CMS Experiment at LHC, CERN
Dalta recorded: Wed Jun 13 21:51:54 2012 PDT
Run/Event: 196250 / 615309469
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MET = 269 GeV b-tagged jet




+ LHC and CMS Performance
+ A SUSY Primer

+ Searches for SUSY
® Great Expectations - 2010-2011
® Looking under the lamppost(s)
® Lessons from the Higgs discovery - 2012
® Naturalness, as the guiding light - 2012-2013

+ Open gquestions and what’s next
+ Conclusions
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+ Thank you, the LHC, for spectacular 3 years!

Total Integrated Luminosity (b )

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC

e 2010, 7 TeV, 44.2 pb! === 2011, 7 TeV, 6.1 fb ! === 2012, 8 TeV, 23.3 !

Date (UTC)




+ The detector has been working spectacularly with no
degradation in performance over the three years of LHC Run 1

® In some cases, original loss in performance was recovered

Operational in Dec 2010 (%) Operational in Feb 2013 (%)

CASTOR
csc CSC
RPC RPC

DT DT

HO HO

HF HF

HE HE

HB HB
HCAL HCAL
ES ES

EE EE

EB EB
ECAL

Rl ——
Pixels y
90

™
T
o
N
N~
>
©
p=
>
(90)
L
(@]
1
n
=
®)
4=
>
n
2
w
o)
=
=
)
o)
%)
1

Greg Landsberg

Slide 5



™
pY
o
N
N~
>
©
p=
>
(%))
L
(@]
1
%)
=
®)
4=
>
n
2
w
o)
=
=
)
0]
%)
1
X
o)
o]
%)
o)
c
<
—
o)
o
O]

Slide 6

CMS has a dedicated team of experts monitoring quality of data online and offline,

with certification of every collision run

The certification efficiency is high: the “golden” data with all the detectors
performing flawlessly is >90% of recorded data over the duration of Run 1; for

muon-only analyses it’s even higher (95%)

CMS Integrated Luminosity, pp, 2011, vs= 7 TeV

Data included from 2011-03-13 17:01 to 2011-10-30 16:10 UTC

~N

I LHC Delivered: 6.13 b '
[ CMS Recorded: 5.55 b !
CMS Validated: 5.09 b !
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I CMS Preliminary
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CMS Preliminary Results: Mar-Oct 2011 proton-proton collision runs

Tracker  Calorimeters  Muon Spectrometer Magnet Operational

Pixel SST ECAL ES HCAL CSC DT RPC

99.7 995 974 999 98.0 983 999 996 100

All good for physics: 91.7%

CMS Integrated Luminosity, pp, 2012, Vs = 8 TeV

Data included from 2012-04-04 22:37 to 2012-12-16 20:49 UTC
25 T

I LHC Delivered: 23.30 b !
[ CMS Recorded: 21.79 b !
CMS Validated: 20.65 !

CMS Preliminary

Total Integrated Luminosity (b ')

*‘ “. o\‘ Q. !
x‘,\a AT AW o x‘“‘e"
Date (UTC)
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CMS Preliminary Results: Apr-Dec 2012 proton-proton collision runs

Tracker  Calorimeters  Muon Spectrometer Magnet Operational

Pixel SST ECAL ES HCAL CSC DT RPC

989 996 986 993 96.6 99.3 998 994

All good for physics: 90%
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The machine has already achieved the design level of pileup (additional interactions
per beam crossing); CMS has tuned its particle ID and copes very well!

CMS Preliminary 2012 Vs =8 TeV, L=19.6 fb™

Probe in endcap: 1.479 < Inprobe

Data

Simulation
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CMS Average Pileup, pp, 2012, Vs = 8 TeV
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As Confucius Once Said...

BROWN
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... about SUSY searches in the XXI century?..

It’s very hard to find a black cat ...
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... about SUSY searches in the XXI century?..




... about SUSY searches in the XXI century?..




+ The mirror world: discrete symmetry of spin

® Every Standard Model (SM) fermion has a
bosonic “superpartner,” and vice versa, e.g.:
<+ Quark (J = %2) = Squark (J = 0)
<+ Photon (J = 1) — Photino (J = 2)
+ Supersymmetry must be “broken” as we do
not see a selectron with the mass of 0.5 MeV!

