RIE Diamond Processing and Results

R. StoneRutgers UniversityB. HarropPrinceton University

Workshop on CMS Beam Conditions, Radiation Monitoring and Luminosity Systems

22 April, 2013

Outline

Why do we want to change diamond processing?

What is RIE?

Charge Collection Comparison of RIE vs non-RIE processing

Motivation for new diamond processing

- PLT irradiation studies often show lower pulse height than RD42 predicts
 - PLT performance at P5 exhibits strange features (see Dean's talk tomorrow)
 - unexpected pulse height degradation
 - slower charge collection
 - rate can affect pulse height
- Why?

maybe related to surface defects or surface processing

• Our colleagues in Atlas diamonds have seen some of the above...

Irradiated sCVD from Atlas Bonn Group

Atlas Bonn reprocessing

- Used a combination of mechanical diamond-grit polishing and Reactive Ion Etching (RIE)
 - Removal of about 1.5 microns by polishing and 1.5 microns by RIE to both top and bottom surfaces side of diamond
- They are now involved in a study with an irradiated PLT diamond to find the optimal amount to remove
 - removing 1 micron from each surface per step, then test after each step
 - Haven't gotten any detailed results, but it appears that 5 microns is better than 1 so far.
 - (We plan to do the same study with another irradiated PLT diamond)

What is (**R**)eactive (**I**)on (**E**)tching?

- Use of various RF excited gases (SF6, CHF3, Ar, O2,Cl2 and BCl3 gases) to remove material from a substrates surface
- Totally clean and dry process:
 - <u>no need to chemically clean</u> surfaces before RIE or prior to metallization
 - we've found wet cleaning can leave residues that are very hard to see
- Much gentler and safer, with a smoother surface than using the traditional diamond grit polishing to remove material

Princeton's Fab "PRISM" Etch Process

- Currently removing 3 microns from both surfaces
 - takes about 2 hours per side
 - an additional variable 500W platen source allows for a final "soft bias" surface polishing step
 - can do RIE and metallization in one day
 - can RIE many diamonds together

Potential Difficulties of RIE for Diamond

- Note: etch rate for equivalent Silicon removal is a few minutes!
- 2 hours for diamond for 3 micron removal is a strain on vacuum seals, and other parts → ~\$25 K
- May have to rethink processing by RIE-only if we need much more than 3 microns removal; add mechanical polishing before RIE?

Results from RIE processing

- 1st RIE diamond was the non-Castor, unirradiated PLT S120
 - Before RIE was one of the lowest quality diamonds to pass acceptance
 - After RIE it was worse:
 - earlier voltage breakdown
 - but laser diagnostic showed lots of N in the bulk
 - so not a 'typical' sCVD?

• Next 7 diamonds after RIE show noticeable improvements!

PLT S49 (Castor) Large Side

Before RIE

After RIE

PLT S49 (Castor) Small Side

Before RIE

After RIE

RIE Data Summary: 3 Castor Diamonds

RIE diai	mond	run#s	1V/micron charge loss	% max V	level of rev-pol.% sig @ 0V sig @ 500V	lifetime(m) rev-pol.	source rate (Hz)
Before	39	20537/8	14/10	<500V/700V	38/63	3/6	4/3
After RIE	39	20540/1	18/12	1KV/1KV	53/31	6/3	3/3
After irrad.	39	20550/1	tbd/tbd	1KV/1KV	77/ 200	20/28	4/4
Before After RIE After irrad.	90 90 90	 10510/1 10516/7 <mark>(</mark>	0/0 55/tbd	1KV / 1KV 1KV / 1KV	73/29 130/137	>1/<<1 8 / 20	8/9 8/8
Before	49	20528/9	8/19	<500V/750V	67/83	2/2	23/21
After RIE	49	20533/4	0/4	1KV /1KV	19/31	<<1/<<1	2/2
After irrad.	49	20544/5	55/53	1KV/ 1KV	110/162	12 / 25	4/3

More charge loss than RD42 predicts (~40%) for LANL fluence of 10¹⁵ p/cm² Continued good HV performance after RIE and irradiation

RIE Data Summary: non-CASTOR Diamonds

Improvement in HV \rightarrow 1KV after irradiation (even those without RIE)

Questions:

- Would more RIE improve the post-irradiation CD of the diamonds?
 - Plan to do a 2nd RIE pass on one or more of these.
- Why is the charge loss of CASTOR diamonds higher than RD42 predicts?
 - Needs more RIE?
 - What about 'red' light effect? (see Dean's talk tomorrow
 - Longer pumping needed?
- Do RIE Pixels provide more uniform charge collection across all the pixels?
 - Have recently produced one pixel detector after RIE, in test now
- Does RIE fix the pulse height dependence on rate? (rate effect)
 - Will take several RIE pixel planes to high rate beamtest (at PSI) in mid May

Summary

- Castor and non-Castor diamonds show clear improvements after RIE.
 - more symmetric charge collection
 - full charge collection seen for 2 out of 3 Castor sensors
 - more stable I_{hv} currents; can go to 1 KV without any erratic currents
- Question 1: would more RIE on these diamonds show further improvement?
 - Starting a study to remove 1 micron at a time from an irradiated diamond and measuring the performance after each micron of removal to find optimum amount to remove
 - H Kagan at OSU is doing the same
- Question 2: Does RIE fix the rate effect?
 - Need to RIE then pixelate irradiated diamonds; test with hot source (next week)
 - Ultimate test is to take RIE pixels to PSI for high rate beamtest (mid-May)