidth of 

signal amplitude.
• After LS1 upgrade BCM1F should feature an online baseline monitoring.

9
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Systematic effects (V)

• Laser also sensitive to thermal effects.
• Discrepancy w.r.t HF observed in the beginning of the fill correlated with 

temperature variations measured in the vicinity of BCM1F.
• LHC Run 1: Corrected with HF data from previous fill.
• After LS1 upgrade, temperature monitoring (possibly cooling?) will be provided. 

10
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Systematic effects (VI)

• Degradation also caused by the diamonds – polarisation effects?
(see Jessica’s talk)

• Time running luminosity calibration constant.
• Increase of HV improved performance temporarily.
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Systematic effects (VII)

• Albedo and beam-gas contributions can be estimated with gating system.
• Reduced bunch space after LS1 will increase Albedo contribution.
• Need to test luminosity algorithms with largest suppression of Albedo effects.
• See Jessica’s talk for more details.
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Collision

Measure	  of	  Albedo
under	  Collision	  (~7%)

Collision

First	  collision	  of	  a	  train
Very	  low	  albedo	  component,	  <1%

8	  TeV	  data
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Back-end upgrade

• See David’s talk for more details.

• Should feature:

• Gain monitoring: single channel, pulse height and baseline 
monitoring, with known deadtime.

• Signal processing for pulse identification, with zero deadtime, 
particle counting as a function of time since the start of orbit.

• Real-time logic between channels, with zero deadtime.
• Apply calibration factors, corrections.

• Possibly use digitisers with built-in FPGA(?)

• Feasibility studies of possible back-end design:
simulation, simulation, simulation!
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• Methods such as deconvolution or alike should reduce the amount of 
storage needed without significant loss of information.

• Moreover, signals with arrival time very close (non-resolved peaks) can 
still be distinguished; overshoot identified and saved for offline analysis.

• More details in Piotr’s talk.

deconvolution

Back-end: data storage and
suppression of systematics
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• Simulations will help optimisations and understanding of systematic effects.
• First BCM1F rate studies using simulated Pythia events within the CMSSW 

framework, with Minimum Bias in- and out-of-time pile-up.
• Emulation: particles in the sensitive area of

BCM1F are counted as one hit.
• MC hit prob. ~ twice than from data

(inefficiencies, discr. threshold, polarisation…)
• Rate at 8 TeV with PU = 30:

3.1 (5.9) MHz for observed (expected)

MC simulation (I)
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8 TeV  –  50 ns

ADC data

simulation

 Very preliminary 
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simulation
8 TeV  – 25 ns

single sensor: highly non-linear!
split sensor: linear at higher pile-up

MC simulation (II)
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hits = particles

 Very preliminary 

• 25 ns bunch space: Splitting the sensors should reduce non-linear effects.
• Split sensors: rate with 25 ns similar to full sensor in 50 ns.
• Increase with pile-up of simultaneous particles in the sensitive area.

simulation
8 TeV  – 25 ns
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MC simulation (III)

• Probability of zeros with OR logic, 24 (single) and 48 (split) channels.
• Studies will help optimise the luminosity algorithms.

17

 Very preliminary 

simulation
8 TeV  –  25 ns
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MC simulation (IV)
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 Very Very preliminary 

ADC data
8TeV - 50 ns

simulation
14 TeV - 25 ns

simulation split
14 TeV - 25 ns

• First samples at 14 TeV c.m. energy.
• Track multiplicity higher than at 8 

TeV (as expected).
• Some technical limitations running 

high pile-up at 14 TeV,
25 ns.

• Rate at PU=30 with split sensor, for 
LHC Run II expected to be
17 MHz per channel!

• For LHC Run I observed (but 
uncorrected) 3 MHz per channel at 
PU = 30.

• Need more investigation, cross 
checks.
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MC simulation (V)

• Implementation of BCM1F in the CMS geometry (XML) ongoing
• Request MC samples for LS1 upgrade studies.

19
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Summary – Plans

• Perform various studies with Monte Carlo:

• Determine performance of luminosity algorithms.

• Determine corrections to be applied to data.

• Understand better systematic effects.

• Guidance for the back-end design.

20
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Backup

21
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• From O. Novgorodova
• Rate ≃ 11245*1380*prob

• Example: Fill 2686; +z top (-z far); @ 5E33 → rate ≃ 2.3 (0.85) MHz

Hit detection probability from data

22

Fill 2686 – 31.05.2012 Fill 3621 – 03.11.2012

2218149221814 ← PU →28 28
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Signal characteristics
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Signal Characteristics
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BCM1F DAQ system
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Back end:
• fixed-threshold discriminator;
• scalers: hit rate;
• ADC: signal spectra, baseline stability;
• TDC: time info, bunch structure;
• Logic units for beam-gas background rates

and luminosity monitoring;
• Delay units, synchronisation with BPTX

Tuesday, 23 April 13



BCM1F front end upgrade
(simulations)

• Main goals: higher gain, faster peaking time and smaller FWHM, timing 
resolution able to separate incoming machine induced background hits from 
outgoing collision hits.
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• Collisions produce long tails, of exponential and constant shapes.
• The long exponential component has a ‘lifetime’ of (2.12 ± 0.02) µs.
• Simulation (FLUKA) was performed and show good agreement with the data. Tails 

are mostly populated by electrons and positrons (up to 400 bunch crossing) and by 
neutrons and photons.

Albedo effect
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