+ To avoid multiple constraints, typically
introduce conserved R-parity [Farrar, Fayet,
Phys. Lett. B 76 (1978) 575]:

© R=(-1)%8++2 = 11 (SM) and -1 (SUSY)

+ This leads to the lightest supersymmetric

particle (LSP) being stable and pair-

production of SUSY as the only possible

mechanism
Standard particles SUSY particles

Higgsino

@“&L)

Rl The LSP is an excellent
e @ Qe Dark Matter (DM) Candidate




SUSY: Gauge Sector

+ Higgses: two complex doublets

(8 degrees of freedom)
One gives masses to down-type, and
another one - to up-type quarks
Ratio of vacuum expectation values is
conventionally called tanf
3 d.o.f. are “eaten” by massive Z, W*
5 remaining d.o.f. become physical
states: h9 HY, H%, A°
Mu > Mn by definition; Mn < 135 GeV for
SUSY to be a viable low-scale theory

® Ais a CP-odd Higgs

® Supersymmetric partners of the two
Higgs doublets mix with the partners of
SM EW gauge bosons to give four
neutral (neutralinos) and two pairs of
charged (charginos) gauginos

4+ Gluino (a partner of a gluon) remains
unmixed
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Supersymmetry Breaking I

+ We know that SUSY is a broken symmetry, but we do not know how it is
broken

+ Several theoretical models exist:

F . .
® Gravitino mass: Mmgz/2 = V3M David Shih
pl

2
F
® Sparticle masses: mgoft = K2 (M) ~ TeV M =“Messenger scale”

10 GeV 1010 GeV  10'2 GeV VF

— L] >

Gauge Anomaly
mediation mediation

M < My, M ~ My M~ M,y

Qa Q
K~ — Kk~ 1 K~ —
A7 A7

“Low scale SUSY-breaking” “High scale SUSY-breaking”
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Gravitino LSP. No WIMP DM. Calculable. Neutralino or sneutrino LSP. WIMP dark
Solves SUSY flavor problem. matter possible. Generally not calculable.
Can have severe SUSY flavor problem.
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SUSY is a renormalizable and calculable theory and has been thoroughly
studied theoretically over the last four decades

MSSM has just two Higgs doublets; nevertheless the number of parameters
describing the model is still very large: 124
®© 18 are the SM ones + Higgs boson mass
® 105 genuinely new parameters:
<+ 5 real parameters and 3 CP-violating phases in gaugino sector
<+ 21 squark/slepton masses and 36 mixing angles
<+ 40 CP-violating phases in the sfermion sector
This makes it very challenging to search for generic SUSY, and simplifying
assumptions are typically made

One of these simplifications is constrained MSSM, or cMSSM, which
assumes gaugino unification and degenerate squark/slepton masses at high
energy (typical of gravity-mediated SUSY breaking)

® That results in just five parameters fixing all the SUSY interactions:
common scalar and fermion masses M,, M, ,,, ratio of the vacuum expectations

of the two Higgs doublets tanf, sign of Higgsino mass term sign(u), and trilinear
coupling Ao
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SUSY is a renormalizable and calculable theory and has been thoroughly
studied theoretically over the last four decades

MSSM has just two Higgs doublets; nevertheless the number of parameters
describing the model is still very large: 124

®© 18 are the SM ones + Higgs boson mass

® 105 genuinely new parameters:
<+ 5 real parameters and 3 CP-violating phases in gaugino sector
<+ 21 squark/slepton masses and 36 mixing angles
<+ 40 CP-violating phases in the sfermion sector
This makes it very challenging to search for generic SUSY, and simplifying
assumptions are typically made

One of these simplifications is constrained MSSM, or cMSSM, which
assumes gaugino unification and degenerate squark/slepton masses at high
energy (typical of gravity-mediated SUSY breaking)
© That results in just five parameters fixing all the SUSY interactions:
common scalar and fermion masse§M,, M, ,atio of the vacuum expectations

of the two Higgs doublets tang, sign ino mass term sign(u), and trilinear

coupling Ao Typically most important




+ Elegant solution + Gauge unification
to the hierarchy
problem (i.e., why  *i
the Higgs mass is  «-
not at the Planck
scale)

ymmetry
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+ Dark matter candidate with the right abundance
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Typical SUSY spectrum resembles atomic transitions or meson
spectroscopy

® Generally, multiple competing decays with relative branching fractions
strongly depending on SUSY parameters

“Classical” SUSY (R-parity conserving): copious final-state particles
(jets, leptons) from cascade decays and large missing transverse energy
due to escaping LSP (often the lightest neutralino)

® Generally rich signatures, but possible “nightmare” scenarios if (part of) the
SUSY spectrum is sufficiently compressed




Theory vs. Experiment "

