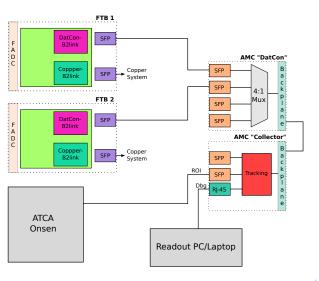
Data Concentrator Plans for the testbeam at DESY

Jochen Dingfelder, Carlos Mariñas, Michael Schnell schnell@physik.uni-bonn.de

University of Bonn

April 9th, 2013

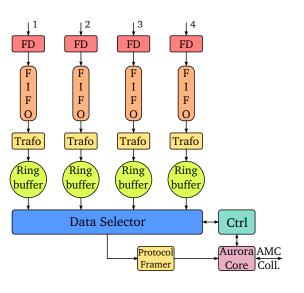


Content

Hardware

Data Aquisition

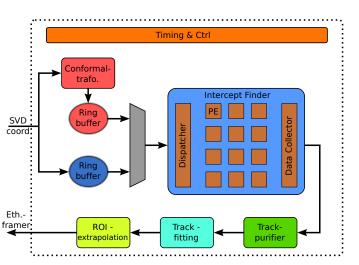
Setup: AMCs with mTCA Crate


- 2x AMCs:
- 1x 4-SFP for acquisition
- 1x High Performance for tracking
- 9 Slot mTCA crate with D-Star backplane

Backup: Compute Node

- 2 FPGAs from 1x CN (already available)
- 2 Slot ATCA crate (available)
- Firmware must be ported (to Virtex 4)
- Not (close) to final design

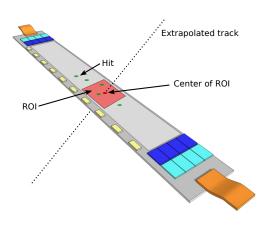
AMC "DatCon" Layout


- FD: Frame Detection Unit
- Trafo: Transformation on incoming data, like coordinate translation...
- Ring buffer: Implemented in DDR2 memory.
- Ctrl: Control unit, sends data when next event is requested by collecting FPGA

Questions/Notes

- Data format of the FADC fixing in Q2
- Test in Q2 of FADC-FTB-DatCon (only readout)
- Slow control connection? (Ethernet debug connection is enough for us)
- FPGA firmware flashing PC?
- Connection to Onsen over RocketIO using Aurora?
- Monitoring over Ethernet connection

FPGA Track Reconstruction Prototype Architecture


- PE: Processing Element, basic comparator to detect lines in cell
- Track Purifier:
 Remove
 duplicated found
 tracks and
 combine two
 2D-sets

7/10

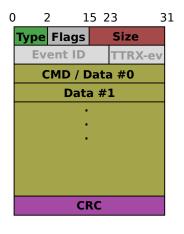
ROI Creation and Format

ROI creation:

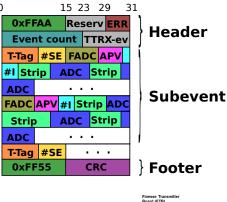
- Extrapolation of tracks to the coordinates of the different PXD layers
- Use lookup table for "reverse" coordinate translation
- Send center Pixel ID
- And size of rectangular ROI in number of pixels, based on momentum lookup (lower momentum: larger ROI)

Bachelor student working on the ROI size optimization

Timetable


- April: Test of AMC cards, implementing the 'DatCon' firmware
- Q2: Vienna data transmission and protocol decoding test with 4-SFP AMC
- Q2: Implementation full FPGA tracking
- September/October: ROI send test with Giessen
- January: Testbeam DESY

Thank you for your attention!



Internal Protocol

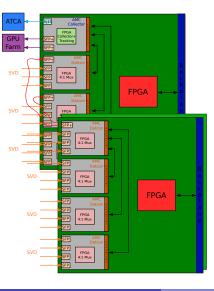
- Type: 2 Bit
 - 00: Command (CMD)
 - 01: User Data (DATA)
- Flags: 14 Bit
 - (0000)₁₆: Normal operation
 - (0001)₁₆: Test the connection, waiting for reply (only command)
 - (0002)₁₆: Test the connection, reply (only command)
 - (1XXX)₁₆: Error, kind of error indicated by XXX

Proposal for the Belle II Link in SVD-DatCon Flavor

Analog level translation

Board (FTB) Unified optical data link (>20m)

DAQ system


- Layout of header and footer as proposed in the TDR
 - 10 bit Time Tag (T-Tag): 1024 time slots within on event
 - 6 bit #SE: Number of the subevents
 - 6 bit APV: APV identification connected to the FADC
 - 6 bit #I: Number of Strip/ADC values for the FADC-APC
 - 7 bit Strip: Fired Strip ID for the FADC-APC
 - 10 bit ADC: Value of the ADC

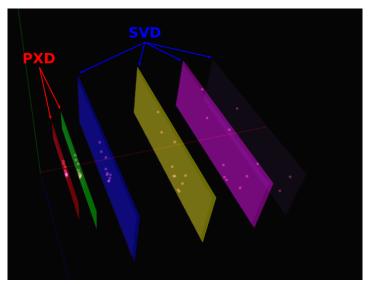
APV25

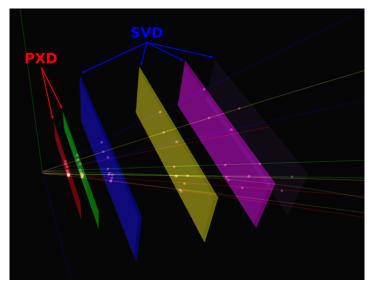
Front-end

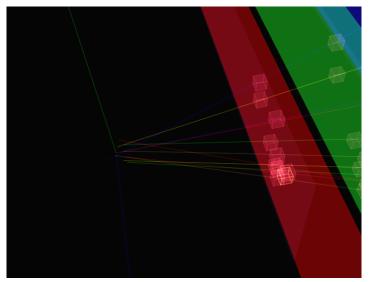
hybrids

Real Topology Layout

- 3 carrier boards with 4 AMCs.
 - → 4:1 / 3:1 Multiplexer in each AMC card
 - → Use one SFP+ transceiver for inter-carrier board transmission
 - → AMC card interconnection over high-speed RocketIOs
- 1 AMC as data collector
 - → 3:1 Multiplexer with track reconstruction algorithm
 - → Ethernet connection for transmission of tracks to ATCA


Testbeam Simulation Setup


- Set up two layers with one PXD half ladder each.
- And four layers of the SVD in the suggested distance as in the final design
- Run simulation with electrons with energies between 0.5 and 2 GeV, 1 T magnet field


Testbeam Visualization

Testbeam Visualization

Testbeam Visualization