BROWN

+ Almost inevitable conflict between what theorists optimally want (scan the
entire parameter space!) and what experimenters could do (search for certain

TEXPERIMENTER

Practicality

Desirability
Search feasibility
Ease of interpretation
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All-hadronic | Lepton+jets | SS/OS dileptons | Multileptons Photons+jets|MET—Iess|
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Signatures



+ Signatures

+ Kinematic
optimization

+ Background
determination

4+ Interpretation

Greg Landsberg - Seeking SUSY in CMS - DESY, May 7, 2013
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Great Expectations! [:

+ When the LHC turned on at 7 TeV in 2010, the hopes to find SUSY almost
immediately were high

® 650 GeV squarks/gluinos (quite beyond the Tevatron reach) are pair produced

at the LHC with cross section of ~ 1 pb! '
10 Prospino2.1

Illl’llll’llllllll’llll’llll’llll’llll
O [Pb]: pp = SUSY \ VS=7TeV

L LIl

DO Collaboration, Phys. Lett. B660 (2008) 449
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http://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino&visible=tools
http://www.thphys.uni-heidelberg.de/~plehn/index.php?show=prospino&visible=tools

1*
2010-2011 Search Strategy

+ Developed very robust search strategy, with the
early SUSY discovery in mind
® Multiple methods of missing transverse energy

estimation, less prone to instrumental effects and
mismeasurement tails

® Determination of major backgrounds from control
samples in data - minimum reliance on the Monte Carlo!

® Multiple complementary analysis techniques exploring
various kinematic selections and analysis technigques
+ The idea was to demonstrate convincingly that what
IS seen in one channel has corroborative evidence
from the full host of measurements
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Example: The ot Variable

+ Alternative approach to requiring Randall, Tucker-Smith, arXiv:0806.1049
large MEr in the event; does not rely on MEt reconstruction/tails

+ Combine visible decay products in the
event into two (pseudo)jets:

| | Hr = Elﬁm Et
ar = ET2/ Mt = ETJE/\/HTz — Hr?

HT _| ZI_]elt —

For a perfectly balanced dijet event, ot = 0.5

BACKGROUND

For QCD events with mismeasured MEr, et woology facos
ar < 0.5 T o e

: : CMS Collaboration Jrat=sspeis=7Tev
For signal, long tail of arXiv:1101.1628 s St

ar > 0.5 -
a, =E» IM,(jj,) MET fromLSPs .|
JE: | E} _
T 20-coshp)  somuom

Events / 0.025
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+ Advantages:

® Strongly produced squarks/ Example diagram
gluinos result in large cross
section

® Branching fraction into jets is
typically large
+ Disadvantages:

® Copious QCD background from
jet mismeasurement

® Irreducible Z(vv)+jets background

® Potential instrumental
backgrounds from beam halo,
faulty or noisy calorimeter
channels, poorly instrumented
detector areas
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CMS Experiment at LHC, CERN

Data recorded: Tue Oct 26 07:13:54 2010 CEST
Run/Event: 148953 / 70626194

Lumi section: 49

raaravil

S Expenmen LHC, _
Sglta 'Ee:f;'cooo Wed :E \%Ez?’;«,sa 2012 PDT HT = 1009 GeV
RurVEvent 196250 / 615300469
Lumi section: 385
Orbit'Crossing. 100914568 / 2074
Jet pT = 168 GeV
b-tagged jet
Jet pT = 268 GeV
Jet pT =302 GeV

b-tagged jet

\ ’ 7
S
Jet pT =104 GeV

Jet pT =167 GeV
b-tagged jet

MET = 269 GeV




Single lepton + jets + MET is characteristic signature for cascade
decays via chargino or slepton

The presence of an isolated lepton reduces QCD background
dramatically

Main backgrounds: W+jets including semileptonic tt decays
Employ several methods to estimate this dominant (~75%) background

example signal:
SUSY with x* decay

q Jets

Greg Landsberg -

Slide 25



+ All three methods yield comparable results, with different
systematics; Lp is slightly more powerful

CMS 4.98 fb \s=7TeV

V< 55, [tan(p)=10 95% CL Limits:
A =0 GeV . LS Observed Limit
0 === LS Expected + 10 exp
u>0 - LS Observed = 10 theory
m, = 173.2 GeV LP Observed Limit
<~-- LP Expected + 10 exp
LP Observed + 10 theory
ANN Observed Limit
> N ANN Expected + 1Toexp —
RTINS, . ANN Observed = 10 theory _
- 2 S

m(g) = 1000

m(g) = 1500

P
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+ Here, we have several types of searches:
®© Opposite-sign (OS) dileptons, from/not from Z decays

®© Same-sign (SS) dileptons (e.g., from the decays of a pair of
Majorana 2" or pair of Majorana gluinos decaying through
same-sign charginos)

+ All of these come with example signal:

extra jets and MET SUSY with x20 — 0+0- Xo decay
+ Each of the final states q jets

employs somewhat
different selection
approaches and
background estimation
techniques

4+ Can also look at 3, 4 leptons
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2. (cMSSM Grand Summary

+ A “spaghetti plot” of “classical” SUSY searches @ 7 TeV

+ What did we learn? - Not much beyond the all-hadronic limits!

® Excluded squarks to ~1.3 TeV and gluinos to ~0.8 TeV - or did we?

CMS Preliminary L _ =4.98fb",\s=7 TeV
,7;[9’>I I T T T T I T T T T I T T T T I T T Italn(l?)l)=‘;0 T T
e 2 A, =0 GeV

u>0
m,=173.2 GeV

I:I LEP2 7"
l LEP2 7 °

m(§) = 1000

Jets+MHT
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BROWN
+ A “spaghetti plot” of “classical” SUSY searches @ 7 TeV

+ What did we learn? - Not much beyond the all-hadronic limits!
® Excluded squarks to ~1.3 TeV and gluinos to ~0.8 TeV - or did we?
> LG e
/ M - - fj/

v

\MERICA'S OLDEST BREWER v~

Read the fine print!
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X What Have We Excluded?

+ We set strong limits on squarks and gluinos, and yet we have not
excluded SUSY

© Moreover, we basically
excluded VERY LITTLE!
+ We ventured for an “easy-SUSY”
or “lazy-SUSY” and we simply
failed to find it

® So what? - Nature could
be tough!
What we’ve probed is a tiny
sliver of multidimensional
SUSY space, simply most
“convenient” from the
point of view of theory
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It’s now time for a paradigm shift and a different search
strategy!
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+ We set strong limits on squarks and gluinos, and yet we have not
excluded SUSY

© Moreover, we basically
excluded VERY LITTLE!
+ We ventured for an “easy-SUSY
or “lazy-SUSY” and we simply
failed to find it

® So what? - Nature could gauginos
be tough!
What we’ve probed is a tiny
sliver of multidimensional
SUSY space, simply most
“convenient” from the
point of view of theory

It’s now time for a paradigm shift and a different search
strategy!

SUSY Theory phase space

T. Rizzo (SLAC Summer Institute, 01-Aug-12)




+ Our early (2010-2011) searches were signature-based

+ We developed and commissioned a number of inventive and
advanced methods of estimating backgrounds without reliance on
MC simulations

® Most of these tools are directly applicable to broader class of searches

+ ... and it’s OK to look under the lamppost - but which one?

Greg Landsberg - Seeking SUSY in CMS - DESY, May 7, 2013
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+ So far we were focused on neutralino LSP

+ In GMSB model, the LSP is gravitino MSSM
and is very light (in the eV-GeV range)

® The signature is determined by the
nature of NLSP (wino, a partner of W;
bino, a partner of Z; stau, ...)

® Classical decay: wino NLSP into gravitino + photon (>20%!)

® Decays via Z are already covered by OS dilepton searches

Bino Decays Neutral Wino Decays
1.0F

NLSP

gravitino LSP

LOF——_"

0.8 08 Cos*Oy

. 0.6f -0.6:—
a7 6: 1 Mo
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+ Depending on the decay chain, we focus on the
following three signatures with ME-:

® Photon+jets+ME-:

e.g.

® Diphotons+jets+MEr:

AAWAN
VA\ZQVAV Y
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+ Main backgrounds stem from

v+jets and m

ultijets with

mismeasured MET

CMS preliminary 4.04fb '

s=8TeV >1y>2 jets

e Data

8 TeV

108
107

W/Z y

—_
(o N e)
oo

GGM

£
o0
~
wn
f—
-
)
>
LLl
e
@)
-
(D)
O
-
- |
Z

5 _L_L_L_L
L_LOOI\)OC‘JOA

~ y/QCD
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vy + MET + 22 jets

CMS Collaboration
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arXiv:1211.4784
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CMS Experiment at LHC, CERN

Data recorded: Tue May 22 10:22:09 2012 CEST
Run/Event: 194691 / 423906268

Lumi section: 294

pfMet 0,
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+ Neutralino NLSP lifetime depends on GMSB parameters:
® ct~0.1(/F/100 TeV)* x (100 GeV/M(x1%))®> mm, where ,/F is the GMSB scale
® (Can be long-lived, resulting in non-prompt photons

+ Look for non-prompt photons using excellent CMS ECAL timing resolution ¢ ~ 0.5ns
®© Require at least one photon and =3 jets (to reduce y+jets background)
® Background is determined from data by releasing photon ID requirements

+ Fit data in MEr vs. timing plane to extract possible signal
10° CI‘VIS‘4.9fb;1 B \!|§=‘7"re\/‘ 108 CIMISAIf.glfbl'1 —
* DATA [ orel-vanw (Mc) This experiment (4.9 fo)
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\Vs=7Te

<
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Long-Lived Staus

+ Stau NLSP can also be long-lived:
® ct =~ (/F/100 TeV)* x (100 GeV/M(3))° cm, where ,JF is the GMSB scale
+ In other scenarios gluinos and stops can be long-lived as well

+ Look for long-lived heavy charged particles via anomalous ionization and
TOF to the muon system
® Determine mass from ionization and momentum
® Estimate background from data with low-pt tracks (no correlation between pr
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+ New search for DM, a la direct detection experimentsg :0

Data / MC

Events / 25 GeV

Increased interest since the recent CDMS result

(arXiv:1304.4279)!

® Limits are somewhat model-dependent as they are
sensitive to the mass of the mediator

® Also sensitive to DM-gluon couplings

Direct Detection (t-channel)

CMS Preliminary
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S
+ New search for DM, a la direct detection experiments§ :Z

Data / MC

Events / 25 GeV

Increased interest since the recent CDMS result

(arXiv:1304.4279)!

® Limits are somewhat model-dependent as they are
sensitive to the mass of the mediator

® Also sensitive to DM-gluon couplings

Direct Detection (t-channel)
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+ We saw that cMSSM is too constrained and not really
useful any longer as a search framework

+ We learned that specific alternative scenarios can be
probed and often reuse cMSSM-like searches to recast
limits

+ Yet, generating full SUSY spectrum even in constrained
scenarios is a hard task

© Moreover, one can’t freely move “interesting” SUSY masses
without reverse-engineering SUSY parameters into masses

® Often, spectrum and kinematics is most important feature,
which differs various SUSY scenarios experimentally

+ How can we capture all these features in a “light” set of
SUSY models?
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+ The answer is: Simplified SUSY Models (SMS) that capture important
part of the SUSY spectrum and focusing directly on the masses and
decay modes of a few particles involved, ignoring the rest

® After [Arkani-Hamed et al, hep-ph/0703088], [Alwall et al., arXiv:
0809.3264], [Alwall, Schuster, Toro, arXiv:0810.3921], ...

+ Example: SMS T1 model: gluino pair production with 100% decay via
virtual squark into LSP + 2 jets CMS Collaboration

® Input parameters: M(g), M(%1°); assume M(g) » M(g) é‘,(,,xg"gugﬂ'fﬁ,%%

pp - ﬁ 9 9 ~aa x m(q)»m(g) pp - § g g —aa x m(q)»m(g)
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CMS
Vs =7TeV, L< 498 fb~!
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+ Existence of several Higgs bosons is
the key prediction of low-scale SUSY

® Higgs & SUSY - a marriage made in
heaven!

+ The lightest one looks largely like the
SM Higgs and has to be light (<135

GeV); the other ones could be relatively
heavy I elxperimental errors 68% CL:

Discovery of the Higgs boson at N
125-126 GeV was the crucial missing
proof that low-scale SUSY can still
exists, despite the fact that we haven’t
seen it yet

® Precision EW data does prefer MSSM M
over SM (only by 1 standard deviation) SMIM,, =127 GeV  vissm, w, = 125.127 Ge

SM, MSS

® H ad th e H ig g S boso n been j u St 1 0 % Heinemeyer, Hollik, Stockinger, Weiglein, Zeune ’12I

heavier, | wouldn’t be giving this talk! ¢ N R N W W

\. marriaGe mapp in

M, =123 .. 127 GeV,
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4+ Unstable vacuum?

Stability

hysics!

Higgs mass M), in GeV

Degrassi et al, arXiv:1205.6497
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+ A 125 GeV Higgs boson is challenging to
accommodate in (over)constrained versions
of SUSY, particularly for “natural” values of
superpartner masses

Started to constrain some of the simpler
models

Big question: if SUSY exists, can it still be
“natural”, i.e. offer a non-fine-tuned solution
to the hierarchy problem of the standard
model?

® N.B. If not, we would be giving up one of the
SUSY “miracles”!

9135;""""""" I NUHM

W
S 130f . B msuGRrA

[ ]Jvcmssm
B nAMSB

[ cNMSSM : _
I No-scale i Mahmoudi et al

4 | memss ; arXiv:1211.2794
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]
B !i We are at a SUSY Crossroad

+ Light 125 GeV Higgs boson strongly prefers SUSY as the fundamental explanation
of the EWSB mechanism (via soft SUSY-breaking terms and radiative corrections)

+ But what kind of SUSY?
Jhe ijqka 4% \éj&f’]}t
T _

Nima Arkani-Hamed,

SavasFest 2012 MH o 1;15 Ce \/

AU Someshes Siwple Fuen Winima
n—fuml Cgé e\ btz r > < \f* i
(re.meco Jaww .

CoB E l \ ‘bu\ir\a \)
Implies: light stops/sbottom,

reasonably light gluinos and
charginos/neutralinos
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Likely: long-lived particles,
light neutralino, multi-TeV Z’, ...
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+ |[f SUSY is natural, we should find it soon:

© And we most likely will find it by observing 3rd generation
SUSY particles or EW boson partners first!

+ Requires shifting of the SUSY search paradigm
Natural Susy  Jay Wacker
mj, ~ (125 GeV)?

Tree Higgsinos
~ 200 GeV

Top Squarks

~ 500 GeV

Also at least one of
the bottom squarks
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+ With [Ldt ~ 25/fb™' and 1 fb cross section produce 25 events;
typically 1-10 events observed after acceptance/efficiencies

gg: M(g) = 1.3 TeV
titi: M(t1) < 0.8 TeV
Yx: M(%) < 0.6 TeV

In combination,
we cover most
of the natural
SUSY space!
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Can’t do this with
gluinos alone!
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http://www.thphys.uni-heidelberg.de/~plehn/
http://www.thphys.uni-heidelberg.de/~plehn/

+ Generally well covered by cMSSM-like searches, but has
a limited reach: if gluinos are above ~1.3 TeV, we simply
won’t produce enough of them to see decay chains

Gluinos

. .

Current focus 3} Previous focus
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Gluino-Induced ProductionQt..

BROWN

g-g production, g— bb % GG production, §— ti 7,

'L:IIEMISIHIIIl-III.IlllllII|IIIIIIIIIlIIlIIIIIIlIII| :l|||||||lllll.lll.llllllIIIIIIIlIlIIlIIIIIllIIlII'I1I:
- reliminary — CMS Preliminary — Sus-12:024 0-lep (Er+H,) 194 "
\'IS =8 TeV —— Observed \"S -8 TeV — SUS-13-007 1-lep (nmz 6) 19.4 fb™"
Moriond 2013

- = SUS-12-017 2-lep (SS+b) 10.5fb™"
Moriond 2013 °p (SSb) T80 —
s SUS-12-026 (MultiLepton) 9.2 fb™' ]
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+ Direct sbottom pair production was looked at in the all-
hadronic ar + b-jets and same-sign dilepton + b-jets channels:

Model B1

[)1 -

T ] T I T I T T I T T T T T T

pp—BB,6—~by; m(§)>>m(6l) - |
Expected Limit +10 exp.

—— oNLONLL 41 o theory

- CMS,11.7f6",Vs=8TeV
g CMS Collaboration
arXiv:1303.2985

T T T 1 T 1T/ T T T T7
- CMS,{s=8TeV,L =10.5fb"
__Model B1

- === Observed Limit ¢"°? = gN.O\LL + 15
[ m(x,) =50 GeV

CMS Collaboration
arXiv:1212.6194

95% CL upper limit on o (pb)
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+ This is the most hopeful, and yet the toughest channel at the LHC
+ Simple reinterpretation of the existing analyses is not sensitive enough
+ Requires a dedicated optimized tour-de-force analysis:

® W-+jets and tt with th and lost leptons (from W(uv)+jets with embedded Tn),
invisible Z decays (from Z(py)), and multijets (reweighted MC with kinematics
and resolutions reweighted to match multijet data)

® The 8 TeV analysis is ongoing \

1— T .L~~ T ol T |~ T
PP — 11, t—t% ; m(G)>>m(t)

Expected Limit +1 o0 exp.

- CMS Preliminary, 1.7 f6", (s =8 TeV

L] CMS COIlaboration § “"" Hr T t+ vg?;li:\rle“;_'in:gsm' pp—-i’?*'ﬂ;?:(.:,O,,JR;;T_.W‘+
.~ arXiv:1303.2985

a8

-
o

AL |
2
95% CL Upper Limit ono (pb)
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+ This is the most hopeful, and yet the toughest channel at the LHC
+ Simple reinterpretation of the existing analyses is not sensitive enough
+ Requires a dedicated optimized tour-de-force analysis:

® W-+jets and tt with th and lost leptons (from W(uv)+jets with embedded Tn),
invisible Z decays (from Z(py)), and multijets (reweighted MC with kinematics
and resolutions reweighted to match multijet data)

® The 8 TeV analysis is ongoing \

T I T T T T I T T T T I T T T L)
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Observed Limit (95% CL)
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|
2 !i Direct Stop: I+jets+ME}L :

+ Another important channel for direct
. . . CMS SUS-11-023
stop production is single-lepton channel

® Dedicated optimized analysis with
multiple signal regions determined
by Mt and MEr

© Main background is from tt to dileptons
with a lost lepton or 1h, followed by
W+jets and semileptonic tt

CMS Preliminary Is=8TeV, [Ldt=9.7 fb™!

3
95% C.L. UL on oxBR [pb]

—_
Q
n

200 250 30'0 350 400 - 450 500 5I5.0 600
m..=0.5m;+0.5m, m, [GeV]
CMS Preliminary Vs=8TeV, [Ldt=9.7 fo" : :
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o

===

%' 20— Tt NLO-NLL exclusions CMS Preliminary Vs=8TeV, Ldt=9.7 "
’ 1

(O] [ 50/50t,_/t, mixture

—

%< 200
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o
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+ Looking for direct EW production of pairs of
neutralinos/charginos, typically in multilepton final
states

CMS Preliminary (s=8TeV,L =9.2fb"

I|IIII|IIII|IIII|IIII|IIII
LEP2 slepton limit

| LEP2 chargino limit

- —pp =%, % (1, BF(*)=0.5)
pp—>5“c %, (1g, BF(I'1)=1)

— o pp =%, (not BF(WZ) 1)
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+ Yet, SUSY may still be a solution to EWSB, albeit we would have to

give up the first “miracle Only fermions (partners

5 PLIT S US Y of gauge bosons) are

— —~— light, and in many cases

A\ — they can be long-lived
due to mass degeneracy

S'éaxars U n'\f'\ai"\on /

[ n ‘ 00/> Q \/
E&:;\H\ : TeV CD“k M -“Q(
i y No F\a.s\ror,
ernions MWQL cp wwl!bt (-
jﬁfka Feemong pio\o\e—ms

calacs don't
TeV
Wells, hep-ph/0306127

Nima Arkani-Hamed, Arkani-Hamed, Dimopoulos, hep-th/0405159
SavasFest 2012 Giudice, Romanino, hep-ph/0406088

)

™
T
o
¥
N~
>
©
=
>0
(9p)]
L
(@]
1
n
=
@)
4=
>
(9]
2
n
(o)
=
=
o)
o)
D
1
o)
0]
Q
7)
§e
c
©
—
(o)
o
O]

Slide 57



%] [}

‘1‘!!\ [

Depending on the SUSY model, the Arvanitaki et al.
H|ggs mass points to SUSY Prompt Gluino Decays arXiv:1210.0555
breaking scale between 103 and
107-1070 GeV

+ Sizable fraction of this range results Cotlider-Stable

in long-lived particle signatures oo

Predicted range for the Higgs mass 3 4 5

Scalar Mass in Loglo(%)

==

Gluino Mass in TeV

S

= tanf =50 Split SUSY

— tang = 1

——-m =1TeV
.~ m =2TeV

Giudice, Strumia : *a o m.=5TeV
arXiv:1108.6077 & A
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+ An extension of the
HSCP search to full
8 TeV statistics +
7/ TeV reanalysis
® Strong limits on
gluinos (M > 1.3 TeV)
and stops (M > 0.8 TeV)
from the combination of
muon-only and tracker-
only analyses
+ Dedicated search for
long-lived stopped
gluinos ruled out large
fraction of the allowed
parameter space

CMS Collaboration
arXiv:1305.3792

—— gluino; 100% g5
—*—gluino; 50%9g
—+— gluino; 10%9g =
—m stop 3

CMS Collaboration
arXiv:1207.0106
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95% CL limit on o/ay,
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—&— gluino; 10%dg; CS 3

—a— stop
—=— stop; CS
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—e— stau

—+— 1Ql =2e/3
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g S
% Run 1 Loose Ends |

+ We are updating all the searches to the full 2012
statistics

+ We are adding new ones to the portfolio:
® Searches for compressed-spectrum SUSY

® Search for Higgs bosons in SUSY decay chains (copious
if LSP is Higgsino-like!)

® Extension of SMS to non-100% branching fractions (e.g.,
T1bbtt)

® Enhanced portfolio of RPV SUSY searches

® New channels for long-lived particle searches (e.g.,
displaced jets, leptons, and tops)

+ Will leave no stone unturned with the present dataset!
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|
A !i What’s Next: Ask the Oracle?®:
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8+ \What to do next? - Ask the Oracle!

ORACLE

g
o
N
N~
>
©
p=
>
(90)
L
(@]
1
n
=
®)
4=
>
n
2
w
o)
=
=
)
o)
%)
1
o
o)
o]
%)
o)
c
<
—
o)
o
)

Slide 62



8+ \What to do next? - Ask the Oracle!

ORACLE

+ Tech support: +49.180.2000.170
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8+ \What to do next? - Ask the Oracle!

ORACLE

+ Tech support: +49.180.2000.170
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.

© Hi, I am a particle experimentalist.
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.

® Did you come to me because you are a particle experimentalist?
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
®

Sort of. I've been desperately seeking Susy...
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+ For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
Hi, I am a particle experimentalist.
Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...
Can you tell me more?
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
® Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist

®

O]
O]
®

Hello, I am Eliza.

Hi, I am a particle experimentalist.

Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist

®

O]
O]
®

Hello, I am Eliza.

Hi, I am a particle experimentalist.

Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?
I am getting frustrated..
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
® Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?
I am getting frustrated..

Do you believe it is normal to be getting frustrated?
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
® Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
® Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist
©® Hello, I am Eliza.
© Hi, I am a particle experimentalist.
® Did you come to me because you are a particle experimentalist?
® Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?
God forbid!
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist

®

O]
O]
®

Hello, I am Eliza.

Hi, I am a particle experimentalist.

Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?

God forbid!

Tell me more.
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist

®

O]
O]
®

Hello, I am Eliza.

Hi, I am a particle experimentalist.

Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?

God forbid!

Tell me more.

Should I go on with my quest?
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For the younger generations: Eliza was one of the first computer programs with
primitive artificial intelligence (1964-66), mimicking a Rogerian psychotherapist

®

O]
O]
®

Hello, I am Eliza.

Hi, I am a particle experimentalist.

Did you come to me because you are a particle experimentalist?
Sort of. I've been desperately seeking Susy...

Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?

God forbid!

Tell me more.

Should I go on with my quest?

Please, go on!
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Can you tell me more?

I looked everywhere: squarks, gluinos, even electroweakinos, but
she is simply not there...

What does this suggest you?

I am getting frustrated..

Do you believe it is normal to be getting frustrated?
Yes, if you are a theorist, which I am not..

Perhaps you would like to be a theorist?

God forbid!

Tell me more.
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Should I go on with my quest?
Please, go on!

+ And so we will!
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P !& Run 2 Preparations
=
+ Run 2 is going to be
challenging: EWKino
© Generally higher trigger  stopsisbottoms = HE-LHC33
thresholds decrease Squarks/gluings Bl
our ability to look for
compressed spectrum
scenarios

® High-pileup environment is not optimum for low-MEt searches

® Increased energy of the machine (~13 TeV) will make it
necessary to repeat the entire program of SUSY searches
once again

+ Reach for gluino masses up to ~2.5 TeV, stop/sbottoms -
up to ~1 TeV, and chargino/neutralinos up to ~0.7 TeV
would allow to ultimately test natural SUSY models

Mass Reach, TeV
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SUSY is being squeezed from both ends, but still a lot of unexplored territory to

cover

Run 2 of the LHC will be crucial to find SUSY at low scale or prove that it is

irrelevant for EWSB and ot
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+ SUSY remains one of the most challenging enigmas in particle
physics
+ The LHC has closed vast territory of SUSY parameter space and
shattered many hopes
® Yet, it didn’t rule out SUSY, not even natural SUSY yet
CMS has developed a number of innovating experimental
techniques to look for SUSY in various scenarios and is now

applying it to the shifting paradigm of SUSY searches in the wake
of the Higgs boson discovery

Final results from Run 1 of the LHC started pouring out

® There is still hope we will see SUSY with the present data, but it won’t
be an “easy SUSY”!

Run 2, scheduled to start in 2015 will ultimately answer if SUSY is
responsible for EWSB and if it is, whether it is natural or not

Stay tuned!
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